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Collaboratively Replicating Encoded Content on
RSUs to Enhance Video Services for Vehicles
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Abstract—With the development of smart cities, Internet services will be pervasively accessible for moving vehicles. It is envisioned
that the video content demand of vehicles will explode in the near future. However, the strategy to efficiently distribute video content in
large-scale vehicular networks is still absent due to challenges arising from the huge video population, heavy bandwidth consumption,
heterogeneous user devices and vehicles’ mobility. In this work, we propose to collaboratively replicate video content on Roadside
Units (RSUs) to enhance video distribution services based on the fact that the contact period between moving vehicles and a single
RSU is not long enough to complete video downloading. In our design, a video file is split into multiple chunks. Each RSU replicates a
small number of original chunks and chunks encoded by network coding. Replicating encoded chunks can reduce redundancy of
chunks on different RSUs so that RSUs can complement each other better, whereas original chunks can be transrated to chunks with
lower bitrates flexibly to fit in users’ devices. Therefore, we replicate both original and encoded chunks on RSUs to take advantages of
both sides. Stochastic models are employed to analyze chunk download processes and a convex optimization problem is formulated to
determine the optimal partition of space allocated to each kind of chunks. Furthermore, we extend our strategy to support video
streaming services and empirically prove that the influence caused by limitations of network coding is moderate. In the end, we
conduct extensive simulations which not only validate the accuracy of our models but also demonstrate that our strategy can effectively
boost video distribution services.

Index Terms—Roadside unit, video file downloading, encoded chunks, vehicular networks
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1 INTRODUCTION

VIDEO distribution is one of the most crucial applica-
tions for modern Internet. In the future as vehicu-

lar networks are ubiquitously available, video services for
moving vehicles1 will explosively surge, which can trigger
a variety of promising applications. We enumerate several
typical examples here. Users can enjoy video contents [1],
[2], participate video conferences/chats or download videos
for future entertainment during their trips [3], [4]. One
can broadcast advertisement in video form to nearby ve-
hicles [5]. Users can share videos recorded by their vehicles
with their friends or other vehicles [6], [7] in real time.

However, efficiently distributing video content for a
large number of moving vehicles is a challenging problem.
For vehicular networks, a tremendous number of Road-
side Units (RSUs) will be deployed to provide Internet
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1. Vehicles are used interchangeably with users in this paper.

services [8], [9]. To enhance video distribution efficiency, a
widely adopted approach is to replicate video content on
RSUs by perceiving RSUs as mini-servers that are close to
end users [3], [10]. A critical question arising here is which
video files should be replicated on RSUs given limited
storage space but a relatively infinite number of videos.

We tackle this problem from a new perspective by re-
ducing the storage space occupied by individual videos so
that more videos can be replicated on RSUs. As vehicles
move, distributing large video files cannot be accomplished
by a solo RSU since the contact period between vehicles
and an RSU is very short. We leverage this property by
only replicating a small fraction of content of each video
on each RSU. However, without replicating complete video
files, there is a risk that RSUs fail to provide complete videos
for vehicles. Thus, RSUs should replicate complementary
contents so that they can collaboratively serve moving vehi-
cles.

Specifically, we split a large video file into multiple
chunks and each RSU only replicates a small fraction of
all chunks. The question is which chunks should be repli-
cated on each RSU in order to maximize video distribution
capacity. Through rigorous analysis, we prove that both
original chunks and chunks encoded by network coding
should be replicated. Intuitively speaking, we should repli-
cate complementary chunks on different RSUs so that they
can help each other. However, unless vehicles access RSUs
with a fixed sequence, we cannot guarantee that chunks on
different RSUs can complement each other. Fortunately, by
encoding video chunks with network coding in advance, we
can ensure almost all encoded chunks are independent and



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2960022, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

hence useful for users [11], [12], [13], [14]. 2 Random linear
codes (as a kind of network coding techniques) is suitable
for this scenario which can almost optimally generate an
infinite number of encoded chunks [15]. As long as a certain
number of independent encoded chunks are collected, the
video can be recovered by decoding. Nevertheless, encoded
chunks cannot be transrated to versions with lower bitrates
to fit in heterogeneous user devices.3 In other words, net-
work coding isolates a video’s different versions and we
have to treat them separately. In contrast, an original chunk
can be transrated to versions with lower bitrates flexibly.
Thus, to achieve the best performance, it is necessary to
suppress the weakness caused by purely replicating original
or encoded chunks, and both kinds of chunks should be
replicated on RSUs.4

We analyze video downloading processes with stochas-
tic models and formulate a convex optimization problem
to determine the optimal partition between the space for
replicating each kind of chunks. We further extend our
strategy to support video streaming services through se-
quentially downloading multiple video segments. We em-
pirically prove that the influence caused by the limitations
of network coding is moderate and our strategy is applica-
ble in practical systems. Finally, extensive simulations are
conducted to verify theoretical models and demonstrate the
efficacy of our strategy in video distribution services.

The rest content of the paper is organized as follows.
The state-of-the-art related works are discussed in Sec. 2. We
introduce background and preliminary knowledge in Sec. 3.
Stochastic models are presented in Sec. 4, following which
the algorithm to partition replication space is proposed in
Sec. 5. The case with heterogeneous RSUs is discussed in
Sec. 6. In Sec. 7, we extend our strategy to support video
streaming and discuss the overhead caused by network
coding. At last, simulation results are elaborated in Sec. 8
before we conclude our paper in Sec. 9.

2 RELATED WORK

Recently, how to efficiently and reliably distribute content
especially video content in vehicular networks has attracted
intense research study. We briefly introduce these works
from three aspects: communication protocols, video content
replication and network coding techniques.

2.1 Communication in Vehicular Network
Most of existing works focused on improving transmission
efficiency in vehicular networks through enhancing collab-
orations between vehicles by forming ad hoc networks. In
comparison with our work, they ignore the collaboration
opportunities between RSUs. The works [4], [16], [17], [18]

2. Independent chunks can complement each other.
3. To transrate encoded chunks, we need to recover the original video

file first, and then transrate the original file to the requested version.
This operation will waste too much resources for an RSU merely
replicating a small fraction of chunks for each video.

4. It is worthy to mention the difference between transrating and
network coding. Transrating operates original video chunks to yield
other versions with lower bitrates for playback. Network coding mixes
chunks with randomly generated coefficients to generate encoded
chunks for replication and transmission, which however should be
decoded before playback.

studied the problem to distribute content to vehicles via
RSUs in ad hoc vehicular networks. They designed var-
ious vehicle-to-vehicle content sharing strategies so as to
improve the content distribution performance. [6], [19], [20]
investigated the scenario that vehicles need to upload their
video contents such as surveillance videos to remote servers
or other vehicles in an ad hoc manner in which vehicles help
each other with transmission.

Some other works contributed to reduce collision possi-
bilities when multiple vehicles need to transmit messages
simultaneously. For example, [21] designed a detailed pro-
tocol for vehicle communications by adopting coding tech-
niques to reduce collision possibilities and retransmission
times. For another example, a central controlled scheduling
algorithm is designed in [22] to determine the scheduling
decisions to reduce collision chances.

In addition to the above works, there also exist works
proposing distinct video distribution solutions for vehicles.
The work [23] enabled RSUs to share file content cached on
them with each other to improve file downloading services.
However, they failed to fully explore the caching capacity of
all RSUs by only selecting a number of representative RSUs
for caching. The work [2] studied a different application, i.e.,
real time video transmission, in vehicular networks. Frame
skipping and transcoding are adopted to handle situations
with network congestion.

2.2 Video Content Replication
Replicating video content on devices (e.g., RSUs in vehicular
networks) close to end users is a popular approach to
improve video service efficiency.

The crowdsourcing-based architectures are described by
the works [24], [25], [26] which place file content on edge
devices to improve file distribution capacity. The work [10]
considered a case with a single server and multiple helpers
serving file downloading for moving users. Each helper has
limited capacity to cache some most popular files. Thus, a
scheme is designed to determine files cached on each helper
based on file popularity.

Likewise, video files can be replicated on RSUs in vehic-
ular networks. The work [5] proposed to replicate delay-
tolerant contents on RSUs by proposing an efficient dis-
tributed replication algorithm based on the content popu-
larity, vehicle-AP contact patterns and content availability.
In another case, each user can upload some files to RSUs
to broadcast them to vehicles with interests [1]. Applying
machine learning techniques for video replication to serve
mobile users has been explored in the work [27]. The
work [28] synthetically utilized historical information to
predict user request distribution in vehicular networks, but
caching encoded content is not covered. The work in [29]
came up with a novel multimedia streaming framework for
ad hoc vehicular networks in information centric networks.

2.3 Network Coding
Applying network coding [12] to improve video streaming
performance has been extensively studied for many years.

It has been theoretically proved that network coding
techniques have the potential to improve multicast rate [11].
In the light of the benefits brought by network coding,
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various works have been dedicated to apply network cod-
ing for video distribution. The works [14], [30], [31] have
investigated how to apply network coding techniques to im-
prove the efficiency for Peer-to-Peer (P2P) video streaming
services. Another protocol is designed using network cod-
ing to reduce content transmission delay in P2P networks
so as to support video conferencing in real time [32]. By
improving energy efficiency to execute coding algorithms,
the work [33] has implemented network coding based data
transmission on mobile phones and pads for multimedia
content sharing. The work [34] has designed the coding
scheme to support P2P VoD streaming services. The encod-
ing strategy for video replication in P2P VoD systems which
can tradeoff encoding/decoding cost and replication cost
was designed by the work [35]. The work [36] designed a
novel scheme by placing encoded chunks on edge devices
to accelerate file downloading. A stochastic model is estab-
lished to theoretically prove the performance gain achieved
by the new scheme. A survey paper has introduced existing
approaches for multimedia content distribution with net-
work coding in P2P networks [37]; while a broader survey
on the multimedia content distribution with network coding
under various network conditions was conducted by the
work [38].

In a word, our work is different from aforementioned
works because we improve the video distribution perfor-
mance by reducing the caching space occupied by each
replicated video on RSUs so that more videos can be repli-
cated on RSUs. Moreover, our strategy considers this prob-
lem from a new perspective and thus can be implemented
together with some existing video distribution strategies in
vehicular networks to further enhance video transmission
efficiency.

3 BACKGROUND AND PRELIMINARY MODELING

This section presents the system model to be studied. We
provide examples to illustrate chunk download processes
and introduce preliminary knowledge for analysis.

3.1 System Overview
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Fig. 1: The overview of the video distribution system in
vehicular networks

The overview of the video distribution service in
our study is presented in Fig. 1. Videos encoded with

H.264/H.265 can be split into multiple original chunks with
equal size. Original chunks are further transrated into mul-
tiple versions with different bitrates to fit in users’ play-
back devices. By applying network coding such as random
linear codes to original chunks, an infinite number of en-
coded chunks can be generated [15], [31]. Splitting a video
into chunks is a popular approach for video distribution.
According to previous works [14], [30], [31], [39], chunk
splitting and assembling operations can be implemented
on the Application layer. Then, a fraction of all chunks are
replicated on each RSU for vehicles to download. Note that
original chunks are transrated to multiple versions with
different bitrates before they are encoded for replication.
After collecting a sufficient number of independent chunks,
the original video file (of the requested version) can be
decoded for playback. Here our strategy is independent
from the video encoder (e.g., H.264) in use, and we will
not specify video encoders any more in the rest content.
To make our presentation uncluttered, encoding only refers
to encoding original chunks with network coding hereafter.
Chunks that are not encoded by network coding are called
original chunks.
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Fig. 2: An example to illustrate the case that an RSU serving
two different video versions.

Since our work focuses on the content transmission
from RSUs to vehicles, we zoom in to further observe the
download process through an example in Fig. 2 with an RSU
serving two different video versions: high definition (HD)
and low definition (LD). To figure out the replication strat-
egy to achieve the best download performance, we analyze
this process with three steps: 1) Analyzing the download
performance by fixing the space occupied by original or
encoded chunks; 2) Optimizing the space size allocated to
original or encoded chunks; 3) Discussing how to support
video streaming and the limitations of network coding.

3.2 Benefit of Network Coding
We explain how network coding accelerates chunk down-
loading processes with two examples.

Two concrete examples are given in Fig. 3 and Fig. 4
respectively. In the first example, only original chunks are
replicated on RSUs. Each RSU randomly chooses 2 chunks
out of all 4 chunks for replication. In this example, it takes
three steps for vehicles to retrieve all chunks. In contrast,
in Fig. 4, only two steps are taken if RSUs replicate en-
coded chunks. The encoded chunks can be generated by
a central server to guarantee their mutual independence.
As the second example shows, chunks a, b, c and d are
independent such that four original chunks can be recovered
by solving four linear equations. For the general case, a
central server can generate numerous encoded chunks by
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Fig. 3: A case to show the process a vehicle downloads
original video chunks from RSUs. There are in total four
chunks, while each RSU only replicates two chunks.

Fig. 4: A case to show the process a vehicle downloads en-
coded chunks from RSUs. Each RSU replicates two encoded
chunks.

XORing (exclusive or) chunks with randomly generated
coefficients. For more details, please refer to works [11], [40].

Discussion: Through the above examples, we can see the
advantage to replicate encoded chunks on RSUs. However,
the cost is the loss of flexibility in chunk transrating in
that an encoded chunk could be a combination of multiple
original chunks, which cannot be transrated to chunks with
a lower bitrate freely. Please check the second example, in
which chunk a is the XOR result of chunk 1 and 4, and thus
it cannot be directly transrated by RSUs to a new encoded
chunk with a lower bitrate. Thus different versions must
be maintained for encoded chunks to fit in user devices.
Due to the drawback to merely replicate original or encoded
chunks, we design the mixed strategy replicating both kinds
of chunks on RSUs.

3.3 Video Replication Strategy

Now, we describe chunk replication strategies by setting
limited storage space for each RSU.

Let v denote the number of video versions with different
bitrates. The original file is with the highest bitrate b0, which
can be transrated to any other version with a lower bitrate
if necessary. Unfortunately, an encoded chunk cannot be
transrated simply, and an RSU has to maintain all v encoded
versions. It implies that (b0+b1+···+bv−1)s

b0
space will be taken

up to completely replicate a chunk, where bi is the bitrate
of version i and s is the size of an original chunk. Here,

we assume that all different versions have equal numbers of
chunks.

We describe the mixed replication strategy as follows.
Let B denote the maximum number of original chunks that
each RSU can store, where B � m. There are totally n RSUs
to serve vehicles with nB � m so that the aggregate space
of all RSUs is sufficient to replicate the whole file. For a
video file, an RSU needs to determine w, ( i.e., the number
of encoded chunks of each version) and l (i.e., the number
of original chunks), for replication. Here, the constraint is
that l + wρ ≤ B, where ρ = b0+···+bv−1

b0
is the size ratio of

v encoded chunks generated for v versions over an original
chunk. The l original chunks are randomly selected from
total m chunks. The encoded chunks are generated and
distributed to RSUs by a central server.

Two special cases of the mixed strategy are achieved by
letting either w = 0 or l = 0. If w = 0, it is regarded as the
plain random strategy by merely replicating original chunks
on RSUs. If l = 0, it is regarded as the encoded strategy
because all chunks in the system are encoded (with network
coding).

3.4 Download Scheduling Scheme

In our problem, a chunk is the unit for downloading. Each
vehicle maintains a buffer to cache downloaded original
chunks before they are assembled to recover the original file,
i.e., decoding. The download scheduling scheme specifies
the priority of each useful chunk for downloading when a
vehicle contacts an RSU.5

The download scheduling scheme for encoded chunks is
very trivial. We only blindly download all encoded chunks
until m independent chunks are collected so that we can
recover the file.

It is worth mentioning that the priority to download
original chunks is higher than encoded chunks. Original
chunks will be transrated to the requested version before
they are transmitted. The transrating process is omitted so
that we can focus on the downloading process. If no useful
original chunk can be found, vehicles download encoded
chunks of the requested version. This simple scheduling
scheme maximizes the downloading performance by defer-
ring the download of encoded chunks as much as possible.

3.5 Vehicle Route

For simplicity, a vehicle route can be defined by a series
of RSUs from the source to the destination. We assume
vehicles will not visit a particular RSU more than once
during their trips in that vehicles do not need to travel along
the same road more than once to reach their destinations.
In simulations, we will relax this assumption by allowing
vehicles to revisit RSUs with a very low probability.

Abstracting a vehicle route as a number of RSUs will
significantly simplify our analysis. With this abstraction, we

5. Recall that an original chunk is useful if it is independent from all
other downloaded chunks.
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can focus on the download process of chunks from RSUs
and be indifferent to RSUs’ locations and vehicles’ routes.6

3.6 Evaluation Metric
In accordance with our abstraction for vehicles’ routes, we
use the number of RSUs (also regarded as the number of
steps) a vehicle needs to visit to retrieve the entire video file
as the metric for theoretical analysis. To avoid the influence
of randomness, we calculate the average number of steps
for multiple vehicles. The principle is that a faster download
process implies that vehicles can finish video downloading
by visiting a fewer number of RSUs. We optimize the
replication of chunks on each RSU using this metric.

To evaluate our algorithms with more realistic settings,
we adopt an additional metric: average file downloading
time. This metric is widely used in previous works to
evaluate video downloading services.

3.7 Problem Definition
We proceed to define the problem to be studied in our paper.
Without loss of generality, we consider the scenario in which
a large video file with m chunks is to be distributed to
a number of moving vehicles. Vehicles can download at
most d chunks from an RSU during their contact periods.
Here, we use a fixed d for all RSUs, which will be relaxed
later. Decoding will be conducted if m independent chunks
are collected by vehicles. Note that we do not discriminate
original and encoded chunks for decoding. An original
chunk can be perceived as a special encoded chunk.

Consider the problem that a vehicle downloads chunks
of the video version with bitrate b from RSUs. Let Db

i/Hb
i

denote the number of original/encoded chunks after visit-
ing i different RSUs. Initial values are Db

0 = Hb
0 = 0. The file

download completes when Db
i +Hb

i ≥ m and our objective
is to minimize τ where Db

τ+Hb
τ ≥ m but Db

τ−1+Hb
τ−1 < m

.
Unfortunately, we cannot explicitly express τ as a func-

tion of tuneable parameters such as l and w. Therefore,
instead of minimizing τ directly, we try to derive the values
of Db

i and Hb
i , and maximize them so as to minimize τ .

We notice that they can be solved iteratively. Assuming that
Db

i and Hb
i are known, we have two important insights to

derive Db
i+1 and Hb

i+1.

• Db
i+1−Db

i is determined by the set of original chunks
which have been downloaded by the vehicle, the set
of original chunks replicated by the RSU and the
download capacity d.

• Hb
i+1 −Hb

i is determined by the number of encoded
chunks replicated by the RSU and the residual down-
load capacity.

Given that RSUs randomly select chunks for replication, Db
i

and Hb
i are random variables. Their distribution is deter-

mined by the value of l and w in the replication strategy.

6. Some previous works proposed to organize vehicles close to each
other to form an ad hoc network to share partially downloaded con-
tent [16], [21], [22] when RSUs are absent. However, connections formed
by moving vehicles can be extremely unreliable because of short contact
duration. Collisions caused by ad hoc communications may further
deteriorate file delivery performance. Thus, the ad hoc scenario is not
covered by our work.

Our problem is to maximize Db
i +Hb

i and hence minimize
τ by choosing appropriate l and w with the constraint that
l + ρw ≤ B.

Since the next section, we will unfold our models to
analyze chunk download processes with different values for
w and l.

4 HOMOGENEOUS CASE

For simplicity, our analysis begins with a homogeneous
scenario, in which each vehicle can at most obtain d chunks
from an RSU. This assumption can considerably reduce the
state space in our analysis. We proceed with the simplest
strategy (i.e., the plain random strategy) merely replicating
original chunks on RSUs. Then, we extend our analysis for
the mixed strategy that replicates both original and encoded
chunks on RSUs.

We study this problem with stochastic models. Consid-
ering that a vehicle is downloading chunks of bitrate b,
we use the number of chunks downloaded by the vehicle
at the time just before it enters the area covered by the
next RSU as its state. In other words, the vehicle’s state is
represented by the number of downloaded chunks (i.e., Db

i )
when the vehicle has visited i different RSUs. Apparently,
this is a Markov stochastic process because the number of
chunks obtained from RSU i is independent from previous
states, but only depends on the current state. To guarantee
fairness for vehicles downloading different video versions,
their download processes should be identical, which implies
that it is unnecessary to discriminate vehicles using their
video versions. To keep our notations concise, we just use
Di to represent vehicles’ state after they have visited i RSUs.
The initial condition is that D0 = 0. Our objective is to
derive the probability distribution of Di.

4.1 Modeling Plain Random Strategy
For the plain random strategy, one has w = 0 and l = B.
Each RSU exactly replicates l original chunks for the video.

The file downloading process depends on not only the
chunks replicated on RSUs but also the download capacity.
Thus, we need to analyze two separate cases: d ≥ B corre-
sponding to the case with unlimited download capacity and
d < B corresponding to the case with restricted download
capacity.

4.1.1 Case I
For this case, a vehicle can download at most l useful chunks
by contacting an RSU.

Let �πi = (π0|i, π1|i, . . . , πm|i) denote the probability
distribution of Di. The element πj|i is the probability to
accumulate j chunks at state i. �πi is determined by �πi−1

and the number of chunks downloaded from RSU i. By con-
tacting with a sufficient number of RSUs, Di will increase to
m finally. So, this is a transient stochastic process. To derive
�πi, we need to derive the transition matrix denoted by P
first.

Given ki original chunks downloaded by a vehicle, the
probability to find additional kj useful chunks from a new
RSU is

Pr(Di+1 = ki + kj |Di = ki) =

( ki

l−kj

)(m−ki

kj

)
(m
l

) , (1)
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for 0 ≤ kj ≤ min{l,m − ki}. Obviously, for probability
distribution, we have

∑min{l,m−ki}
kj=0 Pr(Di+1 = ki+kj |Di =

ki) = 1. Then, the element Pki+kj ,ki
in matrix P rep-

resenting the probability jumping from the state with ki
chunks to the state with ki + kj chunks with one step is
Pr(Di+1 = ki + kj |Di = ki), which is derived from Eq. (1).
Otherwise Pki+kj ,ki

= 0 implies that it is impossible to jump
from the state with ki chunks to the state with ki+kj chunks
at this moment. In this way, all elements in matrix P can be
determined. Together with the initial conditions πl|1 = 1
(because l chunks can be downloaded certainly from step
1) and πi|1 = 0 for i �= l, we can iteratively derive �πi as
follows:

�πi = Pi−1 · �π1. (2)

Although we can derive the distribution of Di for any i
with P, initial conditions and Eq. (2), it is too complicated to
derive a closed-form solution of Pr(Di), which impedes our
further analysis. To simplify this problem, we turn to derive
the expectation of Di denoted by E[Di] so that we can
conduct a deeper analysis based on its closed form solution.

Let us first consider an elementary probabilistic problem.
Given a vehicle with k downloaded chunks and an RSU
replicating l original chunks randomly selected from total
m chunks, what is the expected number of useful chunks
the vehicle can find from the RSU? Note that we can
also assume that k chunks owned by the vehicle are also
randomly picked out from m chunks because all RSUs also
randomly select chunks for replication.

For any particular chunk already obtained by the vehicle,
the probability is l

m to find the same chunk from the RSU.
Thus, on average, there are kl

m chunks that are dependent
and useless for the vehicle. Hence, there are l − kl

m effective
chunks that can be downloaded by the vehicle. Based on the
above discussion, we can write down the following iterative
equation:

E[Di+1] = E[Di] + l − E[Di]
l

m
. (3)

It is easy to transform the above equation into

E[Di+1] = m− (m− l)

(
1− l

m

)i

. (4)

As i approaches infinity, E[Di] approaches m. If m � l, it
can be simplified as E[Di+1] = m − (m − l)e−

il
m . This is a

concave function with i if i were a real number. This prop-
erty indicates that download performance can deteriorate
severely with the increase of i.

Eq. (4) also helps us to understand the forte to replicate
encoded chunks. By generating chunks via a central server,
almost all encoded chunks are independent. The download-
ing efficiency will not decrease with the download progress.
This case is trivial for analysis. By accessing an RSU, the
downloaded number of chunks will just increase by l, and
the file will be recovered by accessing �m

l � RSUs.

4.1.2 Case II
In this case, we have d < l. From Eq. (1), we observe that the
range of kj should be restricted to 0 ≤ kj ≤ min{d,m−ki},
and all Pr(Di +1 = kj + ki|Di = ki) should be normalized

such that their sum equals to 1. The iterative equation (i.e.,
the expected number of downloaded chunks until step i+1)
becomes

E[Di+1] = E[Di] + min

{
l − E[Di]

l

m
, d

}
. (5)

Note that the difference between Eq. (5) and Eq. (3) lies in
the constraint that at most d chunks can be downloaded
from each RSU. E[Di] is a monotonic increasing function
with i, and the number of initial chunks must be d. Let η =
	 l−d

d 
, it turns out that

E[Di+1] =

{
(i+ 1)d, for i ≤ η,

m+ (E[Dη]−m)
(
1− l

m

)i+1−η
, for i > η.

(6)
By comparing Eq. (3) with Eq. (6), we note that the

downloading process of the second case (with d < l) can
be partitioned into two stages. During the first stage, the
number of downloaded chunks increases linearly with the
rate d per step; while in the second stage, the increasing
rate becomes the same with the rate given in Eq. (4). It
is equivalent to prolonging the first stage by lowering d;
while the trouble in the second stage persists. The drop of
the increase rate for E[Di] is caused by redundant chunks
replicated by the plain random strategy.

Note that E[Di+1] in Eq. (4) and Eq. (6) is always strictly
less than m, which can be explained as follows. E[Di] is
the expected number of chunks downloaded after i steps,
bounded by m even if i approaches infinity. In practice,
it is likely for a vehicle to complete the file downloading
with a finite number of steps, which seems contradict with
our result. In fact, E[Di] is the expected value of Di. In
the worst case, all n RSUs cannot recover the file even if
n � m because there always exists a nonzero probability
that n RSUs cannot provide m independent chunks by
randomly choosing chunks for replication. A method to
avoid the occurrence of this extreme event is to replicate
some encoded chunks on RSUs.

4.2 Modeling Mixed Strategy
To get rid of the drawback caused by replicating redundant
original chunks, each RSU only replicates l original chunks,
while the remaining space will be allocated to store w
encoded chunks for each video version. There are total v
versions, then the constraint l + wρ ≤ B must be satisfied,
where B is the number of original chunks the RSU can store
at most for this file.

Analogous to the analysis of plain random strategy, there
are two cases which should be analyzed separately (i.e., d ≤
w and d > w).

Recall that the request scheduling scheme always down-
loads useful original chunks prior to the download of en-
coded chunks. Thus, the complication of the mixed strategy
lies in the interaction between two subprocesses (i.e., down-
load process of original and encoded chunks). To account
for contributions of original chunks and encoded chunks
respectively, we let E[Hi] denote the expected number of
encoded chunks obtained until step i. By abusing notation
a little bit, we let τ denote the expected number of steps ve-
hicles need to complete file downloading. Then, E[Dτ ] and
E[Hτ ] are the expected numbers of original and encoded
chunks at last.
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4.2.1 Case I
This case means that each RSU replicates plentiful encoded
chunks to saturate vehicles’ download capacity. In this sce-
nario, it is certain that a vehicle can always download d
chunks (either original or encoded) from each RSU, and the
complete file will be recovered once a vehicle goes through
�m

d � different RSUs.
Given τ = �m

d �, it is easy to derive E[Dτ ] and E[Hτ ],
which can be further analyzed by two cases.

According to the chunk scheduling scheme described in
Sec. 3, if l ≤ d, a vehicle can always search for useful chunks
from l original chunks first before the vehicle downloads
encoded chunks with residual download capacity. And in
total it can always obtain d chunks. Thus, from Eq. (4), we
have

E[Dτ ] = m− (m− l)

(
1− l

m

)τ−1

,

E[Hτ ] = m− E[Dτ ]. (7)

If l > d, a vehicle will try to download d original chunks
first. The download subprocess of the original chunks is the
same as the case we have analyzed with plain random repli-
cation strategy. The E[Dτ ] can be obtained by substituting
i+ 1 = τ back to Eq. (6), and E[Hτ ] can be calculated with
the formula m = E[Dτ ] + E[Hτ ].

4.2.2 Case II
In this case, we have d > w which implies that a vehicle
has the capacity to download more than w chunks from an
RSU. The number of accessed RSUs is in between

[
m
d ,

m
w

]
to recover the original file. This case is more complicated in
that analysis of E[Hi] is more difficult in comparison with
the last case. Again, this process can be analyzed with two
cases: max{w, l} < d ≤ l + w and w < d ≤ l.

Recall that E[Hi] denotes the expected number of
encoded chunks downloaded after i steps. Then, if
max{w, l} < d ≤ l + w, a vehicle will attempt to download
l original chunks first before it downloads encoded chunks,
and we have

E[Di+1] = E[Di] + l − E[Di]
l

m
, (8)

E[Hi+1] = E[Hi] + min

{
w, d− l + E[Di]

l

m

}
. (9)

The initial conditions are E[D1] = l and E[H1] = d− l. With
the two iterative equations, we need to solve the smallest i
such that E[Di] + E[Hi] ≥ m.

If w < d ≤ l, a vehicle can only download no more
than d original chunks. The iterative equations should be
modified as:

E[Di+1] = E[Di] + min

{
l − E[Di]

l

m
, d

}
, (10)

E[Hi+1] = E[Hi] + min

{
w, d− l + E[Di]

l

m

}
. (11)

The initial conditions are E[D1] = d and E[H1] = 0. Once
again, to derive τ , we need to find the smallest i such that
E[Di] + E[Hi] ≥ m. For E[Hτ ], it is difficult to derive its
closed form solution, but the calculation of τ can be obtained
with numerical methods. With initial conditions, E[Hτ ] can
be computed within O(m/min{d, w}) iterations.

4.2.3 Discussion

In summary, in case I, RSUs have replicated plentiful en-
coded chunks as the backup such that vehicles can complete
file downloading by exactly visiting �m

d � RSUs. In case II,
we have d > w. Although the encoded content is not suffi-
cient to saturate vehicles’ download capacity, it provides a
lower bound by enabling a vehicle to download at least w
encoded chunks from each RSU.

Note that Eq. (8) (or Eq. (10)) is exactly the same as Eq. 3
( or Eq. 5) derived for the case with plain random strategy.
This result is straightforward because original chunks are
always associated with higher priority for downloading.
However, the entire download process is determined by the
sum of E[Di] and E[Hi]. E[Di] and E[Hi] are negatively
correlated so that if E[Di] drops E[Hi] will increase. Thus,
the aggregated download can progress steadily. That is
the reason why the mixed strategy outperforms the plain
random strategy.

5 ALGORITHM DESIGN

In this section, we optimize the mixed strategy by varying l
and w so as to achieve the best performance.

Given storage space B (in terms of original chunks),
our objective is to find w∗ and l∗ to minimize τ (i.e., the
number of steps to complete file downloading). However,
we confront two challenges to solve this problem:

• τ is a function of l and w, but its expression is too
complicated to derive.

• The function τ cannot be differentiated with respect
to either l or w. Moreover, τ must be an integer.

To make the problem tractable, we make a compro-
mise by assuming that l and w are real numbers. Instead
of deriving the function τ(l, w), we resort to analyzing
E[Di] + E[Hi]. For convenience, we let yi = g(i, l, w) =
E[Di,l] + E[Hi,w] denote the expected number of chunks
downloaded until step i, where yi is a function of i, l and
w. Here, E[Di,l] (or E[Hi,w]) is the expected number of
downloaded original (or encoded) chunks by replicating l
original (or w encoded) chunks on each RSU. Our problem
is converted to finding l∗ and w∗ maximizing yi.

5.1 Asymptotic Analysis

If the storage space is large enough, i.e., B ≥ v × d where
v is the number of video versions and d is the download
capacity, there exists a trivial strategy to minimize τ by
replicating vw encoded chunks on each RSU. The analysis
of this case is straightforward since the storage space is
sufficient to saturate vehicles’ download capacity by purely
replicating encoded chunks. The fact that each RSU just
replicates d encoded chunks for each version implies τ = m

d ,
which is the minimum downloading time we can achieve.

Hereafter, we assume B < v × d and w < d (i.e., the
storage space is limited). We temporarily relax the constraint
to download exact m independent chunks by allowing vehi-
cles to download more than m useful chunks. Our objective
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is to maximize yi = g(i, l, w) for all i. Here yi could be larger
than m.By leveraging Lagrange Multiplier, we have:

max
0≤l≤B

yi = E[Di,l] + E[Hi,w]− λ(l + wρ−B),

s.t. l + wρ ≤ B,

for i = η + 1, 2, . . . ,
m

B/ρ
. (12)

B
ρ is the maximum number of encoded chunks of each
version we can replicate on an RSU, based on which we
can derive an upper bound for τ . η = 	 l−d

d 
 is the number
of steps during which vehicles can certainly download d
useful chunks. Here, we assume l > d. If l ≤ d, the only
modification is to let η = 0.

Note, at step i, both E[Di,l] and E[Hi,w] can be differen-
tiated with respect to l and w. Given the expression of E[Di]
in Eq. (6), we have
Lemma 1. For i > η,

∂E[Di,l]

∂l
≈ 1

m
(i− η)(m− E[Dη])e

− l
m (i−η). (13)

Here, η = 	 l−d
d 
, and E[Di,l] is an increasing concave

function with l.

The detailed proof is in appendix. In a nutshell, it is proved
based on Eq. (6).

Differentiating E[Hi,w] with respect to w can be ana-
lyzed as follows. By increasing Δ encoded chunks, vehicles
can almost download Δ more chunks from each RSU visited
after step η. Thus,

∂E[Di,w]

∂w
≈ i− η, (14)

for i > η.
Obviously, based on Eq. (13) and Eq. (14), to maximize

yi, KKT conditions should be satisfied. Hence, l + wρ = B
and

∂E[Di,l]

∂l
=

1

ρ

∂E[Hi,w]

∂w
. (15)

Through Eq. (15), we can find l∗i to maximize yi, which is

l∗i =
m

i− η
ln

ρ(m− E[Dη])

m
, (16)

w∗
i =

B − l∗i
ρ

. (17)

Here, η = 	 l−d
d 
. If d ≥ l, we need to set η = 0. Then l∗ and

w∗ should be rounded to the nearest integer.
Until now, the value of τ is still unknown. Furthermore,

τ cannot be differentiated to analyze its monotonicity. This
fact implies that even if we have Eq. (16) and Eq. (17), it is
still not trivial to decide space partition. Thus, we propose a
binary search algorithm to determine l∗ and w∗.

5.2 Iterative Space Partition Algorithm
According to our previous analysis, it is certain that ymax

i <
ymax
i+1 < . . . because more independent chunks will be

accumulated with more steps. Here ymax
i is the maximum

value of yi by substituting l∗i and w∗
i back to yi = g(i, l, w).

By leveraging this property, we can design an algorithm to
locate l∗ and w∗ such that ymax

τ is the closest one to m.

The principle of our algorithm is illustrated as follows.
From Eq. (16), we can determine l∗ and w∗ easily. Then,
ymax
i can be computed correspondingly. Its detailed compu-

tation will be described later. If i > τ , ymax
i will exceed m,

and hence we can assert that τ < i. Otherwise if ymax
i < m,

we have τ > i. The lower bound of τ is m
B (with a single

video version) and the upper bound is mv
B (with v versions).

Thus, we can halve search space through each iteration.
ymax
i can be computed either via the iteration equations

we have introduced in the last section or with a very simple
way introduced as follows. If l ≤ w, ymax

i ≈ wi because
vehicles can straightly download w chunks from each RSU.
Otherwise, we need to first find the largest i′ satisfying the
inequality E[Di′ ] − E[Di′−1] ≤ w (i.e., i′ is the step when
the increase rate of original chunks is less than w). Then,
ymax
i = E[Di′ ] + (i− i′)w.

The detailed algorithm named as Iterative Space Parti-
tion (ISP) Algorithm is presented in Algorithm 1.

Algorithm 1: Iterative Space Partition (ISP) Algorithm
Data: Given storage space B, total number of chunks

m, bitrates b0, . . . , bv−1 of v versions and
download capacity d per RSU.

Result: l∗ the number of original chunks and w∗ the
number of encoded chunks for each version

Calculate ρ = b0+···+bv−1

b0
;

Initialization: Let low = m
B , high = mρ

B ,
i = 	hihg+low

2 
;
if B ≥ ρd then

Return l = 0 and w = d
while high− low > 2 do

calculate l∗ and w∗ from Eq. (16) and Eq. (17);
calculate ymax

i ;
if ymax

i > m then
high = i;
i = i+low

2 ;
else

low = i;
i = i+high

2 ;

Rounding w∗ to the nearest integer and l∗ = B − w∗ρ;
Output: w∗ and l∗.

The time complexity of the ISP algorithm is O(log2 m),
where m is the total number of chunks. The time complexity
can be analyzed as below. The calculation of ymax

i with the
simple method only needs a constant number of steps. The
search space ranges from 1 to m. The search starts with the
middle point of the search range and halves search space in
each round. Thus, the overall time complexity is O(log2 m).
This algorithm is very efficient. Even if we have 104 chunks,
the optimal partition point can be located instantly.

6 HETEROGENEOUS CASE

The above analysis assumes that RSUs are homogeneous
so that we can fix d, (i.e., vehicles’ download capacity from
each RSU). However, d is a dynamic variable in real systems
affected by many factors. Here, we briefly discuss how
these factors influence d and propose a simple method to
approximate d in the ISP algorithm.
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6.1 Multiple Files
To satisfy diversified user interests, vehicular networks have
to provide distribution services for multiple video files.
However, due to very limited storage space configured with
individual RSUs, one needs to determine what files to be
replicated on RSUs. Intuitively, file replication decisions
should be made according to file popularity distribution [1].
Popular files with more user requests should be replicated
on more RSUs, and vice verse.

Once file replication decision is made, B is fixed for each
file and we can then apply the ISP algorithm to determine
the space allocation between encoded and original chunks.
In other words, whether or not to replicate a file is out of the
scope of this paper. Our study is designed for these videos
RSUs have decided to replicate.

6.2 Road Condition and Network Condition
Another important aspect is vehicles’ varying download
speeds which can be measured in terms of the number
of chunks downloaded from each RSU. Download speed
variation implies that d is not a fixed constant any more.
For brevity, we summarize three critical factors that can
dramatically change d as follows:

1) Vehicle Velocity: The sojourn time vehicles spend
with an RSU is heavily determined by the vehicle
velocity. With longer sojourn time, d should be
larger since vehicles can download more file chunks.

2) Bandwidth Resource: Available bandwidth resource
is a fluctuating variable affected by the number of
competing vehicles, channel conditions, the distance
between vehicles and RSUs and interference be-
tween vehicles. Vehicles obtaining more bandwidth
resource will have larger d.

3) Revisit Frequency: Although it is rare, it is still possi-
ble for vehicles to revisit an RSU within a file down-
load session. d will be smaller, if vehicles revisit a
particular RSU multiple times.

6.3 Approximating d

From the above discussion, we can conclude that it is not
easy to estimate d accurately, hence we cannot set a fixed
d in advance. What is more, the value of d could be very
dynamic that can instantaneously change with network
states. Not only the model with heterogeneous d’s will
be extremely complicated, but also the result is unreliable
because of its dynamics.

From another perspective, the performance gain
achieved by the mixed strategy should not be very sensitive
with d. The mixed strategy improves video distribution
performance because encoded chunks can reduce replica-
tion redundancy. Hence, we infer that video distribution
performance can be enhanced with a reasonable approxi-
mation of d. Thus, we propose to set d just as the estimated
average number of chunks a vehicle can download from
RSUs, which is denoted by d̂. We assume there exists a
central server that can collect some operation information
from each RSU, then d̂ can be estimated from operation
logs with history download speeds of vehicles. For example,
each RSU can keep a variable to record the average number

of chunks vehicles can download from it. The central server
can compute the average value of the entire system d̂ by
averaging numbers reported by all RSUs. To validate the
effectiveness of d̂, we conduct trace based simulations in
Sec. 8 by using d̂ in the ISP algorithm.

7 DISCUSSION

In this section, we examine two more issues when applying
our strategy in practical systems. We discuss how to extend
our strategy to support video streaming and the limitations
of network coding in our strategy.

7.1 Extension to Support Video Streaming

Video streaming is a more complicated video distribution
service than video downloading. However, video down-
loading strategy forms the basis for video streaming services
.

There is a large body of previous works that have
investigated how to leverage network coding for video
streaming. According to prior works, video streaming can
be considered as a sequence of video segments downloading
in playback order. Inspired by previous works, we extend
our strategy to support video streaming services by splitting
each video file into multiple video segments, which can
be played sequentially. Each video segment is replicated
and served independently. Vehicles only need to download
segments out of the same video according to the playback
order. In other words, a video segment will be downloaded
with higher priority if it is closer to its playback deadline.
In Fig. 5, we illustrate how segments are downloaded from
RSUs. Each segment can be decoded and sent to the player
independently. This extension is very similar to algorithms
presented in previous works. Due to limited space, we will
not give detailed streaming algorithms. For more discus-
sion, please refer to [14], [30], [31].
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Fig. 5: Providing video streaming services by sequentially
downloading video segments .

7.2 Limitation of Network Coding

We move on to discuss the overhead caused by the limita-
tions of network coding.

From users’ perspective, the overhead is mainly caused
by decoding chunks. Decoding efficiency depends on the
computing performance of users’ devices and the specific
design of the encoding algorithm (e.g., field size). It is easy
to understand that devices with higher computing perfor-
mance can complete decoding faster. It is more involved to
explain the influence of the coding design. To generate an



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2960022, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

infinite number encoded chunks, random linear codes can-
not guarantee all encoded chunks are independent.7 Given
total m original chunks, vehicles need to collect m(1 + ε)
chunks to recover the original video, where ε is a very small
positive number depending on field size (which is the space
to generate coefficients for encoding). Intuitively speaking,
with larger field size, ε will be smaller but longer decoding
time is needed, and vice versa.

In short, the overhead of network coding will lower
video downloading performance a little bit. It is not easy
to theoretically quantify this influence because it is difficult
to model computing performance of users’ devices and the
design specifications of the encoding algorithm in our study.
Instead, we study the overhead caused by the limitations of
network coding via simulations in the next section.

8 PERFORMANCE EVALUATION

In this section, we implement a simulator to verify theoreti-
cal models, and illustrate the performance gain achieved by
adopting our strategy. The source files of the simulator are
publicly available at [41].

8.1 Numerical Simulation

8.1.1 Simulation Setting

Since the purpose is to verify the correctness of models,
the simulator is configured with the same settings as the
description of our models. To simulate a large system, we
set n = 5000 RSUs. The other parameters are set by default
as follows. The video file is split into m = 5000 chunks with
1.0Mb for each chunk. According to previous works, the
playback of each chunk should last 1-10 seconds [39]. Typ-
ically, a large video can be split into thousands of chunks.
Since our analysis is independent from video content we
use a dummy file for simulation so that we can adjust
bitrates and chunk size flexibly. Since our strategy aims
to improve storage efficiency, B should be set as small as
possible. Hence we set B = 100 implying that each RSU
only needs B

m = 2% space to replicate a video. We set
ρ = 2 by assuming there are three video versions with
bitrates b0 = 1.0Mbps, b0 = 0.7Mbps and b2 = 0.3Mbps.
Regarding the mixed strategy, the optimal replication strat-
egy is represented by l∗ and w∗ which are determined by the
ISP algorithm. For replication, each RSU randomly selects l
original chunks out of m = 5000 chunks and w encoded
chunks for each video version.

By default, a new vehicle route will be generated prior to
the execution of each simulation. Since all RSUs make repli-
cation decisions independently, the next RSU to be accessed
is randomly selected from the remaining unvisited RSUs.
The chunk scheduling scheme is implemented as we have
introduced in Sec. 3, which always downloads (transrated)
original chunks with higher priority. Each simulation case is
repeated for 100 times to get the average performance.

7. For large-scale systems, the population of encoded chunk is very
large and can be considered as an infinite number.

8.1.2 Verifying Theoretical Model

We first present three figures to show the accuracy of our
models, and then we exhibit results to illustrate how each
parameter affects downloading performance. At last, we
compare the mixed strategy with the other two strategies.
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Fig. 6: The simulation result to verify the stochastic model
with plain random strategy by setting m = 5000, w = 0,
l = 100, d = 60, v = 3 and ρ = 2.

Figure 6 presents the simulation result by setting m =
5000, w = 0, l = 100, d = 60, v = 3 and ρ = 2. This
simulation corresponds to the case studied in Eq.( 6). In
Fig. 6, x-axis represents the sequence ID of visited RSUs
(i.e., download steps) and y-axis represents the average
number of chunks downloaded by 100 vehicles. we plot
both the simulation and theoretical curves in the figure. The
accuracy of our model is indicated by the negligible gap
between two curves. Note that both curves increase rapidly
when RSU index is less than 100. However, this strategy
encounters difficulty to download useful chunks when RSU
index exceeds 100. This result is consistent with our analysis
in Sec. 4, which is caused by the redundancy of original
chunks.
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Fig. 7: The simulation result to verify the stochastic model
with the mixed strategy by setting m = 5000, w = 30, l =
40, d = 60, v = 3 and ρ = 2.

We simulate the mixed strategy by assuming there are
three versions (i.e., v = 3) with ρ = 2 to verify Eq. (8) and
Eq. (9). Here, we set m = 5000, w = 30, l = 40 and d = 60.
Again, the x-axis is the index of visited RSUs and the y-
axis is the average number of downloaded chunks (both
original and encoded). If the total number of chunks exceeds
5000, the download process terminates. We can observe that
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the simulation curve and theoretical curve almost overlap
indicating the accuracy of our models. It is interesting to
note that both curves increase almost linearly. There is no
performance degrade phenomenon as in Fig. 6. This result
illustrates the effectiveness of the mixed strategy though l
and w are not optimized.
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Fig. 8: The simulation result to verify the stochastic model
with the mixed strategy by setting m = 5000, w = 20, l =
60, d = 50, v = 3 and ρ = 2.

In Fig. 8, we repeat the simulation of the mixed strategy
by modifying parameters as m = 5000, w = 20, l = 60
and d = 50. This simulation corresponds to Eq. (10) and
Eq. (11). In this case, the download capacity is restricted as
the bottleneck and it is expected more steps are required
to complete video file downloading. The meanings of x-
axis and y-axis are the same as those in the last simulation.
We can observe that the theoretical result is precise because
two curves are very close. The two curves increase steadily
to about m = 5000 when RSU index approaches 110
manifesting the effectiveness of the mixed strategy in this
scenario.
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Fig. 9: Simulation results comparing performance of differ-
ent replication strategies by varying w from 1 to 50 and
fixing m = 5000, B = 100, d = 100, v = 3 and ρ = 2.

In Fig. 9, we present the simulation results of differ-
ent replication strategies by varying w from 1 to 50 with
m = 5000, B = 100, d = 100, v = 3 and ρ = 2. Recall that w
is the number of encoded chunks replicated for each version.
Varying w from 1 to 50 is equivalent to simulating 50
different mixed strategies. The y-axis is the average number
of steps required to complete file downloading. It is worth
noting that the best performance is achieved when w = 29.
Either too small or too large w cannot attain very good

performance. This result reveals the importance to optimize
l and w. In fact, enumerating w as this simulation shows is a
brute force method which is inefficient and not scalable with
the system scale. The w∗ determined by the ISP algorithm
is marked with a cross in the figure which almost overlaps
with the optimal value.
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Fig. 10: Simulation results comparing performance of dif-
ferent replication strategies by varying ρ from 2 to 10 and
fixing v = 2ρ− 1, m = 5000, d = 100 and B = 100. w and l
are determined by the ISP algorithm.

ρ 2 3 4 5 6 7 8 9 10
l 42 55 60 65 70 72 76 73 70
w 29 15 10 7 5 4 3 3 3

TABLE 1: The value of l and w of the mixed strategy in
Fig. 10.
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Fig. 11: Simulation results comparing performance of dif-
ferent replication strategies by varying ρ from 2 to 10 and
fixing v = 2ρ − 1, m = 5000, d = 60 and B = 100. w and l
are determined by the ISP algorithm.

ρ 2 3 4 5 6 7 8 9 10
l 40 55 60 65 64 65 68 73 70
w 30 15 10 7 6 5 4 3 3

TABLE 2: The value of l and w of the mixed strategy in
Fig. 11.

According to Eq. (16) and Eq. (17), ρ is the key parameter
determining the optimal l and w. To visualize the influence
of ρ, we compare the average number of steps to complete
file downloading with different replication strategies by
varying ρ from 2 to 10 in Fig. 10. According to the definition
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of ρ, we have ρ = b0+···+bv−1

b0
. Thus, we cannot set v and

the bitrate of each video version arbitrarily once ρ is fixed.
In other words, v, b0, . . . , bv−1 must satisfy the constraint
that ρ = b0+···+bv−1

b0
. Meanwhile, it is required that v > ρ

because b0 is the bitrate of the original video which is of
the largest bitrate. In our simulations, we set the number of
video versions as v = 2ρ−1 which can guarantee that v > ρ
if ρ ≥ 2. In fact, one can set v as any other integer values as
long as v > ρ. Given ρ and v, the bitrate of each version is
generated randomly by restricting that

∑v−1
i=0 bi = ρb0.8 The

other parameters are set as m = 5000, d = 100, B = 100.
The performance of the plain random strategy is rather
stable and poor regardless of ρ which provides service by
transrating original chunks to the requested version on-the-
fly. The performance of the mixed strategy is the best one
and much better than the plain random strategy, though
its performance gradually degrades with the increase of ρ
in that more versions have to be maintained for encoded
chunks. It is interesting to find that the performance of the
encoded strategy deteriorates dramatically with the growth
of ρ. Its performance is even worse than that of the plain
random strategy. This result reveals the weak side of the
encoded strategy. The encoded chunks of different versions
cannot complement each other resulting in performance
deterioration with the increase of ρ (or v).

In Table 1, the value of l∗ and w∗ of the mixed strategy
is presented with ρ. We can observe that the mixed strategy
is prone to allocating more resources to replicate original
chunks with the increase of ρ. The reason is that it is more
efficient to replicate original chunks which can be flexibly
transrated to the requested version.

In Fig. 11 and Table 2, we repeat the simulation in Fig. 10
with the same settings except that d = 60, which is less
than B = 100. In Fig. 11, we can observe that the result is
very similar to that of Fig. 10 and the mixed strategy still
achieves the best performance. Likewise, in Table 2, w∗ in
the mixed strategy decreases with the increase of ρ as we
have indicated in Table 1. Therefore, we can conclude that
the performance of the mixed strategy is not sensitive to the
value of d.
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Fig. 12: Simulation results of different replication strategies
by varying m from 1000 to 10000 and fixing d = 100, B =
100, v = 3 and ρ = 2. w and l are determined by the ISP
algorithm.

8. We use the same way to set bitrates as we vary ρ in other
simulations.

In this simulation, we change the file size by varying
m from 2000 to 10000 with d = 100, B = 100, v = 3
and ρ = 2. The results are exhibited in Fig. 12. Again,
the mixed strategy is the best one. The performance of
the encoded strategy is also satisfactory because we have
only three versions, while the plain random strategy is the
worst one especially when m is large. The gap between the
plain random strategy and the other two strategies expands
dramatically with the increase of m. The reason has been
shown in Fig. 6. It is more difficult to find useful chunks if
vehicles have obtained more chunks. Apparently, vehicles
suffer this difficulty more severely with a larger file size.

8.1.3 Embedded with Existing Algorithm
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Fig. 13: Implementing the mixed strategy on top of the NC
algorithm for video distribution.

As we have stated, the mixed strategy is a way to
effectively reduce the storage occupied by each replicated
video so as to improve video distribution efficiency. It
turns out that the mixed strategy can be embedded into
other strategies that mainly focus on transmission efficiency.
To visualize this point, we implement the mixed strategy
together with the NC strategy proposed by [16], which is
applicable for video content distribution for vehicles on
highways. Although network coding is adopted by the
NC strategy, it assumes that complete files are replicated
on RSUs. Due to limited space, we will not introduce the
detailed NC strategy. We intend to emphasize that the NC
strategy can be improved by replicating partial file content
with our mixed strategy.

According to the simulation settings in [16], we simulate
6 vehicles on a highway that are downloading a file with
the size 5000Mb which is divided into 5000 chunks. The
download amount is at most 100 chunks from a single RSU.
Vehicles can also exchange chunks with each other perfectly
when RSUs are absent. The metric is the number of steps
to complete file downloading. We repeat our simulation
100 times to get the average number. For the NC strategy,
the whole file is replicated, while for the mixed strategy
we vary the cache size from 100Mb to 160Mb. There are
three video versions with bitrates 1.0Mbps, 0.7Mbps and
0.3Mbps. The result as presented in Fig. 13 indicates that
the mixed strategy achieves the same performance as NC as
long as B > 130Mb. It means that the mixed strategy can
reduce the consumed cache space from 5000Mb to 130Mb.
Considering that the video population is a huge number, the
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saved space can be used to replicate other files which will
consequentially improve the efficiency of the entire system.

8.2 Trace Based Simulation
8.2.1 Simulation Setting
We proceed to take road conditions and network conditions
into account by conducting trace based simulations.

Recall that we abstract vehicles’ routes as a number of
RSUs. There is no video transmission if RSUs are absent.
Thus, road map can be defined through a number RSUs
and how vehicles move from an RSU to the next RSU. We
generate an undirected graph with 5000 RSUs to represent
the map. The map topology is generated according to the
reference [42]. According to roads’ out-degree in reality, we
randomly generate 1 to 4 as the out-degree of an RSU to
connect with other RSUs. A transition probability is associ-
ated with each edge to represent the probability vehicles
transit between two adjacent RSUs. The sojourn time of
each vehicle within an RSU obeys exponential distribution
with expected value 20 seconds. Communication channels
between RSUs and vehicles follow Rayleigh distribution.
The download speed switches among ten states, i.e., 500,
600, . . . , 1500 kbps, with the mean value of 1000 kbps [7].

We assume that the request frequency of v video versions
is identical. d̂ of the system can be estimated with the knowl-
edge of the expected sojourn time, the expected download
speed and the expected bitrate of the downloaded file. There
are 200 vehicles which randomly select RSUs as their source
nodes. A trace will be generated as follows. From the source
node, a vehicle randomly selects the next RSU according
to the map topology and the transition probability between
RSUs. Each generated trace includes 200 RSUs. Note that
we do not prohibit vehicles from revisiting the same RSU in
trace generation.

8.2.2 Simulating Downloading
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Fig. 14: Trace based simulation comparing the average file
downloading time for different replication strategies by
varying ρ from 2 to 10, fixing v = 2ρ − 1, m = 5000
B = 100 and dynamic d. w and l are determined by the
ISP algorithm.

For video downloading, vehicles can only get chunks
from RSUs. We compare the average downloading time to
evaluate replication strategies by varying ρ from 2 to 10.
Correspondingly, the number of video versions v is varied
from 3 to 19 with the relation v = 2ρ − 1. For each given

ρ 2 3 4 5 6 7 8 9 10
l 36 43 52 55 58 58 60 64 60
w 32 19 12 9 7 6 5 4 4

TABLE 3: The value of l and w of the mixed strategy in
Fig. 14.

v, we generate bitrate distribution randomly by restricting∑v−1
i=0 bi = ρb0.
The average file downloading time of all vehicles is

plotted in Fig. 14. Table 3 records the value of l∗ and w∗

for each ρ.
Here, we would like to emphasize the setting of d̂ in

our simulation. It is tough to determine w∗ if d is dynamic
as in the realistic settings because d is required for the
ISP algorithm. Fortunately, in Fig. 9, the file downloading
performance around w∗ is quite flat, thereby we use d̂ ( i.e.,
the average number of downloaded chunks from each RSU
) to approximate d for the calculation of w∗ in Eq. (17).

We can also see from Fig. 14, the mixed strategy achieves
the minimum average file downloading time irrespective
the value of ρ. The figure pattern is very similar to patterns
in Fig. 10 and Fig. 11, which can be explained with the same
reason. This essential result indicates the effectiveness using
d̂, the robustness of the mixed strategy and its applicability
in practical systems.

8.2.3 Limitation of Network Coding
It is known that a small fraction of additional encoded
chunks should be downloaded to ensure the video file can
be recovered successfully, and additional computing time
will be taken to decode encoded chunks. In this work, we
empirically show that the negative impact caused by the
limitations of network coding is very small for the mixed
strategy.
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Fig. 15: Trace based video downloading by varying ε from
0% to 10% by fixing ρ = 4.

According to the theory of random linear codes, m(1+ε)
chunks should be downloaded for decoding where ε is a
very small number depending on the size of field size. Field
size is determined by the design of the encoding algorithm.
If field size is larger, ε will be smaller but decoding time
will be longer. To visualize the impact of ε, we conduct
a trace based simulation by setting ρ = 4 with bitrates
1, 0.8, 0.7, 0.6, 0.4, 0.3, 0.2Mbps. The other settings are the
same as those in the last simulation in Fig. 14. As we can see,
with the increase of ε, vehicles need longer time to complete
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file downloading, but the average time is still much smaller
than the strategy without encoded chunks.
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Fig. 16: Decoding time of a file with 5000 chunks on three
different computers.

Decoding influence depends on the performance of
users’ devices. We investigate the influence of decod-
ing overhead by conducting experiment with three com-
puters, which are equipped with Intel(R) Xeon(R) Silver
4114 CPU@2.20GHz, Intel(R) Xeon(R) CPU E5-2640 v4@2.40
GHz, Intel(R) Core(TM) i5-4570 CPU@ 3.20GHz respec-
tively. A public encoding and decoding library is adopted
for our experiment.9 The field size is set as 216. The ex-
periment result is presented in Fig. 16 by varying file size
from 1000Mb to 5000Mb. As we can see, the decoding time
increases linearly with file size for all three computers, but
the decoding time is always less than 1s. It is evident that
the decoding influence is negligible in comparison with
downloading time.

8.2.4 Video Streaming
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Fig. 17: Extending strategies to support video streaming by
splitting the file into 10 segments and varying startup delay
from 40s to 200s.

We extend our strategy to video streaming services by
splitting the video file with 5000Mb into 10 segments and
each segment is further split into 500 chunks. For replica-
tion, each segment is regarded as an independent file. To
stream the video, segments closer to playback deadline are
associated with higher priority. Note that RSUs can only

9. The encoding and decoding library can be accessed from
https://github.com/steinwurf/kodo-python, and the library is intro-
duced in [43] .

provide services with best efforts for video streaming. In
other words, vehicles download chunks from RSUs first.
However, remote servers have to be deployed to provide
the backup service. If a vehicle cannot obtain a complete
segment before its playback deadline, the remote server
will deliver the rest content in time. In this setting, it is
more appropriate to adopt server bandwidth consumption
as the metric to evaluate video streaming services, which
is the total amount of video content delivered by remote
servers [30].

We conduct a trace-based simulation by setting ρ = 3 .
There are 5 versions with bitrates 1.0Mbps, 0.8Mbps and
0.6Mbps, 0.4Mbps and 0.2Mbps. B = 100Mb and each
RSU equally divides its storage to replicate segments. It
means that we allocate 10Mb space for each segment. In
this simulation, we just heuristically set l = 4 and w = 2 to
illustrate that the mixed strategy can be extended to support
video streaming.10 The other settings are the same as the
trace based simulation in Fig. 14.

The simulation result is presented in Fig. 17, in which
the startup delay is varied from 40 to 200 seconds. Con-
sistent with previous works [14], [30], [31], the average
server bandwidth consumption decreases with the increase
of startup delay. More importantly, the mixed strategy is the
best one consuming the least amount of server bandwidth.
This simulation suffices to show the merit of our strategy
for video streaming services in vehicular networks.

9 CONCLUSION

The distribution of large files to vehicles is crucial for the
development of vehicular networks. It is an essential func-
tionality supporting a series of important applications, such
as video surveillance, video streaming and entertainment,
online game, etc. A low quality file delivery service could
considerably prohibit the success of vehicular networks.
Our work particularly focuses on the case to deliver video
files with multiple bitrate versions to vehicles by replicating
(encoded) chunks on RSUs. This design significantly outper-
forms the plain random strategy and the encoded strategy. It
can automatically adjust the space allocated to each kind of
chunks according to the system settings. This work develops
a new design paradigm for vehicle file download services.
Other than video downloading, our strategy can also be
applied to non-video file downloading, which is a special
case of video downloading with only one version. In the
future work, we plan to further refine the mixed replication
strategy based on the popularity of each video version and
load states of each RSU, and refine the video streaming
services in vehicular networks.
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