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A B S T R A C T

The multi-modal emotion recognition lacks the explicit mapping relation between emotion state and audio and
image features, so extracting the effective emotion information from the audio/visual data is always a chal-
lenging issue. In addition, the modeling of noise and data redundancy is not solved well, so that the emotion
recognition model is often confronted with the problem of low efficiency. The deep neural network (DNN)
performs excellently in the aspects of feature extraction and highly non-linear feature fusion, and the cross-
modal noise modeling has great potential in solving the data pollution and data redundancy. Inspired by these,
our paper proposes a deep weighted fusion method for audio-visual emotion recognition. Firstly, we conduct the
cross-modal noise modeling for the audio and video data, which eliminates most of the data pollution in the
audio channel and the data redundancy in visual channel. The noise modeling is implemented by the voice
activity detection(VAD), and the data redundancy in the visual data is solved through aligning the speech area
both in audio and visual data. Then, we extract the audio emotion features and visual expression features via two
feature extractors. The audio emotion feature extractor, audio-net, is a 2D CNN, which accepting the image-
based Mel-spectrograms as input data. On the other hand, the facial expression feature extractor, visual-net, is a
3D CNN to which facial expression image sequence is feeded. To train the two convolutional neural networks on
the small data set efficiently, we adopt the strategy of transfer learning. Next, we employ the deep belief network
(DBN) for highly non-linear fusion of multi-modal emotion features. We train the feature extractors and the
fusion network synchronously. And finally the emotion classification is obtained by the support vector machine
using the output of the fusion network. With consideration of cross-modal feature fusion, denoising and re-
dundancy removing, our fusion method show excellent performance on the selected data set.

1. Introduction

Emotion state is controlled by human brain [1], and can be ex-
pressed through the changes in behavior and physiological features.
The interaction of human beings in the daily life cannot be separated
from the emotion communication. In addition, with the rapid progress
of science and technology, explosion of the internet, and changes in
human life style, more and more people spend a lot of time interacting
with computers directly every day. Obviously, human-computer inter-
action is a part of our life that cannot be ignored. To gain better in-
teractive experience in the human-computer interaction (HMI), we
hope that modern human-computer interaction system can present in a
more natural and friendly way. For this purpose, the computer must
possess the capacity of understanding the human emotion state like
humans. As we know, the physiological indices is what really matters in

the generation process of emotion, which can also be used for re-
cognition of the ‘real’ emotion. However, because physiological indices
are inconvenient to access, most of researches relevant to emotion re-
cognition concentrate on human behaviors, such as facial expression,
voice, text, gesture and so on.

Among the behavior patterns of emotion expression including voice,
text, and gesture, the voice and facial expression happen frequently in
human emotional interaction. Also, they are what being discussed most
in research community of affective computing. Since they are char-
acterized by the homologous subject and time synchronization in most
cases. That is to say, while talking with someone face to face, we can
listen to his/her voice and meanwhile look at his/her facial expression
in most cases. In recent years, there have been many unimodal emotion
recognition researches only in view of voice [2–9] or facial expression
[10–14]. Also, there are some multi-modal emotion recognition
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researches. These researches have proposed some methods in the as-
pects from feature extraction to classification algorithm. However, the
recognition of human emotion state by computer is still faced with
great challenges. In the unimodal emotion recognition, such as pure
emotion recognition from voice or facial expression), the extraction of
emotion features from the raw data is always an open-ended problem.
At present, the explicit and deterministic mapping between emotion
state and concrete feature does not exist. Audio-visual emotion re-
cognition can gain more precise recognition results because audio-vi-
sual emotion recognition is more natural and there are more emotion
information than unimodal emotion recognition. As a matter of fact, the
similar problems also exist in the multi-modal emotion recognition,
because the multi-modal emotion recognition is based on the unimodal
emotion recognition. Fusing the results of audio emotion recognition
and facial expression recognition to varying degrees can be helpful for
audio-visual emotion recognition.

In the view of emotion features in audio data, it is reported that, the
prosodic features, acoustic features and voice quality features imply
comparatively abundant emotional significance. These features include
pitch period, formant, and energy-related features [15–17]. In addition,
the cepstrum feature represented by MFCC (Mel-Frequency Cepstrum
Coefficients) [18] is often used in the research of speech emotion re-
cognition. Eyben et al. make the detailed research on audio emotion
features, and construct a concise feature set named GeMAPS, which
involves 62 audio features consisting of frequency parameters, energy
parameters and spectrum parameters) [4].

Comparatively, the common facial expression features can be di-
vided into two kinds, i.e. appearance feature and geometrical feature
[19,20]. The appearance feature is gained via applying image filters
such as Gabor wavelet for local areas of the full face . The geometrical
feature represents the LBP (local binary patterns) [21] and LBP (local
binary patterns) [21] of shape and position of face components, e.g.,
eyebrow, eye, nose and mouth.

For the unimodal emotion recognition, it is required to learn the
emotion recognition model through machine learning method after
completion of feature extraction based on certain emotional corpus.
The common methods include support vector machine (SVM), support
vector regression (SVR), long short term memory recurrent neural
network (LSTM-RNN), hidden Markov model (HMM), Gaussian mixture
model (GMM), and artificial neural network (ANN), etc. (audio:
[22–25]; visual: [26,27]).

In the multi-modal emotion recognition, it is required to extract the
emotion features, and then fuse the emotion information to various
degrees. Most of the fusion works focus on four strategies, i.e. feature
fusion, decision fusion, score fusion, and model fusion. However, these
methods are mostly shallow fusion, and fail to model the complex non-
linear correlation between the multi-modal information, so it is ne-
cessary to design more complete fusion model [28].

To solve the problems existing in the feature extraction and multi-
modal fusion better, the deep learning technology [29,30] applied to
various fields can play a important role. By virtue of the available large-
scale effective training data set, the deep learning technology shows the
ultra-strong ability of feature learning and dimensionality reduction in
the fields of image processing, speech recognition as well as natural
language processing [31,32]. Among these technologies, CNN (con-
volutional neural network) is one of the representative technologies
which plays an important role in the history of deep learning. Char-
acterized by sparse interaction, parameter sharing, and uniformly
varying representation, it shows excellent performance in feature ex-
traction of data with specific grid structure, for example, image data. In
addition, the deep belief network consisting of multi-layer restricted
Boltzmann machines can be used as a deep multi-modal emotion fea-
ture fusion model.

In addition, when extracting emotion features for silent periods of
audio data, the results of computing usually close to zero. This will
result in noises and data pollution. Similarly, the corresponding facial

expressions without voice are usually ‘static’, i.e., most of them stay the
same. That can be view as a kind of redundancy. Most of the related
work ignored this problem. Eyben et al. make the related research on
GeMaps, but they only incorporate the average length of silence seg-
ment and voice segment and the standard deviation into 62 features
simply [4]. In fact, this will lead to some noises. Han et al. use the
extreme learning machine (ELM) for the voice emotion recognition
based on the handcraft features, and consider the difference between
silence segment and non-silence segment, but that is just not a task of
multi-modal emotion recognition [24]. the direct using of mel-spec-
trograms of raw audio and facial expressions will result in performance
loss in emotion recognition.

We firstly do voice activity detection (VAD) for original audio in
order to distinguish whether an audio frame is silent, and assign emo-
tion weights of 0 and 1 for silent frame and voice frame as well as the
corresponding facial expression frames in visual data. Simply, when a
certain time interval of audio/visual data is assigned a weight of zero,
we discard it. And then, the mel-spectrogram and its first two order
differentials are computed. Next, we encapsulate audio/visual segments
following the format suitable for the corresponding feature extractors;
audio-net and visual-net respectively. Finally, the whole AVEF model is
trained based on the selected multi-modal emotion data set.

The remaining part of this paper includes the following sections.
Section 2 introduces our method in details. Section 3 illustrates the
emotion data set we used. Section 4 describes our experimental details,
results and corresponding analysis. We summarize the full work in
Section 5. The future work is discussed in Section 6.

2. AVEF method

As shown in Fig. 1, AVEF method consists of three stages, i.e. data
preparation, feature learning, and multi-modal fusion.

(1) data preparation stage: In order to maximize the information
content and meet the input demands of feature learning networks, we
carry out some necessary pre-processing for raw visual and audio data
in the selected corpora. (2) feature learning stage: Feature learning
stage is composed of two convolutional neural networks (CNNs), i.e.
audio-net used for learning the emotion features in the voice, and vi-
sual-net for facial expression images. (3) multi-modal fusion stage:In
multi-modal fusion stage, we employ a deep belief network (DBN) to
fuse the audio emotion features and visual emotion features for an
audio/visual segment, fuse emotion multi-modal features of all seg-
ments in each certain video flip via average pooling, and further get the
final emotion estimation by a using a support vector machine (SVM)
model.

In Sections 2.1–2.2, we will discuss the details of these three stages
respectively.

2.1. Data preparation

Among all data sets, the length of emotion video samples is gen-
erally different. It means that the duration of audio data and the
quantity of face frame in every video clip are usually not the same.
Thus, we should not regard the entire video clip as the basic unit for
emotion analysis. Furthermore, handling a full video clip also can lead
poor real-time performance in real-world application. Therefore, we
need segment audio/visual data with an appropriate time duration. In
previous researches, some segmenting schemes are used, such 255 ms,
655 ms. And the scheme of 655 ms is being proved with better per-
formance in multi-modal emotion recognition [33]. Therefore, we also
use 655 ms audio/visual segments. As is shown in Fig. 1, the audio-
network needs inputting the image formatted mel-spectrograms (in-
cluding the first and the second differential) of the audio segment. The
visual-network needs inputting the facial expression image sequence of
facial expression in the video clips.

Fig. 2 describes data preparation stage with an example sample. The
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example sample comes from enterface05 data set, and is labeled as
happiness. Rows 1–3 represent its audio wave, mel-spectrograms and
visual sequence before data preparation stage. After the process in-
cluding denoising, face detection, voice activity detection (VAD) and
segmenting, they become what in rows 4–6. The original video has a
time duration of 2.7 s. After data preparation, it is shortened into 1.6 s.
Sections 2.1.1 and 2.1.2 discuss the preparation of audio and visual
data in details.

2.1.1. Audio data
For the convenience of the subsequent feature calculation, it is very

necessary to make some preprocessing for the voice sequence, involving
sampling rate unification and channel conversion. Firstly, it is required
to convert the voice sequence into the monophonic signal. The specific
voice sequence X is generally composed of one or two channels, i.e.

= …X X X[ ; ; ]Ch1 . Ch refers to the number of channels, generally being 1
or 2. In addition, every …X i Ch, {1, , }i is a vector with the same di-
mensionality. We need the voice sequence with only one channel in
order to achieve higher computational efficiency, so we should make
the following preprocessing of =X n x n( ) ( )S

Ch c
1 , …c Ch{1, , }. And

then, XS will go through a process pipeline including pre-emphasis,
VAD, segmenting, and Mel-spectrogram computing and imaging. The
whole pipeline is as follows:

Pre-emphasis : It is required to evaluate mel-spectrogram on the basis
of original voice sequence, so we firstly make the pre-
emphasis processing for the original audio sequence,
which is equivalent to a high-pass filter and results in
decreasing noises with lower frequency without leading
to obvious voice distortion. Supposing the voice sequence
is x(n) before pre-emphasis and the voice sequence is
after pre-emphasis =x n x n µ x n( ) ( ) * ( 1)p . Here
μ∈ [0, 1], 1 standing for the strongest and 0 the weakest.
We adopt 0.97 here. The pre-emphasis can eliminate the
sub-bass effect [34].

VAD & Weight assigning : The silence segment will result in data pollu-
tion to a large extent. The calculation of Mel-
spectrograms actually deems a voice frame as
the atomic unit, so the calculation result of silent
frames will be close to 0. Equivalently, a lot of
nearly identical data are labeled differently,
leading to serious data pollution in the training
data. Also the same pollution exists in the test
data. Segbroeck et al. put forward a compara-
tively robust VAD method [35]. Following their
method, we use a sliding window to extract the
MRCG (Multi-Resolution Cochleagram) feature
of voice sequence, and perform VAD process by
DNN. Based on the distinguishing results, the
emotion weight is assigned for silence frames
and non-silence frames, 0 and 1 respectively. We
make the simple test on Emo-DB [36], and the
results prove that VAD can improve the global
accuracy of emotion recognition by 19.7% re-
latively. VAD results prove that the portion of
voice frames in Emo-DB is 70.3%. Of course,
VAD results could be changeable with the var-
ious related parameters.

Segmenting : We divide the continuous voice sequence
into several segments. To meet the input de-
mands of audio-network, the number of
frames in a segment is set as 64 to reach a
segment with 655 ms. In addition, to keep the
quasi-steady state between segments, we will
have 30-frame overlap between the adjacent
segments. The framing parameters are as
follows, with the frame length of 25 ms and
frame shift of 10 ms. So we get 655 ms
= + ×25 63 10 Every frame uses the
Hamming window for smoothing.
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Fig. 1. AVEF method: AVEF method consists of three stages; datapreparation, feature learning and multi-modality fusion.
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After pre-emphasis, VAD & Weight Assigning and Segmenting. It is
necessary to calculate the short-time Mel-spectrogram with 64 Mel
band bins as well as its first and second order differentials form
64×64×3 array. Finally they are combined into a matrix of
64×64×3.

Mel-spectrogram of every frame is calculated as described in
Eq. (2.1).

+MelSpectrogram melbank abs rfft framelog( (64)*( ( ( )) 0.01)frame t
2

t

(2.1)

Where framet represents the t voice frame, and melbank(64) stands
for converting hertz frequency within 0 8000 Hz into Mel scale ap-
plying 64 Mel bins, rfft represents the fast Fourier transform. abs is the
amplitude of a complex number, plus 0.01 means to prevent taking the
logarithm for 0.

The dimension of MelSpectrogramframet obtained from the above
process is 64×1. Then we compute the first and second order differ-
ential of Mel-spectrogram of all frames in each segment and obtain a
64×3 matrix. Extending the calculation results can obtain the feature
matrix of 64× 64×3 for each audio segment. As for the calculation
mode of first order differential, we adopt the common method in the
voice recognition task [37], as described in Eq. (2.2).

= = +

=

d
n c c

n
( )

2
t

n
N

t n t n

n
N

1

1
2 (2.2)

Where =N 2. The second order differential of mel-spectrogram is
computed in the same way.

Now extended Mel-spectrograms are obtained, with the dimension
of 64×64×3. Such data can be regarded as an image representation
of audio data as is shown in Fig. 3(a). Additionally, Fig. 3(b)–(d) are
static Mel-spectrogram, the first and the second differentials respec-
tively. In such images, the width direction represents time, the height
direction represents frequency in Mel scale, and the pixel represents the
corresponding amplitude. Obviously, Mel-spectrogram is much more
different from liner spectrogram that has a clear harmonic structure.
However, we can still find useful patterns in Fig. 3(a)–(d). (b) has a
clear structure in width direction, while (c) and (d) have a clear
structure in height direction. (a) is the combination of (b)–(d). The
following contents of this paper will denote the image of extended Mel-
spectrograms as a, to be deemed as the input of audio-network.

2.1.2. Visual data
Generally, in the audio-visual emotion data set widely used, the

video is composed of image frames involving faces. But in most cases,

……

Seg. 1 Seg. 2 ……Seg. 3 Seg. N-2 Seg. N-1 Seg. N

Seg. 1 Seg. N-1 Seg. N

…

……
Fig. 2. Rows 1–3: audio wave, Mel-spectrogram and picture sequence in the raw video; rows 4–6: audio wave, Mel-spectrogram and facial expression sequence in the
video clips after data preparation.
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these image frames have large-area background, either being irrelevant
to the theme we concentrate on, or misleading us when doing feature
learning. To reduce such side effect and promote the ultimate model
performance as much as possible, it is required to carry out necessary
pre-processing. Thus, conduct face detection via detecting four key
positions of left eye, right eye, nose and mouth, and obtain the human
face through an extending for these key points.

Now we have done most of the data preparation except segmenting.
The above processing segments the voice data, with the length of

655 ms per segment. We mark the time range [Tbegin, Tend] in the ori-
ginal video, and then encapsulate the image sequences within this time
interval into a corresponding visual segment. For example, the time
interval of some voice segment is [100ms, 755ms], then in the video of
30 frames/s, the corresponding number of images should be

× =int (0.655 30) 20. The number of images required for the input of
visual-network is 16, so we remove the first two and the last two face
images in every visual segment, to ensure that the visual segment has
continuous 16 face frames. In the other case, if the number of frames in
a visual segment is less than 16 under smaller video frame rate, sup-
posing it has only 12 images, it is required to simply repeat the first two
and the last two frames, and the ultimate visual segment is the con-
tinuous 16 face frames. Supposing the face image we get is
173×173×3, the face expression sequence will be a tensor of
16×173×173×3. Of course, this tensor will be resized through
with bilinear interpolation to suit visual-network if necessary.
Corresponding to the voice data, we denote the tensor standing for the
sequence of facial expressions as v, which will be regarded as the input
of visual-network.

2.2. AVEF model learning

At the data preparation stage, we carry out the processing of video
including pre-emphasis, VAD, face detection, and segmentation. Each
audio/visual segment is marked with the same emotion label.

As shown in Fig. 1, the learning model includes two connected
stages, i.e. feature learning stage and multi-modal fusion stage. The
feature learning stage includes the audio-network and visual-network.
The multi-modal fusion stage is composed of segment fusion network
and global fusion model. Audio-network is a 2D convolutional neural
network and visual network is a 3D convolutional neural network. The
segment fusion network is a deep belief network (DBN), and the global
fusion model is a multi-class support vector machine(SVM).

The output features of audio-network and visual-network are feeded
into the DBN with a certain portion like 1:1 to learn the segment-based
emotion features. The output of deep belief network is deemed as the
multi-modal emotion features of a audio-visual segment, and then
average pooling processing is conducted for the multi-modal emotion
features of all segments in a full video. Finally, the SVM deems the
average pooling result as the input for the emotion analysis to get final
recognition result.

In practice, we choose a strategy of transfer learning for tackling the

lack of labeled data [38,39]. In related works, similar strategy was also
used. For example, Zhang etc. use ImageNet-based AlextNet [40] and
C3D-Sports-1M model [41] to initialize audio-network and visual-net-
work respectively [33]. However, there is a large domain gap in these
two transferring. Firstly, ImageNet consists of massive images which
are much different from Mel-spectrogram; and secondly, the data set
used for training C3D-Sports-1M model is also much different from
human facial expressions. Therefore, to cope with these domain gaps,
we do transfer learning just among the multi-modal emotion data set.
For example, If we want to train a model in RML data set, we first
initialize audio-network, visual-network and the deep belief network
via Enterface05 data set and BAUM-1s data set, And then, keep the
shallow layers of each network and train the deep layers from scratch in
the target data set RML. It is the similar case in other target data sets.

In the remained of this section, we discuss these four models in
details.

2.2.1. Audio-network
The audio-network is a 2D CNN for audio emotion feature ex-

tracting. The architecture of audio-net we choose is Alexnet [40]. It has
8 layers, involving 5 convolutional layers (Conv1-Conv2-Conv3-Conv4-
Conv5) , 3 fully connected layers (fc6-fc7 -fc8) and 3 max-pooling
layers (pool1-pool2-pool5).

We denote the audio-network model as A(a; θA), where a is the
input variable, and θA represents the hyper-parameter set of audio-
network. It is noted that we modify the number of neurons in the last
layer (fc8) from 1000 to C. C indicates the number of categories to be
classified. For discrete model of six emotions, C is 6 since the data set
we use consist of 6 different emotion states; for binary valence-arousal
dimensional emotion model, C equals 2 because we acquire a binary
scheme (low and high for arousal, positive and negative for valence).

The output of the last layer (fc8) represents the probabilistic esti-
mation for classification as described in Eq. (2.3).

= …y A a i K( ; ), {1, 2, , }i
A

i
A (2.3)

K is the number of samples. yi
A is a vector of C×1. Each element

corresponds to the prediction result of audio segment sample ai as the
probability of a certain emotion. Thus:

=
=

y j( ) 1
j

C

i
A

1 (2.4)

Based on pre-trained Alexnet (as above, modified fc8 layer), we make
the further fine tuning on the target emotion audio data set. The overall
fine tuning process is to use the back propagation algorithm combined
with the Stochastic Gradient Decreasing to adjust the audio-network
parameters θA. Actually is to solve the following optimization problems
as described in (2.5).

=
L y yargmin ( , )

i

K

i
A

i
1A (2.5)

Fig. 3. Mel-spectrograms: (a) mel-spectrogram including its first and second order differentials (each of them is a color channel); (b) static mel-spectrogram; (c) first
order differentials of (b); (c) second order differentials of (b).
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L is the cross entropy between the estimation result and the true dis-
tribution as described in (2.6), where i is the index of samples, j is the
index for the category a given sample belonging to, yi stands for the
ground truth probable distribution of the ith sample, and yi

A for the
predicted one. Both yi and yi

A is a vector of C×1. yi is with the form of
one-hot, while yi

A is the result of softmax.

=
=

L y y y j y j( , ) ( )log( ( ))i
A

i
j

C

i i
A

1 (2.6)

2.2.2. Visual-network
The visual-network is a 3D CNN for facial expression feature ex-

tracting. The architecture of audio-network we choose is C3D-Sports-1
model [41]. It has to 8 layers, involving 8 convolutional layers
(Conv1a-Conv2a-Conv3a-Conv3b-Conv4a-Conv4b-Conv5a), 3 fully
connected layers (fc6-fc7 -fc8) and 5 max-pooling layers (pool1-pool2-
pool3-pool4-pool5).

We denote the visual-net as V(v; θV), where v is the input variable,
and θV represents the hyper-parameter set of visual-network. We
modify the number of neurons in the last full connected layer (fc8) from
487 to C. The output of the last layer (fc8) represents the probabilistic
estimation for the classification.

The theoretical description of modeling and optimization of visual-
network is similar to audio-network as demonstrated in (2.3)–(2.6).

2.2.3. Segment-based fusion
We use the deep belief network (DBN) to complete segment-based

fusion for audio-visual emotion features from audio-network and vi-
sual-network. DBN can learn highly non-linear relation in multi-modal
emotion features. As shown in Fig. 1, the deep belief network is com-
posed of an explicit layer, two implicit layers and an output softmax
layer. The implicit layer is used for feature extracting, and the explicit
layer is used for receiving the input. The input is from fc7 layer of
audio-net(faudio) and visual-network(fvisual), and these two feature vec-
tors form a feature of 8192, so the input layer of deep belief network
includes 8192 neurons. Two implicit layers respectively include 4096
neurons and 2048 neurons. The number of neurons in the output layer
is equal to the total number of emotion categories which is denoted as C
above. Therefore, the architecture of DBN is 8192-4096-2048-C. For a
global optimization in segment-based fusion, we train audio-network,
visual-network and deep belief network as a whole model. The method
of training the deep belief network abides by Hinton et al., i.e. firstly
using the greedy learning algorithm layer by layer for the pre-training
of network, as a non-supervised mode. Then utilize the output features
of audio-network and visual-network to conduct the supervised
training.

2.2.4. Video-based fusion
In Section 2.2.3, the deep belief network (DBN) conducts deep non-

linear fusion for emotion features learned by audio-network and visual-
network, and stores multi-modal emotion features with the di-
mensionality of 2048 in the last implicit layer. Finally, we build a SVM
model, and complete the last fusion for the full video.

As shown in Fig. 1, we firstly conduct the average pooling for the
features of all segments in the second implicit layer of DBN, and then
train a multi-class support vector machine(SVM) model by the pooling
results to complete the final classification. In fact, more than one

classifier can be used at this stage, such as neutral networks, extreme
learning machine, and SVM. The average performance of these three
methods is almost the same for the data set size and feature dimensions
at this stage, but SVM is faster, more stable and easier to implement.
Specifically, the final data set size is within one thousand and the fea-
ture dimension is 2048. So SVM is selected. The kernel function we used
is polynomial kernel function.

3. Dataset used

The audio-visual emotion data sets we select to evaluate AVEF
method are RML data set [42], Enterface05 data set [43] and BAUM-1s
data set [44]. We put forward the multi-modal emotion fusion network
in three public audio C video multi-modal emotion data sets, including
RML data set (performance), enterface05 data set (performance), and
BAUM-1s data set (natural).

Table 1shows three data sets we use. A/S stands for whether a data
set is acted or spontaneous. fsaudio is the sample rate of the audio data.
fpsvideo is the measure of video via fps(framepersecond). sizevisualframe
is size of visual frame. language is the number of languages contained in
a data set. speakers stands for the number of participants in the data set.
Detail description is as follow:

RML data set : RML data set includes 720 clips of videos. There are 8
different speakers, and 6 languages including English,
Chinese Mandarin, Urdu (Pakistan), Punjabi (India), and
Italian. It includes 6 basic emotions(anger, disgust, fear,
happiness, sadness, and surprise). The audio sample rate
is 22,050 Hz. All emotions are acted by the participants.
The video frame rate is 30 fps, and the image size is
720*576*3.

Enterface05 data set : Enterface05 data set is composed of 1290 video
clips. There are 43 different speakers who all
speak English. It includes 6 basic emotions as
same with RML data set. The audio sample rate is
48,000 Hz. All emotions are emotions acted by
the participants. The video frame rate is 25 fps,
and the image size is 368×240×3.

BAUM-1s data set : BAUM-1s data set includes 1222 segments of
video clips. There are 31 different speakers who
all speak Turkish. In addition to 6 basic emotions
included in RML and Enterface05, it also includes
emotions categories such as boredom and con-
tempt, as well as 4 mental states of uncertainty,
thinking, and concentrating, etc. To keep pace
with the previous two data sets, we choose 521
video samples involving the above 6 basic emo-
tions. The audio sampling rate of the data set is
48,000 Hz. The video frame rate is 30 fps, and the
image size is 854× 480×3. All emotions are
naturally expressed by the participants under sti-
mulation.

4. Experiments and analysis

In this section, experiments based on the three public data set

Table 1
Dataset.

A/S Fs_audio Channel_audio Fps_visual Size_visual frame Language Subject

RML A 22,050 Stereo 30 368×240×3 6 8
Enterface05 A 48,000 Stereo 25 720×576×3 1 43
BAUM-1s S 48,000 Stereo 30 854×480×3 1 31
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mentioned above are explored. We will discuss the emotion model,
experimental setup, and the results and analysis.

4.1. Emotion model used

In practice, we use the two popular emotion models: discrete
emotion model and binary dimensional emotion model. In our case, the
discrete emotion model is composed of six emotion categories including
anger, disgust, fear, happiness, sadness and surprise. And then,
discrete emotion categories are mapped into binary arousal labels and
binary valence labels as shown in Table 2. The mapping method is si-
milar to [4].

4.2. Experiment setup

In AVEF model, audio-network, visual-network and segment fusion
network are completed based on TensorFlow.1 The final emotion clas-
sification applies the libsvm toolkit [45] using polynomial kernel
function. In pre-training stage, audio-network and visual-network are
trained separately. And then they are trained incorporated with DBN as
a whole model. For discrete emotion model, six different emotion labels
are used. And for binary dimensional emotion model, the labels are
positive/negative and strong/weak respectively. The detail of experi-
ment setup is shown in Table 3.

All related training set and testing set are in a ratio about 7:3. To
ensure that the speakers in training set are not in the corresponding test
set, i.e., the subject-independent strategy, we use the LOSO strategy for
data set with fewer speakers, RML data set for example. Here LOSO
means Leave One Speaker Out. Comparatively, for Enterface05 data
set and BAUM-1s data set with more speakers, we adopt LOSGO(Leave
One Speaker Group Out) strategy.

4.3. Results and analysis

In this section, we demonstrate the experimental results on the three
public data set and analyse the corresponding results to give an illus-
tration of the classifying performance. Also, the time complexity of the
whole system is analysed.

4.3.1. Classifying performance
Multiple comparison experiments have been conducted, including

unimodal emotion recognition on discrete model, unimodal emotion
recognition on binary dimensional model, multi-modal emotion re-
cognition on discrete model, and multi-modal emotion recognition on
binary dimensional model. In each of these four experiments, we make
comparison for scheme with (case 2) or without (case 1) cross-modal
pollution decreasing and redundancy reduction as described in
Section 2.1. Global accuracies of each experiment are shown in
Tables 4−7 respectively.

Table 4 is the result of global accuracies in unimodal emotion re-
cognition experiments when discrete emotion model is used.

Table 5 is the result of global accuracies in unimodal emotion re-
cognition experiments when binary arousal-valence dimensional emo-
tion model is used.

Table 6 is the result of global accuracies in multi-modal emotion
recognition experiments when discrete emotion model is used. It is
worth noting that, after cross-modal denoising and removing re-
dundancy, the scale of the data set is decreased: RML datasets are
changed to 72% of the total number of samples in raw data, for En-
terface05 data set is 67%, and BAUM-1s 76%.

Table 7 is the result of global accuracies in multi-modal emotion
recognition experiments when binary arousal-valence dimensional
emotion model is used.

As shown in Tables 4–7, the performance of case 2 outperforms that
of case 1 since cross-modal pollution decreasing and redundancy re-
duction. Besides, the recognition performance of the proposed AVEF
method is also better than other works that utilize handcrafted features
[42–44].

The merits above are average results over all emotion categories. In
addition, to explore the recognizability of each individual emotion, we
give the corresponding confusing matrices covering all emotion cate-
gories, as is shown in Table 8–10. All rows represent real labels, and all
columns represent predicted labels.

Table 8–10 show that: emotions with higher intensity seem to be
easier to identify, such as anger and happiness. Moreover, emotions
with similar intensity are easily misclassified, for example, anger and
happiness, fear and disgust.

4.3.2. Time complexity
Under our experimental configuration, it takes nearly one day to

train a multi-modal emotion recognition model. Of course, the real time
cost will depend on the actual hardware configuration and specific
experimental parameter settings. Once the model deployment is com-
pleted, it will give the corresponding result of emotion recognition
when feeding a video clip. In our case, when the data preparation is
done, i.e., the images of facial expression and the corresponding Mel-
spectrogram (including the differentials), a video clip with duration of
5 s can be processed within 1 s. It just looks fine and satisfy the real-
time requirements. However, the data preparation process actually
takes a lot time, because it is completed via MATLAB 2017. In fact, the
data preparation process often takes 10 times of the time duration of a
video clip. Therefore, the real-time performance of the whole system
needs a lot of efforts.

5. Summary

We propose the deep weighted fusion architecture for multi-modal
emotion recognition in this paper. Firstly, we conduct the cross-modal
noise modeling for the multi-modal data, and eliminate most of the data
pollution in audio data and most of the data redundancy in visual data.

The AVEF model includes four parts, i.e., audio-network, visual-
network segment fusion model and global fusion model. The audio-net

Table 2
Mapping of emotion categories to binary arousal labels (low/high) and binary
valence labels (negative/positive).

low disgust, sadness
arousal high anger, happiness, fear, surprise

negative anger, fear, disgust, sadness
valence positive happiness, surprise

Table 3
Experiment setup.

Hard Ware
Platform

CPU Intel(R) Core(TM) i7-5820K CPU @
3.30 GHz

Memory 64GB

GPU NVIDIA GTX TITAN XP (12GB memory)

Training
setup

Audio-
network

Visual-
network

the whole
model

Batch Size 30 30 10
Number of
Epochs

500 500 500

Dropout
Parameter

0.3

Stochastic
Momentum

0.9

Learning Rate 0.001

1 https://www.tensorflow.org/.
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and visual-net are respectively 2D CNN and 3DCNN. They are used as
emotion feature extractors. Then we use DBN for highly non-linear
fusion of the emotion features learned by the above two feature ex-
tractors, and finally carry out the emotion classification by a support
vector machine.

Experiment results show that: (1) CNN-based feature extraction
outperforms traditional handcraft features in emotion recognition task;
(2) CNN and DBN based feature extraction and highly nonlinear feature
fusion scheme can effectively improve the efficiency of emotional fea-
ture fusion in audio-video multi-modal emotion recognition. (3) The
method that conducting VAD for video streams, segmenting the voice
segments and aligning them into corresponding facial expression se-
quence, can effectively reduce audio data pollution and visual data
redundancy, and hence improve the performance of emotion recogni-
tion. (4) Using transfer learning on corpus in closer domains can ef-
fectively solve the problem of insufficient data in large deep network
and can also speed up the training process.

6. Future work

In our current work, CNN is used as feature extractor. 3D CNN can
effectively extract spacial and latent time memory in continuous image
frames, but 2D CNN can only extract spacial invariant features in image
of Mel-spectrogram. We will further study the combined use of 2D CNN
and LSTM for feature learning and emotion recognition of audio se-
quence.

In addition, though we employ transfer learning strategy on audio-
visual emotion data sets, there is still a large culture gap. To cope with
this problem, we will explore more efficient methods of audio-visual
emotion recognition from two aspects: (1). developing larger data set
on a certain cultural backgrounds; (2). trying emotion recognition
model with more adaptive ability when faced with cultural gap.
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Table 4
Unimodal classification for six discrete emotions.

RML_audio RML_visual Enterface05_audio Enterface05_visual BAUM-1s_audio BAUM-1s_visual

case1 68.23 71.18 80.36 55.26 39.48 52.41
case2 71.26 73.88 81.41 58.19 42.38 54.69

Table 5
Unimodal classification of binary dimensional emotion model.

RML_audio RML_visual Enterface05_audio Enterface05_visual BAUM-1s_audio BAUM-1s_visual

case1 (79.2,81.3) (82.5,85.4) (88.3,87.1) (83.7,81.6) (68.2,66.2) (76.3,75.8)
case2 (81.5,83.6) (85.1,84.1) (89.4,88.1) (84.6,83.9) (73.1,74.5) (80.1,77.8)

Table 6
Multi-modal classification for six discrete emotions.

RML Enterface05 BAUM-1s

case1 80.46 83.94 57.61
case2 82.38 85.69 59.17

Table 7
Multi-modal classification for binary dimensional emotion model.

RML Enterface05 BAUM-1s

case1 (83.1,87.9) (91.2,88.6) (77.3,79.2)
case2 (86.6,90.1) (92.3,91.8) (80.5,82.3)

Table 8
Confusion matrix of multi-modal classification for six discrete emotions on RML
data set.

Anger Disgust Fear Happiness Sadness Surprise

anger 91.13 0.00 1.13 5.52 1.37 0.85
disgust 1.22 79.45 6.92 3.35 7.92 1.14
fear 1.32 1.01 77.90 1.62 13.5 4.65
happiness 7.65 2.38 1.54 86.7 1.27 0.46
sadness 2.84 3.64 12.55 3.64 76.12 1.21
surprise 2.35 6.32 7.99 1.34 1.40 80.60

Table 9
Confusion matrix of multi-modal classification for six discrete emotions on
enterface05 data set.

Anger Disgust Fear Happiness Sadness Surprise

anger 90.25 0.56 0.31 5.52 1.16 2.20
disgust 1.28 82.36 9.30 0.95 5.37 0.74
fear 1.24 6.51 80.22 1.28 8.75 2.00
happiness 5.62 1.86 1.13 89.01 1.25 1.13
sadness 1.58 6.75 2.68 1.18 84.95 2.86
surprise 5.63 2.29 3.08 6.82 1.56 80.62

Table 10
Confusion matrix of multi-modal classification for six discrete emotions on
BAUM-1s data set.

Anger Disgust Fear Happiness Sadness Surprise

anger 65.32 3.35 4.21 15.32 4.98 6.82
disgust 5.66 56.11 10.58 6.89 13.11 7.65
fear 6.52 10.85 58.62 7.95 10.32 5.74
happiness 12.96 6.23 5.85 60.25 7.62 7.09
sadness 7.59 10.33 14.65 8.96 53.18 5.29
surprise 11.33 5.68 6.01 15.59 2.39 59.00
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