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Driven by the vision of edge computing and the success of rich cognitive services based on artificial intel-

ligence, a new computing paradigm, edge cognitive computing (ECC), is a promising approach that applies

cognitive computing at the edge of the network. ECC has the potential to provide the cognition of users and

network environmental information, and further to provide elastic cognitive computing services to achieve a

higher energy efficiency and a higher Quality of Experience (QoE) compared to edge computing. This article

first introduces our architecture of the ECC and then describes its design issues in detail. Moreover, we pro-

pose an ECC-based dynamic service migration mechanism to provide insight into how cognitive computing

is combined with edge computing. In order to evaluate the proposed mechanism, a practical platform for

dynamic service migration is built up, where the services are migrated based on the behavioral cognition of

a mobile user. The experimental results show that the proposed ECC architecture has ultra-low latency and a

high user experience, while providing better service to the user, saving computing resources, and achieving

a high energy efficiency.
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1 INTRODUCTION

The massive proliferation of personal computing devices is opening up new human-centered de-
signs that blur the boundaries between humans and machines [1]. Now, the frontier for research
on data management is related to the so-called edge computation and communication, consisting
of an architecture of one or more collaborative multitude(s) of computing nodes that are positioned
among edge networks with the access of cloud-based services. Such a mediating level is respon-
sible for carrying out a substantial amount of data storage and processing to reduce the retrieval
time and have more control over the data with respect to cloud-based services, and to consume
fewer resources and less energy to reduce the workload [2, 3].

The edge computing paradigm has multiple advantages. First, the edge node can reduce the
traffic load of backhaul by providing a certain amount of computing capability, which is significant
for applications such as online games that need to transmit 60 or even 120 frames per second. As
an alternative solution, the server only sends parameters such as character position, timestamp,
and attribute changes (some common data) and leaves the edge node to compute and render the
visual image. Second, as a result of the large number of edge nodes deployed in 5G and the big-
data analysis based on user preference, the popular contents can be acquired in advance in the
interconnecting edge devices, which are only one hop away from the user.

However, edge computing is also faced with many challenges. First, the operation and pro-
cessing capabilities of an edge device are limited and can fail to meet the demands on real-time
service, data optimization, and application intelligence. Second, the intelligence of most typical
edge-computing services is only embodied in the artificial intelligence (AI)-enabled data storage
and processing on the edge. However, the intelligence is missing from the aspects of behavior
feedback, automatic networking, load balance, and data-driven network optimization.

Cognitive computing originates from cognitive scientific theory. Now, it makes machines
achieve “brain-like” cognitive intelligence through an interactive cognition loop with machine,
cyber space, and humans. Compared to big-data analytics, it possesses the following features:
(1) it analyzes the existing data and information in cyber space, to improve the intelligence of the
machine; (2) the machine reinterprets and explains the information in the existing cyber space and
accordingly generates new information—humans also participate in this process; (3) the machine
has the cognition of a human, which provides a more intelligent cognitive service. Its enabling
paradigms (e.g., agent-based computing) have been researched and the related concrete applica-
tions based on cognitive Internet of Things (IoT) platforms and frameworks have been studied in
[4–6].

Nevertheless, the cognitive computing application mainly depends on the machine-learning
model trained on the cloud, while the real-time inference requests are made by end edge devices,
which so far have been the most common deployment mode of the cognitive service. The existing
problem of such a mode is the large latency in the network operation and the service delivery.
However, if the cognitive service is deployed on the network edge, the latency of the network
response to the user request will be greatly reduced, so research into edge deployment for training
and inference machines is rapidly increasing.
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Therefore, considering both the advantages and disadvantages of edge computing and cogni-
tive computing, a new computing paradigm called Edge Cognitive Computing (ECC) is proposed,
which combines edge computing and cognitive computing. Such a new architecture integrates
communication, computation, storage, and application on edge networks; it can achieve data and
resource cognition by cognitive computing. Moreover, it can provide personalized services nearby,
enabling the network to have a deeper, human-centered cognitive intelligence.

The main contributions of this article are as follows:

• We propose a new ECC architecture that deploys cognitive computing at the edge of the
network to provide dynamic and elastic storage and computing services. In addition, the
design issues of how to fuse these key technologies of cognitive computing and edge com-
puting are illustrated in detail.

• We propose an ECC-based dynamic cognitive service migration mechanism that considers
both the elastic allocation of the cognitive computing services and user mobility, to provide
a mobility-aware dynamic service adjustment scheme.

• We develop an ECC-based test platform for dynamic service migration and evaluate it by
means of several experiments, with the results showing that the proposed ECC can provide
dynamic services according to different user demands.

The remainder of the article is organized as follows. Section 2 introduces the related work. Sec-
tion 3 presents the proposed architecture for edge cognitive computing and design issues in detail.
Section 4 introduces the dynamic cognitive service migration mechanism. Section 5 demonstrates
the ECC test platform for dynamic service migration. Finally, Section 6 concludes the article.

2 RELATED WORK

The need for on-demand state-of-the-art services (smart sensing, e-healthcare, smart transporta-
tion, etc.) and the latency issues that affect the overall Quality of Service (QoS) for various appli-
cations have paved the way to the powerful paradigm of edge computing.

There is a lot of research on edge computing with respect to energy efficiency and latency. The
cooperation and interplay among cloud and edge devices can help to reduce energy consumption
in addition to maintaining the QoS for various applications. However, a large number of migrations
among edge devices and cloud servers leads to congestion in the underlying networks. Hence, to
handle this problem, [7] presented an SDN-based edge-cloud interplay to handle the streaming of
big data in the industrial IoT environment. Edge computing is expected to support not only the
ever-growing number of users and devices but also a diverse set of new applications and services.
The work in [1] introduced a system that can pervasively operate in any networking environment
and allows for the development of innovative applications by pushing services near to the edge of
the network.

In terms of security and privacy in edge computing, there is an increasing realization that edge
devices, which are closer to the user, can play an important part in supporting latency- and privacy-
sensitive applications [8, 9]. Therefore, the security challenges relate to the protection of device
data, such that an unauthorized person cannot access the data, providing secure data sharing be-
tween the device and the edge cloud, and safe data storage on the edge cloud [10–12].

However, the above research on edge computing mostly focused on solving the communication
problems by leveraging computing and storage, like how to reduce the network load, improve the
network efficiency, and reduce the transmission delay. In addition, these works did not consider
how to solve the personalization of actual AI applications and how to provide elastic storage and
computing services.
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Applying cognitive computing in various applications for smart cities has been widely re-
searched; for example, the authors in [13] studied the role of intelligence algorithms such as
machine learning and data analytics within the framework of smart-city applications, such as
smart transportation, smart parking, and smart environment, to address the challenges of big data.
[14] also explored how deep reinforcement learning and its shift toward semisupervision can han-
dle the cognitive side of smart-city services. The work in [15] indicated that the application of deep
networks has already been successful in big-data areas, and fog-to-things computing can be the
ultimate beneficiary of the approach for attack detection because the massive amount of data pro-
duced by IoT devices enables deep models to learn better than shallow algorithms. In summary,
most of the current research on cognitive computing has focused on the design of algorithms.
However, if cognitive computing wants to be applied and deployed on a large scale, it is necessary
not only to solve the problems of how to compute but also to solve what to compute and where to
compute, which needs to deploy cognitive computing at the edge of the network.

There is some research on applying cognitive computing to edge computing in [16]. The authors
first introduced deep learning for IoTs into the edge-computing environment. They also designed a
novel offloading strategy to optimize the performance of IoT deep-learning applications with edge
computing since the existing edge nodes have limited processing capability. The works in [17]
and [18] proposed a novel deep reinforcement learning approach to solve the resource allocation
problems in terms of networking, caching, and computing in edge computing. However, the above
research did not apply the cognition for applications to guide network-resource optimization, but
only considered the resource allocation using some intelligent algorithms, which cannot provide
elastic cognitive computing services.

3 THE PROPOSED ECC ARCHITECTURE AND DESIGN ISSUES

The proposed ECC architecture mainly consists of two components: the edge network and the

edge cognition as shown in Figure 1. The edge network mainly provides the access and resource
management of various edge devices. The edge cognition mainly relates to the cognition to edge
data, involving service data and network and computing resource data. The edge cognition is
mainly composed of two core parts, the data cognitive engine and resource cognitive engine. The
interaction between the data cognitive engine and resource cognitive engine is the key design
issue, which is also shown at the top of Figure 1.

In the architecture, the data cognitive engine mainly relies on cognitive computing technolo-
gies, while the resource cognitive engine mainly uses the related technologies of edge computing.
By combining key technologies in cognitive computing (i.e., big-data analysis, machine learning,
deep learning) with those in edge computing (i.e., computing offload and migration, mobility man-
agement, intelligent proactive caching, resource cooperation management), ECC can better solve
the problem of communication bandwidth and delay through the fusion of computing, commu-
nication, and storage, thus improving the network intelligence. Below we will introduce the ECC
architecture in detail from three aspects: resource cognitive engine, data cognitive engine, and the
interaction between them.

3.1 Resource Cognitive Engine

This engine can learn the characteristics of edge cloud computing resources, environmental com-
munication resources, and network resources by cognition, and feed back the integrated resource
data to the data cognitive engine in real time. At the same time, it can accept the analysis re-
sult of the data cognitive engine and realize the real-time dynamic optimization and allocation
of resources. As shown in Figure 1, it mainly includes the resource data pool, network software
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Fig. 1. The edge cognitive computing architecture.

technologies, and resource management technologies. More specifically, the function of this en-
gine includes the following:

(1) Resource Data Pool: Realize the massive, heterogeneous, and real-time connection be-
tween terminals (such as smart clothing, intelligent robot, intelligent traffic car, and other
access devices); ensure the security, reliability, and interoperability of the connection; and
constitute the resource data pool (computing resources, communication resources, and
network resources) as a basic architecture for data transmission.

(2) Network Softwarization: Utilize the network software technologies involving network
function virtualization (NFV), software-defined network (SDN), self-organized network
(SON), and network slicing to realize high reliability and flexibility, ultra-low latency, and
extendibility of the edge cognitive system.

(3) Resource Management: Utilize the resource management technologies involving com-
puting unload, handover strategy, caching and delivery, and intelligent algorithms to build
a cognitive engine with resource optimization and energy savings to enhance QoE and
meet the different demands of various heterogeneous applications.

The key mechanisms involved in the resource cognitive engine include network slicing, comput-
ing unloading, caching, and delivery. Using the virtualization technology, network slicing virtual-
izes the physical infrastructure of 5G into multiple virtualized network slices that are mutually
independent and parallel to realize the arrangement and management of the corresponding
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network resources. The computing unloading is responsible for the consideration of the computing
tasks’ assignment problem, aiming to rationally allocate the computing resources on the edge cloud
and remote cloud, and thus to complete the computing tasks through cooperation. By caching and
delivering, the predicted contents are placed on the edge in advance, and thus the low latency and
load reduction of the core network are achieved. SDN/NFV can reduce the deployment costs and
improve the efficiency of the network control through the virtualization of the network resources.

3.2 Data Cognitive Engine

This engine deals with the real-time data flow in the network environment, introduces the data
analysis and automatic service processing capabilities to the edge network, and realizes cognition
of the service data and the resource data by using various cognitive computing methods, including
data mining, machine learning, deep learning, and artificial intelligence as shown in Figure 1. The
main data sources are:

(1) Collect the external data from the data source in the application environment, such as
physical signs and real-time disease risk level under cognitive health surveillance, or real-
time behavior information on the mobile user

(2) Collect dynamically the internal data on computing resources, communication resources,
and network resources of the edge cloud, such as network type, service data flow, com-
munication quality, and other dynamic environmental parameters

The key point of the intelligent enhancement of the data cognition engine is that multidimen-
sional data (including external data related to the user and the service, and the internal data in the
resource network environment) are adopted in cognitive computing technology, which is not the
case in the traditional data analysis methods. The data cognitive engine conducts an analysis of
the existing data and information (e.g., using the deep convolutional network (DCNN) for facial
emotion recognition and using the hidden Markov model (HMM) for user mobility prediction). It
then feeds them back to the resource cognitive engine, after which the resource cognitive engine
conducts a reinterpretation and analysis of the information to generate new information, which
may be further utilized by the data cognitive engine. For instance, in health monitoring, after the
monitoring and analysis of the physical health of a smart-cloth-wearing user using cognitive com-
puting, a health-risk level of that user will be obtained; then the resource allocation in the whole
edge-computing network will be comprehensively adjusted to the risk level of each user; i.e., the
data are utilized for the second time and serve resource allocation and network optimization in
turn to form a closed-loop system for cognitive intelligence.

3.3 The Interaction between Data Cognitive Engine and Resource Cognitive Engine

The key design issue of the ECC is the interaction between the data cognitive engine and resource
cognitive engine. In edge cognitive computing, we put forward the design idea of realizing the
closed-loop optimization with the double cognitive engine to optimize network resource manage-
ment technology such as a network slice. Here we take cognitive network slicing as an example
to illustrate how to fuse the related technologies in cognitive computing and edge computing.

As shown in Figure 1, the data cognitive engine first perceives many requests. The request types
of the network-slice service differ from one to another according to different demands (latency,
reliability, and flexibility) of different cognitive applications. Then the data cognitive engine will
conduct the fusion cognitive analysis of the heterogeneous data based on the current resource
distribution situation and real-time requests of the tenant with methods of machine learning and
deep learning. Next the data cognitive engine will report the analyzed dynamic traffic pattern
to the resource cognitive engine. In the resource cognitive engine, there is a joint optimization
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Table 1. Service Resolution for Different Applications

Applications
Service Resolution

Main Metric
Low Middle High

Emotion Detection 66.3 73.6 79.1 Accuracy (%)
Video Streaming 800 × 600 1280 × 1024 1920 × 1080 Video resolution (pixels)

of the comprehensive benefits and the resource efficiency. First, it conducts admission control to
perceived requests, then conducts the dynamic resource scheduling and distribution based on the
cognition of network resources, and then feeds the scheduling results back to the data cognitive
engine, to realize the cognition of the network-slice resources.

4 DYNAMIC COGNITIVE SERVICE MIGRATION MECHANISM

Under the ECC architecture, due to the mobility of the user, the heterogeneity of the edge device,
and the dynamics of the network resources (such as the available storage, the computing resources,
and the network bandwidth), we should offer the elastic cognitive service, i.e., offer the service in
accordance with the personalized demands of the user. The amount of computation consumed by
cognitive computing is particularly large, so the computing resources are required to be more elas-
tic and flexible if deploying the cognitive computing on the edge. The ECC proposed in this article
is different from that proposed by those in related work. The ECC mainly focuses on applications
related to the artificial intelligence in the IoT, such as automatic pilot, virtual reality, smart cloth-
ing, Industry 4.0, emotion recognition, and so forth. In contrast to traditional content retrieval
and mobile computing issues, such applications are often more personalized, so the computing
resources are required to be more elastic and flexible.

To describe the proposed ECC architecture better, we implemented the Dynamic Cognitive Ser-
vice Migration Mechanism. Because the device bearing the computing varies, a service migration
mechanism is needed. In our ECC-based dynamic service migration mechanism, to reduce the la-
tency, the workload should be finished in the nearest edge device that has enough computation
capability at the edge of the network. Thus, according to the user behavior prediction, some con-
tents needed for the service or some jobs for the task are migrated in advance, or the low-resolution
work is first migrated to the position to be moved. After the user’s pass-by, the service resolution
is promoted on that device, thus offering the elastic service.

4.1 Service Resolution

To better explain the elastic service provided by the ECC, we define a new metric called service
resolution to evaluate the user QoE. In view of the different applications, the service resolution
has different definitions. For example, the emotion detection depends on the accuracy rate and
the latency of the emotion recognition, while both are mutually contradictory. A higher accuracy
rate needs more computing resources, with higher latency. However, when the user is insensitive
to the accuracy rate and pays more attention to the interactive experience, we can provide a low
resolution without influencing the user QoE. For the application of video streaming, the service
resolution depends more on the resolution of the video streaming acquired by the user. Table 1 lists
the service resolution of the two different applications. The emotion detection deems the accuracy
rate as a metric, and the video streaming deems the resolution as a metric, respectively offering
three services to meet the QoE under different demands of the user, i.e., offering the elastic service
and enhancing the user experience.

We will explain how to offer the elastic cognitive computing service from the perspective of the
two applications, as follows.
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Fig. 2. Service resolution for emotion detection: (a) low resolution, (b) middle resolution, (c) high resolution.

(1) Emotion Detection: As shown in Figure 2, we provide three service resolutions for emo-
tion detection: low resolution, medium resolution, and high resolution. In the case of
limited computing resources, we provide low resolution, i.e., only conducting the facial
emotion recognition and using the deep neural network VGG. For the medium resolution,
we analyze the facial expression (VGG [20]) and speech emotion (AlexNet [19]) simulta-
neously and carry out the simple decision fusion. For high resolution, we use the strong
computing resources, provide the multimodal emotion recognition algorithm, and use the
deep network, i.e., deep belief network (DBN), for the decision fusion. For these three
service resolutions, the computing resources consumed are increased gradually, and the
accuracy rate of the emotion recognition provided is higher.

The user of emotion detection is always a mobile user, so the dynamic change of the
mobile computing resources is one of factors influencing the user QoE. In addition, when
the user is moving, the network status is changed, but the emotion recognition is required
to maintain ultra-high reliability during the communication process. Thus, it is neces-
sary to adopt the elastic computing mode to solve this problem. This application in need
of multiple computing decisions was not considered in previous research. It is a mutual
contradiction of ensuring the accuracy rate and the latency of emotion recognition at the
same time, and a higher accuracy rate needs more computing resources, with higher la-
tency, as shown in Table 2. However, when the user is insensitive to the accuracy rate and
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Table 2. Accuracy and Latency of Different Service Resolutions

for Emotion Detection

Algorithms Accuracy (%) Latency (ms)

VGG 66.3 103.0
AlexNet + VGG 73.6 188.4
AlexNet + VGG + DBN 79.1 265.3

Fig. 3. Service deployment architecture for ECC.

pays more attention to the interactive experience, we can provide low resolution without
influencing the user QoE.

(2) Video Streaming: Similar to emotion detection, we provide three service resolutions for a
video streaming application, i.e., in consideration of different user demands, user mobility,
and a dynamic network environment simultaneously, we provide the video decoding with
different resolutions, respectively, and decompose the video decoding task into different
resolution tasks in a similar way. When the user is moving, the edge device node better
judges whether to conduct the task migration and which resolution of the task migration
is conducted according to the user mobility behavior. For example, when the user moves to
the other edge node without determining a long-term stay or a short-term stay, the video
decoding task with low resolution can be first migrated. In the case of a long-term stay
of the user, the high-resolution service can be offered to avoid untimely migration and
resource waste. In addition to considering user mobility, migration costs should be con-
sidered. The low-resolution service has the lowest migration cost, and the high-resolution
service has the highest migration cost.

4.2 Dynamic Service Migration Mechanism

When and how to conduct migration are the two major concerns in dynamic service migration
mechanisms. Most migration mechanisms decide when to migrate by only relying on network
conditions; few of them take user behavior into account [21, 22]. However, deciding when to mi-
grate according to user behavior and mobility has a large influence on improving user experience
and resource utilization.

As shown in Figure 3, the Service Manager implements all the functionalities that an edge
node needs to deploy its services. It includes a service repository (service repo) where ser-
vices (service1, . . . , servicen) to be provided are stored, e.g., dockerized compressed images or
emotion recognition models. The Decision Engine is responsible for deciding which services to
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deploy. In Figure 3, the resource cognitive engine manages the computing and network re-
sources of the heterogeneous edge device and cognizes the user mobility, user demands for service
resolution, and resource demands for computing tasks in combination with the data cognitive en-
gine. The Decision Engine makes the decision in accordance with the information and migration
strategy (based on Q-learning, see below) and accordingly provides dynamic and elastic cognitive
services.

The service providers (SPs), i.e., the edge nodes, manage the virtual networks and let M =
{1, . . . ,M } be the set of SPs. Let t ∈ {0, 1, 2, . . . ,N } denote the time instant of service request.
We assume that the edge device has n services that need to be migrated, and the set of tasks is
denoted as T = {T1,T2, . . . ,Tn }. For the migration taskTi ,Ti = {ωi , si ,oi }, where ωi is the amount
of computing resource required for the task Ti , i.e., the total number of CPU cycles needed to
complete the task, and si is the data size of the computation taskTi , i.e., the amount of data content
to be delivered to the other edge node; specifically, in this work, it stands for the size of the video
content or the storage resource consumed by the emotion detection (e.g., the processing code
and parameter(s)). Finally, oi represents the data size of the task result. For instance, in the video
decoding case, ωi is the computing resource needed for the video decoding, si is the video data
size, and oi is the data size of the decoded video. After the computation, the Service Provider m
sends the transcoded video content back to the user.

Migration Cost: The traffic volume of migrating a virtual server usually cannot be neglected
due to the large size of the server states. The migration cost of a virtual server depends on the
size of the server as well as the bandwidth available on the migration path. For example, for the
emotion detection service, the migration cost depends on the emotion recognition models. For
a video-streaming service, the migration cost depends on the data size of the decoded video. A
higher service resolution has a higher migration cost.

Migration Goal: Minimize the service costs, and in the meantime, improve the QoE by pro-
viding different service resolutions based on user demands, user mobility, and dynamic network
resources. For xt , a service request at time t , represented as (Ti ,R,E) whereTi denotes the request
task, R denotes the service type and E denotes the expectation of the service request. We define the
score (the metric for user-acquired experience) under some migration strategy π as Score (xt ,π )
and the cost of Cost (xt ,π ), so the optimization objective can be defined as follows:

max F (xt ,π ) = Score (xt ,π ) −Cost (xt ,π ), (1)

where Score (xt ,π ) = R (xt )−E (xt )
Delay (xt ,π ) , and R (xt ) is the service type acquired by the service request, i.e.,

the service resolution. We set the value of (0, 1, 2), respectively corresponding to low, medium,
and high service resolution. E (xt ) is the expectation of a service request. Delay (xt ,π ) is the time
of service acquisition under strategy π , relevant to ωi and oi . Cost (xt ,π ) is relevant to si .

From the definition of Score (xt ,π ), it is observed that, in the case of a definite latency and
a definite service demand of the user, the higher the service resolution provided is, the higher
the user experience gained. While providing the same service resolution, the higher the user ex-
pectation is, the lower the score is. R (xt ) − E (xt ) can well reflect the relationship between the
service acquired by the user and the user expectation. This means that we can provide the low-
resolution service if the quality of the service requirements of the user is not high, so as to reduce
the energy consumption without influencing the user QoE. When the service acquired by the user
and the user expectation are definite, the higher the delay of service acquired is, the lower the
score is.

Optimal Problem Formulation: Our problem can be described as a reinforcement learning
scenario. The objective is to find an agent that makes the optimal migration policy for each service
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request. The optimal migration policy denoted by π ∗ can maximize the system reward given by

π ∗ = argmax
π

∑

x ∈X
F (x ,π ). (2)

Let Si denote the state of environment at time i , defined by the locations of the n services at that
time. For a sequence of batch requests X = {x1,x2, . . . ,xN }, the goal of the service migration is to
determine S1, S2, . . . , SN to maximize the system reward defined by Equation (2).

Q-learning is one of the most popular Reinforcement Learning [23] (RL) methods that is ap-
plied in many research areas. The general procedure of the Q-learning algorithm is shown as
Algorithm 1.

We define the reward after the action a taken on St as

Ra
t+1 = Score (St+1) − (Score (St ) +Cost (St , St+1)). (3)

Similarly, we can also construct a matrixQ to memorize the experience that the agent has gained
from the environment. The Q-value of the state-action pair,Q (St ,a), represents the expected total
benefits caused by action a taken in state St . The solution is to exploit from the initial state to a final
optimal state through updating accordingly by Algorithm 1. In each iteration of the algorithm, the
agent observes the current state S and takes action a to move to the next state S ′ by receiving an
immediate reward Rt+1, which is used to update the Q (s,a) by following Equation (4), and then
begins the next iteration:

Q (St ,At ) ← Q (St ,At ) + α (Rt+1 + γ max
a

Q (St+1,a) −Q (St ,At )). (4)

The α means learning rate, which determines how much the new information overwrites the
old. The discount factor γ gives more weight to the most recent reward than others in the future.

ALGORITHM 1: Q-learning algorithm

Initialization Q (s,a)
Repeat (for each episode):

Initial state S

Repeat (for each step in episode):

Use some policy such as (ϵ - greedy), and select an action for execution based on the state S
After executing the action, observe reward and new state S ′

Q (St ,At ) ← Q (St ,At ) + α (Rt+1 + γ max
a

Q (St+1,a) −Q (St ,At ))

S ← S ′

End

5 TESTBED AND PERFORMANCE EVALUATION

To verify the proposed architecture, an ECC test platform was set up, and a performance evaluation
of the dynamic service migration mechanism was conducted in the experimental testbed for the
user mobility.

To create the ECC environment, we used several edge-computing nodes that realize the func-
tions of emotion detection and video streaming as shown in Figure 4(a). We also used an Android
phone as a user mobile device, designed the Android application program as shown in Figure 4(b),
and realized the signal monitoring of the edge-computing node, task uploading, result download-
ing, and service migration. Figure 4(c) illustrates the software interface running on Windows.
Figure 4(d) shows the UI of the emotion detection application.
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Fig. 4. Experimental platform: (a) hardware platform, (b) interface of mobile application, (c) software inter-

face of the edge node, (d) UI of emotion detection application.

Table 3. Experimental Parameters

Parameter Value Description

Bi, j 5Mbps The bandwidth between edge node SPi and SPj

QTi
100Mcycles The required number of CPU cycles to complete task Ti

OTi
1Mbits The content size for task Ti

α 0.01 The learning rate of algorithm
γ 0.8 The discount factor giving more weight to the near future

In the experimental setup, we use four edge nodes and two servers, i.e., m = 4,n = 2. For
the performance comparison, two schemes are compared with the proposed ECC-based scheme:
(1) no migration scheme: service migration is not considered; (2) nearest migration scheme: if
needed, service will be migrated to a close access point.

Table 3 lists the values of important parameters considered in the experiments. The task load in
the high-resolution migration was 256MB, the task load in the middle-resolution migration was
compressed to 128MB, and the task load in the low-resolution migration was compressed to 64MB.
The transmission bandwidth between the edge nodes was 5Mbps.

Figures 5 and 6 plot the experimental results for the performance analysis. Figure 5 shows the
convergence performance of different scenarios in the proposed scheme using the deep reinforce-
ment learning algorithm. From Figure 5, we can see that the total utility (the cumulative rewards,
i.e., the object function F defined in Equation (1)) of the different scenarios in the proposed scheme
is very low at the beginning of the learning process. With the increase in the number of episodes,
the total utility increases until it reaches a relatively stable value, which is around 400 in the sce-
nario that provides high resolution. We can also observe that the rewards of different resolution
services are almost the same at the beginning, and at a stable stage high resolution obtains the
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Fig. 5. Convergence performance with difference service resolutions.

Fig. 6. Delay comparison of different migration schemes with request times.

highest reward, while low resolution obtains the lowest reward. Therefore, the low-resolution
service could be first migrated to the corresponding edge node when the user moves to the other
edge access point, and then the high-resolution service should be provided at a stable stage.

Figure 6 shows the response time of the edge node providing the emotion detection service
with low resolution (the first algorithm introduced in Table 2). In general, the response time is
proportional to the number of concurrent requests, which means that the higher the number of
concurrent requests is, the longer the average response time is. We compare the time delay under
different schemes; from Figure 6, we can obtain that the delay of all the schemes increases with
the increase of the service request times, and our proposed RL-based scheme under the ECC ar-
chitecture has better performance with the lowest latency. This is because these services could
be better migrated in advance to the optimal location based on a user-mobility prediction. How-
ever, the nearest migration scheme decides to migrate the service just when the user moves to the
other access point, which would result in a longer delay and even to lead service disruption. From
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Figure 6, we can also observe that due to user mobility, the delay jitter is more severe and the delay
difference of these three schemes is bigger when the service request time is higher than 25. The
ECC-based scheme is able to reduce the jitter from the results for it learns from the user mobility
continuously. Also, it is obvious that the delay was the longest under no migration scheme.

6 CONCLUSIONS

This article presents an ECC network architecture and introduces the key issues. In addition, an
ECC platform for dynamic service migration based on a mobile user’s behavioral cognition was
developed and experimentally tested. The experimental results show that the proposed ECC ar-
chitecture can simultaneously provide higher QoE compared with the general edge-computing
architecture without data and resource cognitive engines that achieve the user behavior predic-
tion to better guide the service migration based on traffic data and the network resource environ-
ment. The results effectively demonstrated that edge cognitive computing realizes the cognitive
information cycle for human-centered reasonable resource distribution and optimization.
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