This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

An Efficient and Accurate Link Latency
Monitoring Method for Low-Latency
Software-Defined Networks

Lingxia Liao

Abstract—This paper proposes a novel latency monitor-
ing method for software-defined networks (SDNs) called
LLDP-looping, which uses LLDP packets injected repeatedly
in the control plane to determine latency between switches.
It provides accurate and continuous latency monitoring without
involving any dedicated network infrastructure, while avoiding
potential measurement failures that can occur in the existing
method of timestamping data packets as probe packets, and
overcoming the major factors that decrease the measurement
accuracy in many existing methods for monitoring SDN latency.
We formulate an optimization problem to enable LLDP-looping
to minimize its workload on both control and data planes, and
propose a novel greedy algorithm to solve this problem efficiently.
Evaluations over the tree-based network topologies demonstrate
that LLDP-looping can effectively minimize its overhead, and
provide measurement accuracy higher than 90% against the
round trip time measured by Ping over an SDN with link latency
as small as 0.05 ms. The advantages of LLDP-looping can be
realized with minimal modifications to SDN switches and this
technique can be generalized to other networking scenarios.

Index Terms—Latency monitoring, minimum vertex cover,
OpenFlow, software-defined network (SDN).

I. INTRODUCTION

HE explosive growth in cloud computing and Internet

deployment for latency-sensitive applications has created
a massive increase in demand for predictable quality of
service (QoS) and quality of experience (QoE), and effective
differentiated network services [1]. This increase heightens
the needs for measurement technologies to provide network
managing with effective tools for monitoring network latency

Manuscript received February 5, 2018; revised May 27, 2018; accepted
May 28, 2018. This work was supported in part by the National Natural
Science Foundation of China (Grant 61671088), the Fundamental Research
Funds for the Central Universities (HUST: 018KFYXKJC045), and the
Canadian Natural Sciences and Engineering Research Council. The Associate
Editor coordinating the review process was Huang-Chen Lee. (Corresponding
author: Victor C. M. Leung.)

L. Liao is with the Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
(e-mail: liaolx @ece.ubc.ca; vleung@ece.ubc.ca).

V. C. M. Leung is with the Department of Electrical and Computer
Engineering, The University of British Columbia, Vancouver, BC V6T 174,
Canada, and also with Zhejiang Gongshang University, Hangzhou 310018,
China (e-mail: vleung@ece.ubc.ca).

M. Chen is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China, and also with
the Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
(e-mail: minchen2012@hust.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2018.2849433

, Student Member, IEEE, Victor C. M. Leung, Fellow, IEEE, and Min Chen, Senior Member, IEEE

to maintain the QoS/QoE of applications. Such monitoring
capability is especially critical over low-latency networks of
data centers hosting latency-sensitive applications, such as
online gaming/searching/banking, in which several distributed
components communicate with others across network devices
to generate quick responses for a large number of concurrent
users [2], [3].

The latency of a route' within a low latency Internet
Protocol (IP) network can be accurately and automatically
measured using Ping-based utilities. However, Ping-based util-
ities typically rely on dedicated servers or user hosts running
particular monitoring applications (i.e., monitoring points) to
repeatedly inject Internet Control Message Protocol (ICMP)
packets to enable accurate and automatic latency monitoring
over the entire network. To accurately monitor all possible
routes within a network, such an arrangement requires a large
number of monitoring points to inject a large number of ICMP
packets into the network, which could significantly impact the
network performance. Therefore, this approach is not suitable
to efficiently and continuously monitor the latency of all the
routes of networks. Many active or passive latency monitoring
approaches proposed in the current literature have provided
mechanisms to reduce their resource usage, but they are not
really resourced-efficient since either a dedicated network
infrastructure has to be built to handle probe packets for
active latency measurements [4]-[6], or a global clock has
to be deployed to synchronize the time of all the devices in a
network for passive latency measurements [7], [8]. The latency
monitoring methods based on the ITU-Y.1731 protocol [9] can
work in both active and passive modes. Although a global
clock is not required in the passive mode, management end
points (MEPs), which constitute a dedicated infrastructure, are
required in both modes.

Software-defined networks (SDNs) have decoupled control
and data planes. With the primitives for injecting Open-
Flow [10] messages or data packets into the data plane,
the control plane can generate probe packets, insert them
into the data plane, and calculate the time difference between
receiving and sending a probe packet as fmeasured- The control
plane can further generate OpenFlow messages, insert them
into the switches, and calculate half the time difference

I This paper uses the route to represent the path between the source and
destination switches of a flow and the link to represent the path between two
adjacent switches.

0018-9456 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

forwarding

“ICMP pcks

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

(b) (c)
controller

controller

1:ICMP] 3:ICMPjpcks 4:ICMP pgks
2: probe pck 3: probe pck pcks in anming ¢ SRS 2:probepck 2- probe pck
forwarding forwarding h1 | | h2 h3 looping looping
Fig. 1. Latency monitoring in SDNs. (a) Method based on (1). (b) Method based on RTT subtraction. (c) LLDP-looping.

between receiving and sending an OpenFlow message, repre-
sented as Zcon-to-src ANd fdst-to-con- The route latency represented
as fgre-to-dst can be calculated by

Isre-to-dst = Imeasured — Zcon-to-src — Idst-to-con- (1)

Equation (1) provides an active measurement of latency
without the use of dedicated infrastructure, as shown
in Fig. 1(a). However, it cannot achieve high accuracy
over low-latency networks in which the link latency can
be 0.1 ms or even smaller [11] and where many latency-
sensitive applications are being run. This is because the dif-
ferent behaviors of a switch in processing data packets, probe
packets, and OpenFlow messages cause systemic errors in
measuring fmeasured» fcon-to-sre> aNd Zdst-to-con in (1), and perfor-
mance fluctuations in the controller cause further measurement
errors [12]-[14]. We can increase the weight of the real route
latency in fmeasured to achieve higher measurement accuracy in
low-latency networks, by modifying the above as fgc-to-dst =
measured /lOOptimes and using a large value for looptimes,
which denotes the number of times each probe packet is forced
to loop in the data plane. However, this approach incurs a
huge extra workload in the network and potentially changes
the network performance and scalability [15], [16]. More
importantly, all these approaches do not provide mechanisms
to deal with potential latency measurement failures caused by
timestamping data packets as probe packets, or minimize the
workload caused by latency measurements that might impact
the network performance and bias the measurement results.
Consequently, although these approaches obviate the need for
a dedicated network infrastructure, they may not be suitable
to monitor the latency of all the links or routes of an SDN in
a continuous manner.

Some other approaches over SDNs such as granular round-
trip time monitoring infrastructure (GRAMI) [17] follow
the typical strategy used by many active latency monitoring
approaches proposed for conventional IP networks [18]-[20].
In these approaches, one or multiple dedicated servers are
deployed over the network to send probe packets repeatedly to
carefully selected hosts. The round trip times (RTTs) of a link
can be directly measured by a probe packet or the subtraction
of two RTTs. As shown in Fig. 1(b), the RTT of link $2—-S3 is
the subtraction of the RTT of route #1-h3 and the RTT of route
h1-h2. By carefully selecting destinations of probe packets
and locations deploying the servers, the latency of all the
routes of a network can be monitored using a minimal number
of probe packets without causing any potential measurement
failures. Several mechanisms have been proposed to determine

the locations of the servers, to generate the probe packets and
to determine their destinations. While these approaches may
provide accurate and continuous latency measurements of the
latency of all the links or routes of an SDN, the dedicated
servers that inject probe packets and collect measurement
results do contribute extra capital and operation costs for
latency monitoring. On the other hand, the SDN control plane
can work as a helper to determine the destination of probe
packets and install flow entries for probe packets. However,
methods that take advantage of the control plane to completely
avoid the use of dedicated servers while efficiently, accurately,
and continuously monitoring the latency of all the routes of
an SDN have not been fully explored in the current research.

To fill the gap, we propose a novel latency monitoring
method called LLDP-looping for low-latency SDNs. Without
the need for any dedicated server, LLDP-looping uses the
control plane to repeatedly inject LLDP packets into switches.
Since LLDP is used for topology discovery, LLDP-looping
combines latency monitoring with topology discovery. Two
types of LLDP packets are used: LLDP packets with the extra
type-length-value (TLV) structure are used as probe packets
and injected into some selected switches for both latency
monitoring and topology discovery, and normal LLDP packets
without the extra TLV are injected into the other switches
for topology discovery only. To determine the switches into
which the control plane should inject probe packets, LLDP-
looping views a network as an undirected graph and formulates
a vertex cover problem (VCP) [21] to find a minimum vertex
cover of the graph. This cover consists of the switches that
need to receive probe packets from the control plane. LLDP-
looping injects probe packets into these switches, forcing each
packet to loop over the link three times, calculates the RTTs
of all the links at the switches, and sends them back to
the controllers for latency monitoring as well as topology
discovery, as shown in Fig. 1(c).

Timestamping LLDP packets as probe packets and injecting
them repeatedly into the SDN via the control plane allows
the RTTs of all the network links to be continuously tracked
without deploying any dedicated server, metering any end
host, or installing any dedicated flow entry into switches for
latency monitoring. LLDP-looping completely avoids mea-
surement failures that could occur in the current approaches
that use timestamped data packets as probe packets, and pro-
vides a very high accuracy in latency monitoring by determin-
ing the RTT of links at switches in a manner that overcomes
almost all the major factors that impact the measurement
accuracy in the currently proposed latency monitoring methods

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 3

for SDNs. The formulated VCP minimizes the overhead
of LLDP-looping in both control and data planes, and the
proposed greedy algorithm that always picks the switches near
to the network edge can quickly find an optimal solution of
the VCP over tree-based topologies. By topology discovery
with latency monitoring capability, LLDP-looping not only
reduces the extra workload added on the network while keep-
ing the existing logic in topology discovery module almost
unchanged, but also minimizes the modification to the software
of both controllers and switches so that LLDP-looping can be
easily applied over SDNs.

LLDP-looping has been prototyped on Nox C con-
trollers [22] and Open vSwitch switches [23], and evaluations
show that it can provide an accuracy of better than 90%
(compared to latency measured using a Ping utility) in network
latency measurements over a large-scaled network with link
latency as small as 0.05 ms. The greedy algorithm that we
propose can always minimize LLDP-looping’s overhead in
both the control and data planes over tree-based topologies
in much lower computation complexity than an exhaustive
search [21]. To the best of our knowledge, the proposed
LLDP-looping is the only latency measurement method with
a very low resource usage and high accuracy, which can
continuously monitor the latency of all the links of an SDN,
even for links with a very low latency, without deploying any
dedicated infrastructure.

Although this paper presents an extension of the confer-
ence paper [14] and follows the same strategy where the
timestamped LLDP packets are repeatedly injected by the
control plane as probe packets, it proposes a new method to
select switches for packet injections and determine link latency
at these switches, which is lacking in the previous work [14].
The major contributions of this paper are threefold: 1) a highly
accurate latency monitoring method is proposed for low-
latency SDNs, which does not require deployment of dedicated
network infrastructure or installing flow entries dedicated for
latency monitoring; 2) a VCP is formulated to minimize the
overhead of the proposed latency monitoring method; and 3) a
greedy algorithm is proposed to compute an optimal solution
of the VCP over tree-based network topologies.

The rest of this paper is organized as follows. Related work
and major issues are summarized in Section II. LLDP-looping
is proposed in Section III, prototyped in Section IV, and
evaluated in Section V. Conclusions are drawn in Section VI.

II. RELATED WORK AND MAJOR ISSUES
A. Latency Monitoring Methods Over IP Networks

In [4]-[6], the methods for active latency measure-
ments over conventional IP networks were proposed. These
approaches inject probe packets into the network and rely on
geographically distributed beacons to perform trace routes in
large-scaled networks, while our LLDP-looping works over
SDNs and no distributed beacons are needed. IPMON [7]
and COLATE [8] are the methods for passive latency mea-
surements over conventional IP networks. They need a global
clock to synchronize the timing of different network devices,
and a latency monitoring unit at each network device is

installed to capture sample packets or timestamp the caught
packets. Approaches based on the ITU-Y.1731 can work
actively or passively without a global clock, but they all require
the use of a dedicated infrastructure consisting of the MEPs.
TIMELY [24] uses network interface cards to measure the
RTT of a route. However, it does not provide a mechanism to
efficiently and continuously monitor the latency of all the links
over the entire network. Scmon [20] uses a single monitoring
point to inject probe packets into the network such that the link
latency of the whole network can be monitored. It computes
the latency of a link by subtracting the latency of two routes
to reduce the overhead added by latency monitoring. However,
its effectiveness has not been demonstrated over data center
networks. In contrast, the proposed LLDP-looping can use
the controller that has been deployed over an SDN as the
monitoring point. It minimizes overhead by carefully selecting
the switches where the probe packets need to be injected,
and its effectiveness over data center networks has been
demonstrated in this paper.

B. Latency Monitoring Methods Over SDNs

Yassine et al. [25] have reviewed the state of the arts
of latency measurements for SDNs. The approaches pro-
posed by Adrichem et al. [12] and Phemius and Bouet [13]
directly implement active latency monitoring based on (1).
The approach in [13] achieves high measurement accuracy
by finding a calibration constant, but has only been shown
to work in a static network with two switches under a light
workload. The approach in [12] targets an SDN with link
latency greater than 1 ms for high measurement accuracy.
In our previous work [14], we proposed an approach based
on (1). With the aid of a linear calibration function, this
approach can achieve a latency measurement accuracy of
better than 80% over low latency and static SDNs. Time to
live (TTL)-looping [15] provides high measurement accuracy
over low-latency networks but this method is not directly
based on (1). Unlike the above-mentioned methods that rely on
controllers to repeatedly inject probe packets, software-defined
latency monitoring [11] is based on (1) but relies on flow
entry timeout messages to trigger a route latency measurement.
On the other hand, GRAMI [17] uses dedicated servers that
are distributed over the network to inject ICMP packets as
probe packets.

Many potential issues exist in the above-mentioned
approaches when they are used to monitor the latency of all
the routes of an SDN continuously. Our previous work [14]
identifies that timestamping data packets as probe packets,
as in the measurement methods proposed in [12] and [13], can
suffer from potential measurement failures, because current
OpenFlow protocols lack mechanisms to differentiate the
timestamped data packets from the nontimestamped ones.
A flow entry forwarding a data packet to its intended destina-
tion will route a timestamped one to the same destination and
incur a measurement failure, while forcing timestamped data
packets to go back to the controller at each destination switch
will send all the nontimestamped ones to the controller as well
and cause a routing failure. Although ICMP packets can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

used as probe packets to avoid these potential measurement
failures, ICMP-based methods such as GRAMI or Ping-based
utilities have to rely on dedicated servers or user hosts,
causing extra capital and operation costs. Also, ICMP-based
methods need to install flow entries dedicated to latency
monitoring in switches, which could lead to shortages of
flow table space in switches. To address these issues, in our
previous work [14], we proposed to timestamp LLDP packets
as probe packets. Since LLDP is an open link layer protocol
among switches and used by network devices to broadcast
their identities and capabilities, many current SDN controllers
implement a process that periodically injects LLDP packets
to and receives LLDP packets from its supervised switches
for network topology discovery [22], [26]. Since this process
does not involve any application running at the hosts and no
host will send LLDP packets to other hosts in the network,
there is no need to set up flow entries for LLDP packets
in switches. LLDP packets are guaranteed to be sent back
to the controllers. By using timestamped LLDP packets as
probe packets [14], we completely avoid the needs to utilize
user hosts, deploy dedicated servers, or install dedicated flow
entries in switches for latency monitoring, and thus eliminate
the causes of potential measurement failures described earlier.
Therefore, the LLDP-looping method proposed in this paper
follows the same strategy.

Another issue in the above-mentioned approaches is their
inability to achieve a high latency monitoring accuracy. Meth-
ods based on (1) can incur large systemic errors and mea-
surement errors over low-latency SDNs. The systemic errors
are mainly caused by different channels of a switch used
in forwarding probe packets and data packets because these
methods use probe packets injected by controllers via the
control channel to measure the latency of data packets going
through data channels. An OpenFlow switch has a control
channel and a data channel. The data channel can work in
the OpenFlow mode or the normal mode. The control channel
is used to forward a flow injected by controllers or a flow
sent by another switch or a host when the flow entry of the
flow has not been installed in the flow tables. The OpenFlow
mode of the data channel is used to forward a flow sent by
another switch or a host when the flow entry of the flow
has been installed in the flow table but not cached in the
application-specific integrated circuit (ASIC), and the normal
mode is used to forward a flow sent by another switch or a
host when the flow entry of the flow has been cached in the
ASIC. Since probe packets are injected by controllers while
data packets are sent by another switch or a host, probe packets
are always forwarded over the control channel of switches
while data packets are forwarded by the switches using the
normal mode most of the time when the flow entries have been
installed. This difference incurred a systemic error of 1400%
over our test bed (connected by 1-Gbit/s Ethernet switches) by
comparing the RTT of different ICMP packets of Ping, where
the first ICMP packet was forwarded using the OpenFlow
mode due to no matching flow entry existing in the switch
fabrics, and the following ICMP packets were forwarded by
switches using the normal mode since the flow entries had
been loaded into the switch fabrics by the first ICMP packet.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

The RTT of the first ICMP packet was about 0.6 ms and
the RTT of following ICMP packets was about 0.04 ms over
our test bed. This huge systemic error makes it difficult for
methods based on (1) to achieve a high accuracy over SDNs
with low link latencies without calibration.

The measurement errors of the above-mentioned approaches
based on (1) are mainly incurred by the fluctuation of the CPU
clock speed of the controller. In our experiment, we found this
fluctuation could cause jitters of hundreds of milliseconds in
measuring fgrc-o-dst Using (1), while the real fgc-to-dst measured
by Ping was 0.02 ms with 10-us jitter over our test bed under
a light workload. The jitter was much larger than the real
link latency, indicating that the measurement error incurred
by the fluctuation was much larger than the real link latency.
Since this fluctuation is highly dependent on the CPUs of
controllers and tends to be random, it is difficult to reduce
the measurement errors by calibration over low-latency SDNs.
This is why the calibration method developed in [13] cannot
be generally applied in any other SDN. Also, increasing the
scale of an SDN increases the measurement errors because
having more switches in an SDN increases the overhead of
the controllers, leading to a longer delay in processing a
probe packet or an OpenFlow message at the controllers [14].
This longer delay increases fmeasured> fcon-to-src> Zdst-to-con, and
Isre-to-dst Measured by approaches based on (1), while the real
Isre-to-dst measured by Ping remains almost unchanged due to
the unchanged switch state. Regardless the linear calibration
function proposed in [14] based on the averaged fmeasured
accommodates the change of network scales, the averaged
I'measured hides the real performance change of SDNs, making
the calibration ineffective over dynamic SDNs. TTL-looping
is based on fgcto-dst = fmeasured/lOOptimes rather than (1).
While it does not need calibration, it nevertheless adds a huge
overhead in the data plane to achieve higher measurement
accuracy.

Since the systemic and measurement errors of methods
based on (1) are extremely hard to mitigate over low-latency
SDNs, and using controllers to determine the latency of SDNs
is the root of these errors, the LLDP-looping method proposed
in this paper uses the data plane instead of the control plane to
determine the latency and thereby improves the measurement
accuracy over low-latency SDNs. Similar to LLDP-looping,
GRAMI determines the network latency over the data plane,
but it does not demonstrate a high measurement accuracy over
low-latency SDNs while our LLDP-looping does.

C. Approaches to Reduce Overhead of Latency Monitoring

Minimizing the overhead of latency measurements is crucial
for an active latency monitoring method to continuously
monitor the latency of all links or routes of a network without
affecting the measurement metrics and biasing the results
of measurements. Many latency measurement approaches for
SDNs proposed in the literature do not provide any mechanism
to reduce such an overhead [12], [13], [15]. Given a network
with n links or routes, using these approaches to monitor
the latency of every link or route of this network will cause
the control plane to inject n probe packets per measurement

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 5

Fat-tree

Fig. 2. Three tree-based topologies.

TABLE I
SWITHES AND LINKS IN THE THREE TREE-BASED TOPOLOGIES

Topology | Core Aggregation | Leaf Links

basic tree | 1 m m(m —1) | m?

fat free m2/4 | m2/2 m2/2 m3/2

clos m/2 m m m?

TABLE II
OVERHEAD OF CURRENT APPROACHES

Ports Edge Scale Packet injected | Bandwidth
per switch | switches or returned usage
24 288 medium | 6912 0.13%
48 1152 large 55296 1.06%
72 2592 large 186624 3.58%
96 4608 massive | 442368 8.49%

iteration, because the latency of each link or route has to be
measured by one probe packet. This increases the overhead of
the control plane and consumes the bandwidth of the control
channel of the control plane.

We calculate the bandwidth of the control channel consumed
by these approaches over a full fat-tree topology, since it
has short latency and is widely used by current data centers
to achieve lower latency [27]. Three typical full tree-based
topologies are shown in Fig. 2, and their basic information is
listed in Table I. We let the control plane timestamp Ethernet
frames (24 bytes) as probe packets and inject one probe packet
per link per second, and the full bandwidth of the control
channel is 1 Gb/s. As listed in Table II, the bandwidth usage
of the control channel can increase from 0.13% to 3.58%
and 8.49%, when the number of edge switches increases
from 288 to 2592 and 4068, respectively. Since full fat-tree
networks consisting of 288, 2592, and 4608 edge switches
are the representative of the networks of medium, large, and
massive data centers [28], respectively, increasing the number
of switches in a large-scaled SDN can significantly increase
the bandwidth of the control channel consumed by these
approaches in monitoring the latency of the entire network.
This is especially troublesome when some other bandwidth-
consuming control plane applications such as topology discov-
ery have to run simultaneously with latency monitoring over
a dynamical network.

Many effective latency monitoring methods over conven-
tional IP networks proposed in the literature provide mech-
anisms to reduce the overhead of latency monitoring. These
mechanisms are often based on the idea that estimating the
RTT by subtraction of two RTTs can monitor the latency

LLDP packet for topology discovery

Port ID

Chassis ID
|Eth Har | LLDP Har | Bk | ol

| TTL TLV | End TLV |

LLDP packet for both latency monitoring and topology discovery

Chassis ID Port ID Org. specific
|Eth Hdr | LLDP Hdr | TV TV I TIL TLV | TV | End TLV ‘
Organizationally specific TLV
Type Info Length Oul ODS Time stamp
(7bits) (9bits) (24bits) (8bits) (32bits)
Fig. 3. LLDP packet structure.

of more routes with fewer probe packets injected. However,
these mechanisms have to address the issue that the path
of probe packets cannot be controlled. Breitbart et al. [18]
and Aubry et al. [20] addressed this issue by implementing
source routing over a conventional IP network. GRAMI [17]
addressed this issue by installing flow entries at switches along
the path of probe packets over SDNs. The proposed LLDP-
looping addresses this issue by hardcoding the behavior of
switches in processing the received LLDP packets.
Subtraction of two RTTs can reduce the number of probe
packets for latency monitoring, but it creates an optimization
problem regarding the best locations of servers to inject probe
packets into the network such that the number of probe packets
used to monitor the latency of all the links or routes of a
network can be minimized. This problem can be formulated
as a well-known facility location problem (FLP) as proposed
in [17] and [18] and solved by some heuristic algorithms since
an FLP is NP-hard. Since LLDP-looping injects LLDP packets
to a set of switches and lets each LLDP packet flood a switch,
the overhead minimization problem needs to be formulated
differently, as a VCP instead of an FLP, to minimize the
number of LLDP packets used for latency monitoring.

ITI. LLDP-LOOPING

We propose an efficient and accurate latency monitoring
method called the LLDP-looping to continuously monitor the
latency of all links of low-latency SDNs. By keeping the track
of the latency of all the links of an SDN and adding all the
link latencies along a route, the route latency between arbitrary
switches can be calculated. LLDP-looping combines latency
monitoring with topology discovery by timestamping LLDP
packets as probe packets. Two types of LLDP packets are
used by LLDP-looping: those consisting of an extra TLV are
used as probe packets for latency monitoring and topology
discovery, while those without the extra TLV are used for
topology discovery only. The extra TLV is an organizationally
specific TLV (10 bytes) that stores the timestamp of a link,
as shown in Fig. 3, where the organizationally unique identifier
and organizationally defined subtype have to be carefully
configured to avoid conflicting with existing organizationally
specific TLVs. LLDP-looping lets the control plane inject
probe packets to a selected set of switches but inject normal
LLDP packets to the others. Each probe packet is forced to
loop around a link for three times, and the RTT of the LLDP
packet is calculated at the switch, as shown in Fig. 1(c).

A. Determination of Latency at Switches

To facilitate discussion, we call the switch that receives
an LLDP packet injected by the control plane as the link

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

source switch, and the switch that receives the LLDP packet
forwarded by the link source switch the link destination
switch.

A latency measurement of LLDP-looping starts with a
controller injecting a probe packet with TTL = 4 at a link
source switch, which is processed in the control channel
function of the switch and flooded to all the active ports of
the switch so that it is forwarded to all the link destination
switches downstream of these ports. Consider one of these
link destination switches. As this is the first time that the
injected probe packet arrives at this link destination switch,
the switch uses its datapath function to decrement the TTL of
the arriving probe packet, timestamp the current time to the
extra TLV, and sent the packet back to the link source switch
from which the injected probe packet has just been forwarded.
When the probe packet arrives at its link source switch again,
the link source switch uses its datapath function to process
the received probe packet by decrementing TTL and returning
it back to the link destination switch that has just forwarded
the probe packet. Finally, when the probe packet comes back
to the link destination switch for the second time, the switch
uses its datapath function to retrieve the timestamp from the
extra TLV, compute the RTT of the link, timestamp the RTT
in the extra TLV, and send it back to the controller via the
control channel.

Since each switch can be a link source switch or a link
destination switch when handling different probe packets,
it uses the TTL of a probe packet to determine its role.
TTL = 4 in an arriving probe packet indicates that the switch
is a link source switch and this packet has been injected by the
control plane. TTL = 3 in an arriving probe packet indicates
to the switch that is a link destination switch and should loop
the probe packet back to the link source switch. TTL = 2 in an
arriving probe packet indicates that the switch is a link source
switch that has previously received this packet and should loop
the packet back to the link destination switch. TTL = 1 in
the arriving probe packet indicates that the switch is a link
destination switch that is receiving this packet for the second
time and should compute and put the RTT in the TLV and
return the probe packet back to the controller. By checking the
TTL of a probe packet, LLDP-looping dynamically determines
the role of a switch with respect to the received probe packet,
generalizes the behavior of each switch in processing the probe
packets, and minimizes the modification of a switch software
for latency monitoring.

The RTT of a probe packet can be determined at its link
source switch or destination switch. LLDP-looping chooses
to use the link destination switch rather than the link source
switch to determine the RTT of the probe packet because:
1) it leaves the normal topology discovery procedure in both
switches and controllers unchanged, whereby a normal LLDP
packet is also forwarded to the controller by the link destina-
tion switch and 2) it confines the modification of the switch
software to the datapath functions because a link destination
switch only involves its datapath while a link source switch has
to involve both its control channel and datapath to process each
received probe packet (because the probe packets received by a
link destination switch are always sent by a link source switch,

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

while the probe packets received by a link source switch can
be sent by either a link destination switch or a controller).

Since the link latency is determined at switches, the fluctua-
tion of controller’s CPU clock speed and the change of the net-
work scale that significantly impact the measurement accuracy
over low-latency SDNs are completely avoided, and the mea-
surement accuracy is significantly improved. LLDP-looping
also completely avoids potential measurement failures in cur-
rent SDN latency monitoring methods that timestamp data
packets as probe packets while enabling continuous latency
monitoring without affecting the forwarding of data packets.
It simplifies and generalizes the modification of software at
both controllers and switches, and can be readily applied over
SDN3.

B. Overhead Minimization

LLDP-looping monitors the latency of all network links
by using the control plane to inject probe packets to each
switch of the network. This process increases the overhead
of the control plane due to the CPU time and bandwidth of
the control channel consumed by the continuous injection of
probe packets. This overhead can be reduced because injection
of probe packets to all the switches (each acting both as a
source and a destination of some link) causes the latency of
each full-duplex link to be measured twice. Therefore, LLDP-
looping should carefully select a set of switches into which the
control plane injects the probe packets such that each link of
the network has at least one probe packet traversing it in either
direction, and both the number of probe packets generated for
latency monitoring and the number of switches used to flood
probe packets are minimized simultaneously.

Therefore, we consider a network as an undirected graph
G = (V,E), where V and E are the set of switches and
full-duplex links of the network, respectively, and § € V is
the set of switches selected for probe packet injection. The
degree of each v € V (the number of neighbors of the node
v) is given by d(v). In a measurement iteration, since the
control plane injects a probe packet to each of the selected
switches, which then floods the received packet to its active
ports, the number of probe packets injected by the control
plane equals the number of selected switches, and the number
of probe packets flooded by a selected switch equals the
number of neighbors of the switch. Therefore, we formulate
an optimization problem with objectives to simultaneously
minimize the number of switches in S(OBJ2) and the total
degrees of switches of S(OBJ1) such that at least one probe
packet traverses each link of the network (CON1) to minimize
the overhead of LLDP-looping on both the control and data
planes.

However, OBJ2 can be discarded because LLDP-looping
combines latency monitoring with topology discovery such
that a switch will receive LLDP packets from the control plane
regardless of whether it is selected to receive probe packets
for latency monitoring or not. If a switch is not selected for
latency monitoring, it receives LLDP packets injected by the
control plane for topology discovery; otherwise, it receives
LLDP packets with an extra TLV for both latency monitoring

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 7

and topology discovery. Therefore, minimizing the number of
switches selected for probe packet injection does not reduce
the number of LLDP packets injected by the control plane,
and hence, the formulated problem is simplified to a typical
VCP that finds the minimum vertex cover to optimize the
OBJ1 under the constraint of CON1. OBJ1 and CONI are
formulated in the following equations, respectively:

OBJ1: Min » d(v))
veS
CONI: V{u,0} € E:veSVvuces. 3)

A VCP is NP-complete and cannot be solved in polynomial
time. The fastest exhaustive algorithm [21] that can find the
minimum cover of a VCP has a computation complexity of
0(1.2738% 1+ K|V|), where K represents the maximal size
of the vertex cover. A typical way to efficiently find an
approximately optimal solution of a VCP is to use greedy
techniques. However, greedy techniques do not guarantee a
minimal cover. Considering low-latency networks of data cen-
ters that often have tree-based topologies, as shown in Fig. 2,
and a VCP over a tree-based topology can be solved in
polynomial time, while a typical greedy algorithm that always
picks the switches with the most number of neighbors in the
network cannot yield a minimum cover of our VCP [29];
therefore, we propose a novel greedy algorithm that can
quickly find the minimum cover of our VCP over tree-based
network topologies.

Particularly, our greedy algorithm maintains an adjacency
matrix A (n+*n) for a network with n nodes (switches). We let
a;; be the element located in row i and column i of A and
representing the degree of node i, and a;; (i # j) be the
element of A located in row i and column j with the possible
value of 1 or 0, respectively, representing the existence of
an edge between nodes i and j or not. Unlike the greedy
algorithm that always picks a vertex with the largest degree
from the graph [29], our algorithm starts by picking a vertex
v with the lowest degree, then finds all the neighbors of » and
adds the neighbors to the set S. Then, the algorithm removes
v and its neighbors and all the edges associated with them
from the graph by computing a new adjacent matrix A, Each
element of A¥ remains unchanged relative to A except that:
1) the degrees of » and its neighbors are set to 0 in AF,
representing the removal of v and its neighbors from the
graph; 2) the elements representing the degree of the neighbors
of neighbors of v in A* are decreased by 1; and 3) the
elements representing the edges that have an incident vertex
with v or any of its neighbors are set to 0 in AX, indicating
that the edges associated with » or any of its neighbor are
removed from the graph. Finally, the algorithm evaluates AX.
If each element of A is 0, the algorithm returns the set S as
the minimum vertex cover; otherwise, it picks another vertex
with the lowest degree from the remaining graph, finds the
neighbors of that vertex and adds them to S, and updates A¥
until each element of AX is 0. If there are more than one
vertex in the remaining graph that has the same lowest degree,
our algorithm computes the degree difference of each vertex
(difjow) using the degree of the vertex in A minus the one
in A, and picks the one with the smaller difjoy, to minimize

Algorithm 1 Pseudocode of Our Greedy Algorithm
1: INPUT: The n % n’s adjacent matrix A

2: OUTPUT: The set S

38« {}, Ak <~ A

4: while AF 0 do

50 Qlow <N, difioy < n

6 fori=1;i++;i<n+1 do

7: if ajop > al{‘i then

8 Alow <—af‘i,difl0w <—a,~,~—al{‘i,v <~

9 end if

10: if ajp == a¥ and difion > a;; —al; then
11: diﬁoweaii—afi,vei

12: end if

13: end for
14: fori=1i++;i<n+1 do

15: if a¥ ==1andi # v then
16: SU{i}
17: end if

18: end for
19: for vertex v and each element in S do

20: u < element, ak, < 0

21: fori=1;i++;i<n+1 do

22: if i # u and afu == 1 then

23: aﬁt<—0,allji<—0,afi<—a§‘i—l
24: end if

25: end for

26: end for
27: end while

the number of duplicated edges incurred by flooding the picked
node and the number of probe packets generated by all the
picked nodes. The detail of our greedy algorithm is shown in
Algorithm 1.

Given the same K defined in the second last paragraph,
which presents the maximum number of switches that can
be selected. The computation complexity of the proposed
algorithm is O(K|V]|) (lV| = n), which is lower than
0(1.2738% + K| V), the computation complexity of the fastest
exhaustive algorithm proposed by [21]. Although the proposed
algorithm cannot guarantee to find a minimum vertex cover for
an arbitrary network topology, it can always pick the aggrega-
tion switches of the tree-based network topologies as shown
in blue in Fig. 2. Since the tree-based network topologies are
widely used in current data centers, this algorithm minimizes
the number of probe packets used by LLDP-looping to monitor
the latency of all the links of many low-latency networks.
In a dynamically changing network environment where the
network topology needs to be continuously discovered to
accommodate the possible changes in the states of network
nodes and links, the proposed greedy algorithm allows the
set of switches for probe packet injection to be selected
automatically in the presence of topology changes. Obviously,
the optimal set of switches can be selected offline for any given
network topology and configured manually for the network,
but this approach would have difficulty adapting to dynamic
network conditions in a timely manner.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Incoming pcks
no

—uop?
1 yes
| Decrease TTL ‘
—TTL=37 _nol
T vyes no
= T=2?
| Tape current time | l o
b o < o,
Set output port T ves
EEED U0 i
e
‘ Ca"d°fV5‘(‘;P°“‘t ’ send function to ‘ .
send function to forward the Pck continue !
forward the : Pck continue
packet out prEEiE BIGCESING processing

Fig. 4. Flowchart of our LLDP-looping.

IV. PROTOTYPING

We prototype LLDP-looping on a Nox C controller and
Openvswitch switches. Our prototype implementation only
adds 36 lines of codes in the ovs—vport—receive function of
the vport.c file of Openvswitch. For each received packet,
as shown in Fig. 4, our prototype first checks the type of
the packet and decreases the TTL of an LLDP packet, and
then checks the value of the TTL. If TTL = 3, indicating
the switch is a link destination switch that receives the LLDP
packet for the first time, the switch timestamps the current time
to the LLDP packet, sets the output port number as the in-port
number of the packet, and calls the ovs—vport—send function
to directly forward the timestamped LLDP packet back to the
link source switch without further processing the packet (since
an LLDP packet injected by the control plane to a switch does
not go through the ovs—vport—receive function of the switch,
TTL = 3 means a link destination switch rather than a link
source switch). If TTL = 2, implying that the switch is a link
source switch and the current LLDP packet is just looped back
from a link destination switch, the switch sets the output port
number as the in-port number of the received packet, and calls
the ovs—vport—send function to directly forward the LLDP
packet back to the link destination switch without further
processing the packet. If TTL = 1, meaning that the switch
is a link destination switch that is receiving the looped LLDP
packet for the second time, the switch calculates the RTT of
that LLDP packet, writes the RTT to the appropriate TLV
field of the LLDP packet, and processes the LLDP packet
normally using the ovs—vport—receive function. In all other
cases, the switch processes the LLDP packet normally. For any
LLDP packet that needs to be processed normally at a switch,
since there is no matching flow entry for it in the switch,
the LLDP packet will be finally forwarded to the control plane.
Since the LLDP packets used for topology discovery only have
TTL initialized to 1, when the LLDP packets arrive at their
link destination switches, the value of TTL will decrement to 0O
and the switches will forward the packets to the controllers
directly. In this way, our prototype only slightly modifies the
ovs—vport—receive function of the vport.c file to enable latency
monitoring and topology discovery simultaneously over an
SDN, without affecting any other part of an Openvswitch.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Since the existing Nox C controller consists of a discovery
component that periodically injects LLDP packets to switches
for network topology discovery, we slightly modify this mod-
ule to maintain two types of LLDP packets, one that has
an organizationally specific TLV and the other that has not.
We set the TTL of the LLDP packets with organizationally
specific TLV to 4 so that the packets can monitor link latency
as well as discover topology, while configuring the TTL of the
LLDP packets without organizationally specific TLV to 1 for
topology discovery only. We implement our greedy algorithm
as a function of the discovery component, and fork a new
thread to determine the switches that should receive the probe
packets from the control plane periodically. In each iteration
of LLDP-looping, the control plane injects LLDP packets with
organizationally specific TLV to those switches selected by our
algorithm, and injects LLDP packets without organizationally
specific TLV to the other switches. The implementation makes
sure that all the LLDP packets are returned to the control
plane to be correctly decoded. In this way, LLDP-looping can
be implemented with minimal modifications to the software
of both controllers and switches. The modifications are also
generalized and can be readily implemented in any other
controllers and switches of an SDN.

Although current SDNs often deploy physical switches,
which software or firmware can only be updated by their
manufacturers, increasingly academia and companies are con-
structing their SDNs with customizable soft switched to
meet their special requirements for network security, QoS,
and innovations as the technologies of virtual switches and
NetFPGAs mature. A data center with thousands of net-
work devices or even more may choose physical switches
for deployment, considering network performance and main-
tenance. However, as a significant customer, the archi-
tect or operator of a data center can specify additional func-
tions for the software of their network devices, which vendors
are required to customize to meet their special requirements.

V. EVALUATIONS

We ran our LLDP-looping prototype over SDNs emulated
using Mininet [30] and investigated the major factors affecting
measurement errors and measurement accuracy before and
after calibrations. We estimated the workload generated by our
LLDP-looping and measured the flow setup rate of the control
plane to show how our LLDP-looping does not impact the
performance and scalability of the control plane. We compared
our LLDP-looping to the major approaches in SDN latency
monitoring proposed in this paper and analyzed how LLDP-
looping can extend the same high monitoring accuracy to
physical SDNs.

A. Factors Affecting Measurement Error

Since LLDP-looping measures the RTT of an LLDP packet
in the data plane, the performance fluctuations of controllers
caused by fluctuations of their CPU clock speed do not affect
the measured latency. The fluctuations in CPU clock speeds
of the switches still lead to jitters in latency measurements,
which reflect the real fluctuations in network latency that a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 9

|| —<10.01
1|—=—10.05
—e—1-0.1
——1-0.5
p-0.01
--:G--- p-0.05
@ p-0.1
- p-0.5

60 switches

50 Switches

5 10 15 20 30 40 50

Fig. 5. RTT measured by LLDP-looping (I-) and ping (p-) under various
network scale. (a) RTT with link latency set to 0.01-0.5 ms. (b) RTT with
link latency set to 1-10 ms.

data packet would experience in a network. Results show
that changes in the network scale, the LLDP packet injecting
frequency, and the workload do not impact the measurement
error of LLDP-looping either.

Fig. 5(a) and (b) shows the comparison of the RTTs
measured by LLDP-looping and the Ping utility over a linear
network with 5, 10, 15, 20, 30, 40, 50, and 60 switches with
the link delays set to 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 ms.
The linear networks were emulated by Mininet. Each switch
was connected to one host. Since the network topology does
not affect the accuracy of LLDP-looping, we emulated linear
topologies to facilitate construction of networks with larger
scales in the computer emulation. Since changing the number
of switches in the network does not change the overhead
of switches, the RTTs measured by LLDP-looping and Ping
remain almost unchanged as the number of switches in the
emulated SDN is varied, indicating that the change of the
network scale does not affect the measurement accuracy of
LLDP-looping and Ping.

Furthermore, Fig. 6(a) shows the link latency measured by
LLDP-looping and Ping over an emulated linear SDN with
10 switches with each link delay configured to 0.1 ms, and the
packet injecting frequencies configured to 1, 2, 5, 10, 20, 50,
and 100 per second. The results show that the RTTs measured
by LLDP-looping do not change with the LLDP injection
frequency (with roughly 10-us jitter caused by the switch
performance fluctuation), because changing the frequency of
LLDP packet injection does not really change the overhead
of the switches. Fig. 6(b) shows the link latency measured
by LLDP-looping and Ping over an emulated linear SDN
with five switches and links configured to 10 Mbits/s with
0.1-ms link delay. We ran Iperf [31] to generate workloads
of 0, 4, and 8 Mbits/s for 120 s. The results show that the
RTTs measured by LLDP-looping and Ping follow the same
pattern. Furthermore, as time progresses, the measured RTTs
first increases until the output port queue becomes congested,
and then decreases with some fluctuation until the output port

RTT (us)

160::::::::(b:)

—<—1-0
e -4
—e—|-8
p-0
Do p-4
el [l

T time

Fig. 6. RTT measured by LLDP-looping (I-) and ping (p-) under various
(a) packet injection frequency and (b) workload.

queue becomes empty. This pattern represents a real change
in network state when the workload is generated by Iperf,
and suggests that LLDP-looping can reliably monitor the link
latency under a light workload while the network state changes
in real time.

B. Measurement Accuracy

Since the RTTs measured by LLDP-looping and Ping
are both greater than the link latency configured, and the
RTTs measured by LLDP-looping were less than the ones
measured by Ping [as shown in Fig. 5(a) and (b)] due to
the delay between hosts and switches included in the latter,
LLDP-looping achieved higher accuracy in latency monitoring
than Ping when the configured link latency was used as a
baseline. However, Ping is the traditional approach used by
network administrators to monitor network latency. Therefore,
we used the RTT measured by Ping as a baseline to cal-
culate the measurement error of the experiment [as shown
in Fig. 5(a) and (b)]. As shown in Fig. 7(a), the measurement
error was around —58%, —30%, —18%, —8%, —3%, —0.4%,
and —0.1% when a link delay was configured to 0.01, 0.05,
0.1, 0.5, 1, 5, and 10 ms, respectively. The measurement
error does not increase as the network scale grows. If an
acceptable measurement error compared to the baseline is
10%, our proposed LLDP-looping cannot provide acceptable
measurement accuracy in a network where the baseline is less
than 1 ms, which is the RTT measured by Ping when the link
delay is set to be less than 1 ms.

Since the delay between hosts and switches contributed the
major part of measurement errors, we calculate this delay
using the RTT measured by Ping minus the RTT measured by
LLDP-looping (Ccali = RTTping —RTTLLDP-100ping) to calibrate
the latency measured by LLDP-looping (RTTLLDP-100ping-cali =
RTTLLDP-100ping + Ceati). Theoretically, this delay is constant
when the overhead of each switch and the host in the net-
work remains unchanged. This is why, in our experiments,
the difference between the RTT measured by Ping and the RTT
measured by LLDP-looping remains almost the same when
the link delay was configured to a particular value, as shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

@

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Delay (us)

5 o —
50 60 switches

Fig. 7.

——0.01
0005
| —8—0.1
@05

60 switches

go Switches - 5

Link latency measurement error comparing to the half RTT measured by Ping. The labels represent the test results with various link delay.

(a) Measurement error before calibration (%). (b) Delay between hosts and switches. (c) Measurement error after calibration (%).

in Fig. 7(b). However, this difference slightly changed when
the configured link delay is varied, which is most probably
caused by the different overhead added by the link delay
configuration process in Mininet when the link delay was set
to various values, and it cannot happen in a physical network.
Based on this consideration, we apply a calibration constant
of 29 us that is the difference of the RTTs measured by
LLDP-looping and Ping when the link delay is configured to
0.01 and 0.05 ms. The measurement error after calibration is
shown in Fig. 7(c).

It is apparent that the measurement error could be reduced
to less than 10% of the baseline after calibration when the link
delay is set to be not less than 0.01 ms. It implies that when
the RTT measured by Ping is not less than 0.05 ms (0.05 ms
is the RTT measured by Ping when the link delay is set to
0.01 ms), our proposed approach can achieve accurate latency
monitoring if the acceptable measurement error is 10%.

We also tested the real RTT of our test bed (two servers
connected through an Ethernet switch with 1-Gb/s ports) using
Ping. The RTT was found to be around 0.2 ms and greater
than 0.05 ms obtained in our experiments. It suggests that our
evaluation emulates an SDN with lower link latency than a
low-latency network such as the local area network our lab,
and the measurement accuracy of LLDP-looping estimated by
the evaluation can apply to many low-latency networks.

C. Evaluation of the Proposed Greedy Algorithm

We consider the three full tree-based topologies with
m-port switches, as shown in Fig. 2, wherein the aggregation
switches of each topology form the minimum vertex cover of
the formulated VCP. We consider m = 4, 8, 16, 24, and 48.
Table IIT gives the comparison of the total number of switches
(a) and the total degrees of these switches (b) calculated by
our proposed greedy algorithm (Al) to the ones computed
by the exhaustive algorithm (A2) proposed in [21] and the
greedy algorithm (A3) proposed in [29]. The results show
that our greedy algorithm and the exhaustive algorithm can
always find the aggregation switches of each topology, while
the normal greedy algorithm has a worse case that finds a
cover 1.5x of the minimum cover and the total degrees of the
cover is 1.5x of the total degrees of the minimum cover over
the fat tree and clos topologies, although the cover computed
by the normal greedy algorithm over the basic tree topology is
very close to the minimum cover computed by the other two
algorithms. The computation complexity of our algorithm is
O(Km?) using O(K|V|) provided in Section III-B for all the
three tree-based topologies, while the computation complexity

TABLE III
ALGORITHM COMPARISON OVER THE TREE-BASED TOPOLOGIES

Top m | a(A1&A2) a(A3) b(A1&A2) | b(A3)
4 4 4-5 16 16-20
8 8 8-9 64 64-72
basic | 16 | 16 16-17 256 256-272
24 | 24 24-25 576 576-600
48 | 48 48-49 2304 2304-2352
4 8 8-12 32 32-48
8 32 32-48 256 256-384
fat 16 | 128 128-192 2048 2048-3072
24 | 288 288-432 6912 6912-10368
48 | 1152 1152-1728 | 55296 55296-82944
4 4 4-6 16 16-24
8 8 8-12 64 64-96
clos 16 | 16 16-24 256 256-384
24 | 24 24-36 576 576-864
48 | 48 48-72 2304 2304-3456

of the exhaustive algorithm is O(1.2738% 4 Km?) using
0(1.2738% 4+ K|V|) provided in [21].

Therefore, the more ports a switch has, the more aggregation
switches of a full tree-based network can consist of, and
the larger K can be. Also, the growth of the network scale
increases the computation complexity of our greedy algorithm
and the exhaustive one but the complexity of the exhaustive

one increases much faster than ours.

D. Measurement Overhead on Control Plane

Since LLDP-looping combines latency monitoring with
topology discovery, while topology discovery is one of the
basic functions that a controller has to implement, LLDP-
looping only adds a limited amount of extra overhead on
the control plane. To evaluate it, we let LLDP-looping inject
one LLDP packet per switch per second, and computed the
extra number of LLDP packets and the extra number of
bytes injected by LLDP-looping for topology discovery with
latency monitoring capability, using the baselines calculated
by running a normal topology discovery module for topology
discovery. An LLDP packet without the extra TLV dedicated
for latency monitoring is 34 bytes long, and the extra TLV
used for timestamping RTT adds 10 bytes. LLDP-looping
injects LLDP packets with the extra TLV to the aggregation
switches of a tree-based topology for both latency monitoring
and topology discovery, and injects normal packets to other
switches for topology discovery only. As listed in Table 1V,
LLDP-looping does not inject any extra LLDP packets to the
data plane for latency monitoring.

However, LLDP-looping consumes more bandwidth in the
control channel of controllers, since each probe packet that is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 11

TABLE IV
OVERHEAD ADDED BY LLDP-LOOPING OVER TREE-BASED TOPOLOGIES

Topo- | Extra packets | Extra bytes | Extra packets | Extra bytes
logy injected injected per link per link

basic 0 10m 2 10+2%44
fat 0 10m?/2 2 10 + 2+ 44
clos 0 10m 2 10+ 2 %44

injected to the intended selected switches has an extra TLV
that costs 10 more bytes. Suppose the control plane injects one
packet per switch per second to an SDN with 1-Gb/s links.
The calculated bandwidth consumed by LLDP-looping for
latency monitoring and for topology discovery over the three
tree-based topologies with 4-port, 8-port, 16-port, 24-port,
48-port, 72-port, and 96-port switches, respectively, are shown
in Fig. 8(a) and (b). It is apparent that the more ports a
switch have, the more aggregation switches the network could
have, and the more probe packets the control plane needed
to inject. The bandwidth of the control channel consumed
by LLDP-looping for both latency monitoring and topology
discovery is increased as the number of ports of a switch
increases. Compared to the full bandwidth of the control
channel (1 Gb/s), the bandwidth usage of LLDP-looping for
latency monitoring over the basic tree and clos networks con-
structed by switches with up to 96 ports is negligible. Although
LLDP-looping over a full fat-tree network can generate much
larger overhead over the control channel than the other two
types of tree-based networks, the bandwidth usage of LLDP-
looping can be limited to be lower than 6.5% of the full
bandwidth of the control channel when the fat-tree network
is constructed with switches having up to 72 ports, as shown
in Fig. 8(a).

It should be noted that a fat-tree network constructed by
72-port switches can have up to 6480 switches (5 m?/4) and
connect up to 93312 hosts (m>/4), which is representative
of a network for a very large data center. If more hosts
need to be connected into a fat-tree network, 96-port switches
may have to be used. Using LLDP-looping over a fat-tree
network constructed by 96-port switches with 1-Gb/s links for
topology discovery can consume about 28% of the bandwidth
of the control channel [as shown in Fig. 8(b)], although
among them, only about 15.5% of the bandwidth is used for
both latency monitoring and topology discovery [as shown
in Fig. 8(a)] and about 3.5% of the bandwidth is dedicated
for latency monitoring (because the proposed LLDP-looping
combines latency monitoring with topology discovery, and for
each 44 bytes injected, only 10 bytes is dedicated for latency
monitoring). To reduce the bandwidth usage of LLDP-looping,
such a fat-tree network may have to upgrade to 10-Gb/s
links or use distributed control plane consisting of multiple
controllers, each of which runs an LLDP-looping instance to
monitor the link latency within a network partition. To monitor
the latency of links between two network partitions, some
modifications on the proposed LLDP-looping may have to be
done.

To further evaluate the overhead of LLDP-looping in the
control plane, we conducted an experiment to measure the flow

Bandwidth (Mbits/s)
[ee]
o

| |] —a— basic tree
40 : ' R ¢ fat-tree
- & -clos
0) "
4 16 2 48 72 gp Portsiswitch
(®)

N
@
o

N
o

basic tree

~
o

¢ fat-tree

Bandwidth (Mbits/s)
s
o

-4 =-clos

0 % # 4 e
4 8 16 24 48 72

A
= -

—— .
96 ports/switch

Fig. 8. Bandwidth of control channel consumed by LLDP-looping.
(a) Bandwidth usage of LLDP-looping for latency monitoring. (b) Bandwidth
usage of LLDP-looping for topology discovery.

45

—a—topology

discovery

- » -LLDP-
looping

Flow setup rate (Kflows/s)

17 37 65 257 577 switches

Fig. 9. Flow setup rate over basic tree networks with various switches.

setup rates of the Nox C controller under the normal topology
discovery procedure and LLDP-looping. The flow setup rate
of a controller is the number of flows the controller can set up
per second. It is one of the key scalability metrics of SDNs,
and increasing the overhead of the control plane will decrease
the flow setup rate. We used a test bed with three computers,
one of which emulates using Mininet a basic tree topology
constructed by 4-port, 6-port, 8-port, 16-port, and 24-port
switches, with the total number of switches of the network
set to 17, 37, 65, 257, and 577. The second computer runs a
Nox C controller to manage the SDN emulated by the Mininet,
and the third computer runs Cbench [32] to measure the flow
setup rates of the Nox C controller with normal topology
discovery and with LLDP-looping. We chose the basic tree
rather than the fat tree and clos for evaluation because a full
basic tree topology can have a large network scale that can
be emulated by a single computer. We set up the controller to
inject 10 LLDP packets per switch per second to simulate a
network that may have a larger scale and lower packet injection
frequency. The results are shown in Fig. 9, where it is apparent
that LLDP-looping does not decrease the flow setup rate of
the networks, although the flow setup rate of the controller
decreases as the scale of a network grows. Therefore, the extra
bandwidth consumed by LLDP-looping dedicated for latency

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

monitoring does not affect the performance and scalability of
the control plane.

However, the flow setup rate of a controller is decreased
by running the topology discovery process, and this decrease
increases as the number of switches in the network increases.
Since the measured flow setup rate is indicative of the real
flow setup rate that a controller can provide for data packets,
this reduced flow setup rate impacts the performance and the
scalability of the control plane. Depending on the computation
capacity of a controller and how quickly a network requires
its data packets to be forwarded, a large-scale network may
have to use a distributed control plane consisting of multiple
controllers. The proposed LLDP-looping can be run at each
controller of the distributed control plane to monitor the
latency and discover the topology of the network partition
managed by a controller.

E. Measurement Overhead on Data Plane

In LLDP-looping, each injected LLDP packet with the
extra TLV to loop the targeted link three times (two times
for latency monitoring and one time for topology discovery),
LLDP-looping added (10 + 2 * 44) more bytes on a link
(10 more bytes for the extra TLV and two more loops for
RTT measurement), as listed in Table IV. The extra bandwidth
consumed by LLDP-looping over a link is 7.84 Kb/s when
the latency of each link is updated 10x per second. This
bandwidth usage over a 1-Gb/s link is negligible. Since
LLDP-looping limits each link of the network to have exactly
one probe packet looping over each in each measurement
cycle, each link of the network has the same low overhead
consumed for latency monitoring in LLDP-looping, while
some links near the monitoring points in GRAMI or many
other approaches based on RTT subtraction suffer from a larger
workload because these links are shared by many routes and
traversed by many probe packets.

F. Measurement Accuracy and Workload Comparisons

We compared LLDP-looping with some currently proposed
approaches, as listed in Table V. Opennetmon [12] and the
approach in [13] directly implement (1), but the former
targets a network with link latency greater than 1 ms and
no latency monitoring accuracy is provided, and the lat-
ter can achieve measurement accuracy of up to 99% after
calibration, but the calibration only works for a particular
static network with only two switches. Our previous work
presented in [14] achieved measurement accuracy better than
80% over a low-latency network with up to 30 switches after
calibration, but the calibration only works over static networks.
TTL-looping [15] provided measurement accuracy of about
75% for a network with only four switches by looping a probe
packet 1024x over a link, which adds a huge overhead on
the data plane. GRAMI [17] provided measurement accuracy
greater than 90% for an emulated network with three switches,
with the link latency set to 20 ms. LLDP-looping achieved
measurement accuracy greater than 97% and 90% in networks
with link latency greater than 1 and 0.05 ms, respectively.
Among the listed approaches, LLDP-looping is the only one

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

that provides measurement accuracy greater than 90% without
being impacted by the network scale over low latency and
dynamical SDNs.

Among all listed approaches, GRAMI and LLDP-looping
perform RTT measurements and provide optimization mech-
anisms to minimize the total number of probe packets used
to monitor the latency of all the links of a network, while
the others are one-way latency measurements without any
optimization mechanism provided. The number of probe pack-
ets injected by GRAMI is determined by the number of
monitoring points that GRAMI needs over a tested SDN, while
the topology of the tested SDN decides the number of mon-
itoring points that GRAMI needs and how these monitoring
points should be located over the entire network. However,
the number of probe packets injected by LLDP-looping is
decided by the size of the minimum vertex cover of an SDN,
and the control plane is used by LLDP-looping to handle
probe packets. Since LLDP-looping adds latency monitoring
capability to the existing topology discovery function, which
is one of the basic tasks of a controller, the real overhead of
LLDP-looping consumed for latency monitoring is very low.

All the one-way latency monitoring approaches listed
in Table V loop a probe packet once over a link except
TTL-looping that loops a probe packet 1024 times. However,
since. GRAMI and LLDP-looping are RTT-based methods,
in these two methods, a probe packet loops over a link for
two times, and one more looping time is needed by LLDP-
looping for topology discovery. Similar to the listed one-way
latency monitoring methods, our LLDP-looping does not need
to deploy any network infrastructure and install any flow
entries dedicated to latency monitoring. Therefore, LLDP-
looping is the only continuous latency monitoring method that
can efficiently and accurately monitor the latency of all the
links or routes of a low-latency SDN, without deploying any
dedicated infrastructure and consuming extra flow tables.

G. Extending to Physical SDNs

1) Measurement Accuracy Impacted by Emulated Networks:
Since the time measured by an emulated switch may include
an extra time cost spent by the underlying operating system
in processing tasks for other emulated switches, the link
latency measured by LLDP-looping and Ping over emulated
networks is not accurate. To accurately estimate the measure-
ment accuracy of LLDP-looping over an emulated network,
we use the configured link latency as a baseline and recompute
the measurement accuracy of LLDP-looping, because the
configured link latency represents the real delay controlled
by the underlying operation system that each LLDP packet
has to bear before it is sent out by a port no matter the extra
time cost is included or not. We therefore consider the same
test scenarios as shown in Fig. 5(a) and (b), and calculate
the measurement inaccuracy of those test scenarios, as shown
in Fig. 10(a), where the measurement inaccuracy is about
120%, 28%, 14%, 5%, 0.4%, 0.08%, and 0.004% when the
configured link delay is 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 ms,
respectively, and the measurement error does not increase
as the network scale grows. Similarly, if we consider the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 13

TABLE V

LINK LATENCY MEASUREMENT COMPARISON, n AND r ARE THE NUMBER OF LINKS AND THE SIZE OF THE MINIMUM VERTEX COVER
OF A NETWORK, RESPECTIVELY, AND m IS THE NUMBER OF MONITORING POINTS OF GRAMI

Approach Switch | Delay Probe Cali- Measure- Loops | Flow Bytes Injected
set(ms) packet bration | ment error entries | injected | by

LLDP-looping 60 0.01-0.5 | LLDP pcks | yes -9% - 5% 2 no 10r controller
LLDP-looping 60 1-10 LLDP pcks | no -3% - 0 2 no 10r controller
approach [14] 30 0/1/5 LLDP pcks | yes 20%/5%/3% | 1 no 34n controller
approach [13] 2 0/10/30 Eth.frame yes 1% 1 no 24n controller
Opennetmon [12] 4 1/5 Eth.frame no 1 no 24n controller
TTL-looping [15] | 4 0 Eth.frame no 25% 1024 no 24n controller
GRAMI [17] 3 20 ICMP pck no < 10% 2 yes T4m hosts

@ (b)

itch 0 T T T
switches 5 10 15 20

5 10 15 20 30 40 50 60

40 50 eoWthes "5 49 45 20 320 40 50 g0 SWitches

Fig. 10. Link latency measurement error comparing to the configured link latency. The labels represent the test results with various link delay. (a) Measurement
error before calibration (%). (b) Subtraction of measured and configured link latency. (c) Measurement error after calibration (%).

acceptable measurement error be the 10% of the baseline,
LLDP-looping cannot provide acceptable measurement accu-
racy in a network where the baseline is less than 0.1 ms
without calibration. Since the link latency measured by LLDP-
looping does not vary much as the scale of a network increases
for each configured link latency, as shown in Fig. 10(b),
we utilize a constant of 11 us to calibrate the link latency
measured by LLDP-looping. The measurement inaccuracy
after calibration is shown in Fig. 10(c). It is apparent that
LLDP-looping can reduce its measurement error to be less than
10% over a network with link latency configured as 0.05, 0.1,
and 0.5 ms. LLDP-looping can also reduce its measurement
inaccuracy to be not greater than 10% over a network with link
latency configured to 0.01 ms in most of the test scenarios
except the one that consists of 20 switches. The increased
measurement inaccuracy in that particular scenario implies
that some extra cost used by the underlying operating system
to process tasks for other emulated switches may have been
added into the latency measured by LLDP-looping.

In fact, the real link latency of an emulated network is the
sum of the delay in both processing a packet and sending
the packet out from a port (the configured link latency) at
a virtual switch. Since the real measurement inaccuracy of
LLDP-looping should use the real link latency of an emulated
network as the baseline, the real measurement inaccuracy of
LLDP-looping over emulated networks should be lower than
the one calculated earlier, and the real measurement inaccuracy
of LLDP-looping over physical networks should be even lower
than the real measurement inaccuracy of LLDP-looping over
emulated networks, because the real link latency measure-
ment error of LLDP-looping over physical networks will
not include the extra time cost incurred by the emulated
network. In this sense, the measurement inaccuracy calculated
earlier is pessimistic compared with the real measurement
inaccuracy of LLDP-looping over physical networks; i.e., the
same or even higher measurement accuracy of LLDP-looping

can be achieved over physical networks compared to the
presented results.

2) Measurement Accuracy Impacted by Virtual Switches:
When using LLDP-looping to monitor the latency of an
SDN with a light workload, the CPU speed fluctuation at
the switches contributes the major part of the measurement
jitter and decreases the measurement accuracy because LLDP-
looping determines latency in the data plane. In the evaluation,
we used an emulated SDN with a number of soft switches
(the Openvswitch) controlled by a Nox C controller. Since
an Openvswitch is run on a host computer, its CPU clock
speed is higher than that of a physical switch, and the jitter
generated by our emulated SDN is larger than that generated
by a physical SDN. Thus, the evaluation over emulated SDNs
incurred a larger measurement error than that over a physical
SDN. However, we have emulated SDNs with an even lower
link latency than most of the physical SDNs; i.e., the RTT
measured by Ping over our emulated SDNs is as small as
0.05 ms, while the RTT of our test bed consisting of two
hosts connected by a 1-Gb/s switch was 0.2 ms. Moreover,
the measurement accuracy decreases as the real link latency
in the network decreases. These observations suggest that the
proposed LLDP-looping can achieve even higher measurement
accuracy over a physical SDN than over our emulated SDNs.

3) Using LLDP-Looping Over Physical Networks: The con-
troller that injects the probe packets cannot always directly
connect to the intended selected switches. When using
LLDP-looping to monitor the link latency of an SDN with
an out-of-band control plane where an extra infrastructure is
dedicated for the connection between switches and controllers,
the probe packets injected by the controller can be routed
to the intended selected switches using conventional switch-
ing or routing algorithms over the management infrastructure.
Accordingly, routing the injected probe packets to the selected
switches will not impact the data plane and impede the use of
LLDP-looping to monitor the link latency of the data plane.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

However, in an SDN with hundreds of thousands of hosts,
an out-of-band management infrastructure may suffer from a
large packet forwarding latency, because the infrastructure that
connects all the switches of the SDN to their controllers can
generate a huge number of forwarding rules and incur large
rule lookup delays for management packets [33], which can
increase the flow setup latency of the control plane. On the
other hand, if the control plane is distributed, the synchroniza-
tion latency of the control plane may be significant. These scal-
ability issues will be investigated in our future research. When
using LLDP-looping to monitor the link latency of an SDN
with an in-band control plane, where the same infrastructure is
used for the data plane and the interconnection of controllers
and switches, the probe packets injected by the controller
can be routed to the intended switches using various ways
dependent on the bootstrapping process of the switches [34].
However, forwarding injected probe packets to the selected
switches over a large-scale SDN with an in-band control plane
will increase the overhead of the corresponding switches and
links, since all the probe packets and data packets have to share
the same infrastructure. In order to enable LLDP-looping over
an SDN with an in-band control plane, a controller placement
problem that finds the best location of the controller over
the entire network such that the overhead incurred by probe
packets can be minimized has to be solved. This problem will
be addressed in our future research.

The proposed LLDP-looping mechanism is designed to
monitor the latency of physical links of a network. It cannot
directly monitor the latency of virtual links over a virtual
network, because a virtual link can be a logical link consisting
of multiple physical links, and LLDP packets used as the
probe packets in LLDP-looping can only reach the very first
physical link along a logical link. However, once the latency
of every physical link of the network has been measured by
LLDP-looping, the latency of a virtual link can always be
computed from the measurement results.

VI. CONCLUSION

Low-latency networks have to monitor their latency con-
tinuously, efficiently, and accurately to maintain the satisfac-
tory QoS/QoE of latency-sensitive applications. In this paper,
we have proposed LLDP-looping, which serves this purpose in
the context of SDNs by using the control plane to inject LLDP
packets into the data plane and calculating the link latency
at the switches by forcing an LLDP packet to loop a link
three times. It guarantees a successful latency measurement,
and completely avoids the systemic and measurement errors in
most of the current measurement approaches. Compared with
RTTs measured by Ping, in an SDN with link latency greater
than 1 ms, LLDP-looping achieves a measurement accuracy of
better than 97% without calibration, whereas in an SDN with
link latency as low as 0.05 ms, the measurement accuracy is
better than 90% with calibration. We have minimized the over-
head of LLDP-looping in both the control plane and data plane
by formulating a VCP to find the minimum vertex cover of the
network. We have further proposed a novel greedy algorithm
to solve the VCP and minimize the number of LLDP packets

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

looped at each link for latency monitoring over tree-based
network topologies. We have evaluated the performance of
LLDP-looping over an emulated network and results show that
LLDP-looping can effectively improve measurement accuracy,
reduce overhead in both the control plane and data plane,
and optimize resource usage when the latency of all SDN
links need to be continuously monitored. Although the imple-
mentation of LLDP-looping method requires modifications of
the controller and switch software, we have implemented a
prototype to demonstrate that the modifications are minimal
and can be easily integrated into any controller or switch of
an SDN.

REFERENCES

[1] R. Kumar et al., “End-to-end network delay guarantees for real-time
systems using SDN,” in Proc. IEEE Conf. Real-Time Syst. Symp.,
May 2017, pp. 1-12.

[2] Y. Chen, R. Mahajan, and B. Sridharan, “A provider-side view of Web
search response time,” ACM SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pp. 243-254, 2013.

[3] T. Flach, N. Dukkipati, and A. Terzis, “Reducing Web latency:
The virtue of gentle aggression,” ACM SIGCOMM Comput. Commun.
Rev., vol. 43, no. 4, pp. 159-170, 2013.

[4] T. Eylen and C. F. Bazlamacci, “One-way active delay measurement
with error bounds,” IEEE Trans. Instrum. Meas., vol. 64, no. 12,
pp. 3476-3489, Dec. 2015.

[5] J. Fabini and M. Abmayer, “Delay measurement methodology revisited:
Time-slotted randomness cancellation,” IEEE Trans. Instrum. Meas.,
vol. 62, no. 10, pp. 2839-2848, Oct. 2013.

[6] M. Lee, N. Duffield, and R. R. Kompella, “Not all microseconds
are equal: Fine-grained per-flow measurements with reference latency
interpolation,” ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 4,
pp- 27-38, 2010.

[7]1 C. Fraleigh et al., “Design and deployment of a passive monitoring
infrastructure,” in Evolutionary Trends of the Internet (Lecture Notes
in Computer Science), vol. 2170, S. Palazzo, Ed. Berlin, Germany:
Springer, 2001, pp. 556-575.

[8] M. Shahzad and A. X. Liu, “Accurate and efficient per-flow latency
measurement without probing and time stamping,” IEEE/ACM Trans.
Netw., vol. 24, no. 6, pp. 3477-3492, Dec. 2016.

[9] Telecommunication Standardization Sector of ITU. OAM Functions and

Mechanisms for Ethernet Based Networks. Accessed: Mar. 28, 2018.

[Online]. Available: https://www.itu.int/rec/T-REC-Y.1731

OpenFlow Switch Consortium. (2009). OpenFlow Switch Specifica-

tion Version 1.0.0. [Online]. Available: Online:archive.OpenFlow.org/

documents/OpenFlow-spec-v1.0.0.pdf

C. Yu et al., “Software-defined latency monitoring in data center net-

works,” in Passive and Active Measurement (Lecture Notes in Computer

Science), vol. 8995, J. Mirkovic and Y. Liu, Eds. Cham, Switzerland:

Springer, 2015.

N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:

Network monitoring in OpenFlow software-defined networks,” in Proc.

IEEE Netw. Oper. Manage. Symp., May 2014, pp. 1-8.

K. Phemius and M. Bouet, “Monitoring latency with OpenFlow,”

in Proc. 9th Int. IEEE Conf. Netw. Service Manage., Oct. 2013,

pp. 122-125.

L. Liao and V. C. M. Leung, “LLDP based link latency monitoring in

software defined networks,” in Proc. 12th Int. IEEE Conf. Netw. Service

Manage., Oct. 2016, pp. 330-335.

V. Altukhov and E. Chemeritskiy, “On real-time delay monitoring in

software-defined networks,” in Proc. Ist Int. IEEE Conf. Sci. Technol.

Conf. (Mod. Netw. Technol.), Oct. 2014, pp. 1-6.

S. D. Sinha, K. Haribabu, and S. Balasubramaniam, “Real-time moni-

toring of network latency in software defined networks,” in Proc. IEEE

Int. Conf. Adv. Netw. Telecommun. Syst., Dec. 2015, pp. 1-3.

A. Atary and A. Bremler-Barr, “Efficient round-trip time monitoring in

OpenFlow networks,” in Proc. IEEE INFOCOM, Apr. 2016, pp. 1-9.

Y. Breitbart, C.-Y. Chan, M. Garofalakis, R. Rastogi, and

A. Silberschatz, “Efficiently monitoring bandwidth and latency in

IP networks,” in Proc. 12th Annu. Joint Conf. IEEE Comput. Commun.

Soc., vol. 2, Apr. 2001, pp. 933-942.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIAO et al.: EFFICIENT AND ACCURATE LINK LATENCY MONITORING METHOD FOR LOW-LATENCY SDNS 15

[19] M. Shibuya, A. Tachibana, and T. Hasegawa, “Efficient performance
diagnosis in OpenFlow networks based on active measurements,” in
Proc. ICN, 2014, p. 279.

F. Aubry, D. Lebrun, S. Vissicchio, M. T. Khong, Y. Deville, and
O. Bonaventure, “SCMon: Leveraging segment routing to improve
network monitoring,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., Apr. 2016, pp. 1-9.

J. Chen, I. A. Kanj, and G. Xia, “Improved parameterized upper bounds
for vertex cover,” in Mathematical Foundations of Computer Science
(Lecture Notes in Computer Science), vol. 4162, R. Krélovi¢ and
P. Urzyczyn, Eds. Berlin, Germany: Springer, 2006, pp. 238-249.

G. Nude et al., “NOX: Towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105-110, 2008.
Open vSwitch. An Open Virtual Switch Internet.
Accessed: Apr. 24, 2016. [Online]. Available: http://openvswitch.org
R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537-550, 2015.

A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” IEEE
Instrum. Meas. Mag., vol. 18, no. 2, pp. 42-50, Apr. 2015.

J. Medved, R. Varga, A. Tkac, and K. Gray, “OpenDaylight: Towards a
model-driven sdn controller architecture,” in Proc. IEEE 15th Int. Symp.,
Jun. 2014, pp. 1-6.

A. Hammadi and L. Mhamdi, “A survey on architectures and energy effi-
ciency in data center networks,” Comput. Commun., vol. 40, pp. 1-21,
Mar. 2014.

Data Center Institute of AFCOM. How is a Mega Data Center
Different From a Massive One? [Online]. Available: http://www.
datacenterknowledge.com/archives/2014/10/15/how-is-a-mega-data-
center-different-from-a-massive-one

K. L. Clarkson, “A modification of the greedy algorithm for vertex
cover,” Inf. Process. Lett., vol. 16, no. 1, pp. 23-25, 1983.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw., 2010, p. 9.

C. H. Hsu and U. Kremer, “IPERF: A framework for automatic con-
struction of performance prediction models,” in Proc. Workshop Profile
Feedback-Directed Compilation, 1998, pp. 1-10.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Passive and Active Measurement (Lecture Notes in Computer Science),
vol. 7192, N. Taft and F. Ricciato, Eds. Berlin, Germany: Springer, 2012.
R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2
data center network fabric,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 39-50, 2009.

S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Automatic bootstrapping of OpenFlow networks,” in Proc. 19th IEEE
Workshop Local Metrop. Area Netw., Apr. 2013, pp. 1-6.

[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]

(28]

[29]

[30]
(31]

(32]

[33]

[34]

Lingxia Liao (S’13) received the bachelor’s
degree from Tsinghua University, Beijing, China,
and the master’s degree from The University of
British Columbia (UBC), Vancouver, BC, Canada,
where she is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering.
She was a Science Researcher with the Computer
-y Science Department, UBC. She was a Research and
- \J‘ Development Director and the General Manager of
high-performance computing with the Inspur Group,
Jinan, China. She was with the Computer and Network Industry, China.
Her current research interests include software-defined networking, network
function virtualization, network virtualization, network measurement and opti-
mization, distributed systems, cloud computing, and next-generation network.

Victor C. M. Leung (S’75-M’89-SM’97-F’03)
received the B.A.Sc. (Hons.) and the Ph.D. degrees
in electrical engineering from The University of
British Columbia (UBC), Vancouver, BC, Canada,
in 1977 and 1982, respectively.

He attended graduate school at UBC, on a Cana-
dian Natural Sciences and Engineering Research
Council Postgraduate Scholarship. From 1981 to
1987, he was a Senior Member of Technical Staff
and a Satellite System Specialist with MPR Teltech
Ltd., Burnaby, BC, Canada. In 1988, he was a Lec-
turer with the Department of Electronics, Chinese University of Hong Kong,
Hong Kong. In 1989, he returned to UBC as a faculty member, where
he is currently a Professor and the TELUS Mobility Research Chair in
Advanced Telecommunications Engineering with the Department of Electrical
and Computer Engineering. He has co-authored over 1100 journal/conference
papers, 40 book chapters, and co-edited 14 book titles. His current research
interests include broad areas of wireless networks and mobile systems.

Dr. Leung is a Registered Professional Engineer in the Province of British
Columbia, Canada. He is a Fellow of the Royal Society of Canada, the Engi-
neering Institute of Canada, and the Canadian Academy of Engineering.
He was a Distinguished Lecturer of the IEEE Communications Society.
He provided leadership to the organizing committees and technical program
committees of numerous conferences and workshops. He was a recipient of
the several best paper awards, the APEBC Gold Medal as the Head of the
1977 graduating class in the Faculty of Applied Science at UBC, the IEEE
Vancouver Section Centennial Award, the 2011 UBC Killam Research Prize,
the 2017 Canadian Award for Telecommunications Research, the 2018 IEEE
ComSoc TGCC Distinguished Technical Achievement Recognition Award,
the 2017 IEEE ComSoc Fred W. Ellersick Prize, the 2017 IEEE Systems
Journal Best Paper Award, and the 2018 IEEE ComSoc CSIM Best Journal
Paper Award. He is serving on the Editorial Boards for the IEEE TRANS-
ACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, the IEEE
TRANSACTIONS ON CLOUD COMPUTING, the IEEE ACCESS, Computer
Communications, and several other journals. He served on the Editorial Boards
for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS—
Wireless Communications Series and Series on Green Communications and
Networking, the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, the IEEE TRANS-
ACTIONS ON COMPUTERS, the IEEE WIRELESS COMMUNICATIONS LET-
TERS, and Journal of Communications and Networks. He has been a Guest
Editor of many journal special issues.

Min Chen (M’07-SM’09) has been a Full Pro-
fessor with the School of Computer Science and
Technology, Huazhong University of Science and
Technology, Wuhan, China, since 2012, where he
is currently the Director of the Embedded and Per-
vasive Computing Laboratory. He was an Assistant
Professor with the School of Computer Science
and Engineering, Seoul National University, Seoul,
South Korea, where he was also a Post-Doctoral
Fellow. He was a Post-Doctoral Fellow with the
Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC, Canada. His Google
Scholars citations reached 12500+ with an h-index (55) and his top paper
was cited 1300+ times. His current research interests include cyber physical
systems, 10T sensing, 5G networks, mobile cloud computing, software-defined
network, healthcare Big Data, media cloud privacy and security, body area
networks, emotion communications, and robotics.

He is the Chair of the IEEE Computer Society Special Technical Communi-
ties on Big Data. He was a recipient of the Best Paper Award from the IEEE
ICC 2012, the IEEE IWCMC 2016, and the IEEE Communications Society
Fred W. Ellersick Prize in 2017.

