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Abstract—Location-based service (LBS) has gained increasing popu-
larity recently, but protecting users’ privacy in LBS remains challenging.
Depending on whether a trusted third party (TTP) is used, existing
solutions can be classified into: TTP-based and TTP-free. The former
relies on a TTP for user privacy protection, which creates a single-point-
failure and is thus impractical in reality. The latter does not require any
TTP, but usually introduces redundant point-of-interest (POI) records
in query result and thus incurs significant computation and communi-
cation costs on the user side, making them unsuitable for resource-
constrained mobile devices. In this paper, we propose a novel framework
to protect user privacy while ensuring efficiency. Our framework also
uses redundant POI records to protect privacy against LBS provider but
employs a semi-trusted third party, called proxy, to filter out redundant
POI records. To protect privacy against proxy, we design a novel filtering
protocol, Blind filter, to allow the proxy to filter out redundant encrypted
POI records in a blind way. In comparison with existing solutions, our
framework is not only resilient to dual identity attack, but also incurs
lower communication and computation overhead. Comprehensive anal-
ysis and experiments show that our framework is secure and highly
efficient in mobile environments.

Index Terms—Location-based service, location privacy, blind filter, dual
identity attack

1 INTRODUCTION

W ITH the explosive growth in location-aware mobile
devices, Location-Based Service (LBS) [1] becomes

increasing popular with a growing number of applications
(e.g., Yelp and TripAdvisor). In a typical LBS application, an
LBS Provider (LBSP) offers services to users upon receiving
their location-based queries. For example, a user may query
the restaurants within 2 miles of his current location, or
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an available parking lot next to a central business district.
According to the report from Berg Insight1, the global LBS
revenues are EUR 10.3 billion in 2014, and will reach EUR
34.8 billion in 2020.

While LBSs offer great convenience to daily life, they
raise significant privacy concerns. Since a typical LBS
query usually includes a user’s identity, her/his location,
and other information, disclosing such information to LBS
providers facilitates user profiling [2]–[8]. For example, a
malicious LBSP can infer personal habits and interests or
track a target user from her/his location-based queries [9].

Depending on whether a Trusted Third Party (TTP)
is employed, existing privacy-preserving mechanisms for
LBSs can be classified into two categories [10], [11]: TTP-
based and TTP-free. Most of existing k-anonymity-based
schemes [12], [13] and their variants [14]–[16] belong to the
TTP-based solutions. These solutions rely on a TTP server
to construct an anonymous set based on users’ original
queries to ensure that the LBSP cannot distinguish target
user from at least k−1 other users. The TTP server does not
only know users’ geographic positions, but also the query
results from the LBSP. By compromising a TTP server, an
adversary can access all the sensitive information of users.
To avoid such single-point-failure caused by TTP, such as
[17]–[21] have been proposed in the literature. These TTP-
free approaches require either no third party server or only
a semi-trusted one. However, most of these solutions require
users to issue fake LBS queries or receive redundant LBS
records, which incurs high communication and computation
overhead on the user side, making them unsuitable for
resource-constrained mobile devices.

To the best of our knowledge, FINE [22] is the most
practical TTP-free solution for mobile devices in which
users will not send or receive any redundant data. Under
FINE, the LBSP outsources its encrypted Point Of Interest
(POI) dataset to a semi-trusted cloud server which takes
over computation intensive tasks from the LBSP and users.
Users retrieve the encrypted POI records that exactly satisfy
their encrypted LBS queries from the cloud server, and then
decrypt them using proper keys obtained from the LBSP. By
decoupling the dataset and data access, location privacy is
protected against both the LBSP and the cloud server.

1. http://www.berginsight.com/ShowReport.aspx?m m=3&id=212
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We observe three limitations of FINE. First, storing an
extra copy of POI dataset, even encrypted, on the cloud
server introduce additional vulnerabilities. For example, the
cloud server (i.e., the semi-trusted third party server) can
launch dual identity attack [23], by registering as a regular
user to and obtaining decryption keys from the LBSP to
decrypt the encrypted POI records it receives. Then, the
cloud server can infer the user’s location and interest via
the decrypted POI records that satisfy an LBS query; that is
completely break the privacy guarantee of FINE. Second,
the cloud server sustains high computation overhead. In
particular, for each position in the LBS query range, it
needs to examine every encrypted POI record in the dataset
via expensive operations (i.e., exponentiation and pairing).
Also, the cloud server must synchronize with the LBSP
frequently to ensure data consistency. Moreover, since all
POI records are encrypted, the cloud server cannot benefit
from any query optimization technique [24]. Third, FINE
only supports simple query involving a query position
and a range, while many LBS applications require complex
queries that involve keywords and other information, such
as “restaurant” and “available parking lot”. Therefore, de-
signing a TTP-free, privacy-preserving LBS system suitable
for resource-constrained mobile devices remains an open
challenge.

In this paper, we propose ePriLBS, a novel effi-
cient privacy-preserving location-based service framework.
ePriLBS adopts a semi-trusted third party as in FINE, called
proxy, to simultaneously protect users’ privacy and ensure
query efficiency. Instead of storing POI dataset at the proxy,
we let the proxy construct an anonymous query with a
region containing at least k users, and forward it to the
LBSP. Note that the anonymous query is partial encrypted
to prevent the proxy from learning users’ interests. Once
the proxy receives the (encrypted) query result from the
LBSP, it filters out redundant POI records in a blind way. In
particular, we design Blind filter, a novel filtering protocol
based on homomorphic encryption [25] and a lightweight
randomization technique to prevent information leakage
against both the LBSP and the proxy. Our main contribu-
tions are summarized as follows.

1) To the best of our knowledge, ePriLBS is the first
TTP-free solution for protecting user privacy in LBS
that not only withstands dual identity attacks, but
also improves efficiency for all parties involved. Ta-
ble 1 compares our framework with the most related
works in terms of desired properties discussed in
Section 2.3.

2) We formally define the privacy against semi-trusted
third party server for the first time. Even though
the privacy against LBSPs has been widely studied,
there has been no formal definition for privacy
against third party in LBS. Our definition allows
formal proof of LBS system that employs semi-
trusted third party.

3) We prove the security of ePriLBS and thoroughly
evaluate its performance via detailed experiments.
The experimental results confirm that our frame-
work is highly efficient and suitable for mobile
environments.

TABLE 1
Comparison Between ePriLBS and Other Schemes

Property ePriLBS [22]a [22]b [19]c

Privacy-
preserving
against LBSP

Identity
√ √ √ √

Position
√ √ √ √

Query message
√ √ √ √

Final result
√ √ √ √

Privacy-
preserving
against third
party server

Identity × × × ×
Position × √ × ×

Query message
√ √ × ×

Final result
√ √ × ×

Communication efficiency
√ √ √ −

Efficient computation for user
√ √ √ −

Efficient computation for server
√ × × √

a. if no dual identity attack exists
b. if dual identity attack exists
c. items marked with “−” means they depend on the cache

The rest of this paper is organized as follows. In Sec-
tion 2, we formalize our design fundamentals including
the system model, threat model, and design goals. We
present the preliminaries and the details of our framework
in Section 3 and Section 4, respectively. In what follows,
we give the security analysis and performance evaluation
in Section 5 and Section 6, respectively. Section 7 reviews
related works. Finally, we conclude the paper in Section 8.

2 MODELS AND DESIGN GOALS

In this section, we introduce the system and threat models
as well as our design goals.

2.1 System Model

Our system consists of three types of entities: an LBS
provider (LBSP), a set of proxies, and many users. To ease
the presentation, our subsequent discussion focuses on a
single proxy and one user as shown in Fig. 1.

The LBSP stores POI dataset and answers location-based
queries from users. Each POI record can be represented
as ((x, y), desc), where (x, y) is the POI’s x and y coordi-
nates, and desc is related descriptive information, such as
its category. The LBS query issued by the user is a triple
Q = (id, (x, y), (r, f)), where id is the user’s identity, (x, y)
is the user’s x and y coordinates, and (r, f) is the query
message. The radius r defines a geographic range of the LBS
query, and the predicate f specifies the additional properties
that the returned POI records need to satisfy. For example, f
can be “parking lot AND available”. The query result R con-
sists of the set of POI records that exactly satisfy Q. Proxies
are typically deployed in existing network infrastructures,
such as WiFi access points and cellular base stations. The
proxy provides (free or paid) privacy-preserving services to
users by processing and transmitting messages between the
users in its region and the LBSP.

The high level interaction among the user, the proxy,
and the LBSP is as follows. The user submits a partial
encrypted query through the proxy, which in turn constructs
an anonymous query from k user queries, and sends it to the
LBSP. On receiving the anonymous query, the LBSP returns
a response as the union of the results of all k user queries.
The proxy then executes a blind filter protocol with the LBSP
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Fig. 1. The system model of our framework

to filter out redundant POI records and returns accurate
query result to each of the k users.

2.2 Threat Model

We assume that the communication channels between the
LBSP and the proxy, and between the proxy and the user
are secured by standard techniques, such as SSL/TLS and
SSH, so that external adversaries cannot learn anything from
the encrypted communications. In this paper, we focus on
preventing information leakages at the semi-trusted LBSP
and the proxy.

As in [26], [27], we assume that the LBSP is semi-
trusted. Specifically, it is trusted to faithfully follow protocol
execution but is interested in learning users’ LBS queries
and query results. As in [22], [28], we also assume that
the LBSP cannot collude with the proxy. In addition, the
LBSP can launch dual identity attack, in which the LBSP
pretends to be a normal user and sends queries to the proxy
to degrade anonymous query and extract users’ queries.
The dual identity attack is actually an active attack which
looks contrary to the semi-trusted assumption. However,
the adversary in the dual identity attack does not modify
any part of the protocol in contrast with other types of
active attackers, such as the man-in-the-middle attack. Note
that, the dual identity attack is difficult to prevent or detect,
but it is easy to implement in LBSs since the users can be
anonymous.

A proxy is a semi-trusted party which faithfully follows
protocol execution but may be interested in users’ sensitive
information [22], [23]. Since the proxy is normally deployed
in existing infrastructures, such as WiFi access points and
cellular base stations [19], [28], it can always learn some
information about users via physical channels. For instance,
the proxy can identify users by their MAC addresses and
estimate users’ geographic positions by channel characteris-
tics such as received signal strength. Therefore, we focus on
preventing the proxy from learning the query messages (i.e.,
the radius and the predicate) and query results. Note that,
although the POI dataset is public, the query results must
be hidden from the proxy, otherwise the proxy can infer
user’s query messages from the query results. Moreover,
the proxy may also launch dual identity attack, in which the
proxy constructs the anonymous query based on its chosen
position and query message to infer users’ LBS queries.

2.3 Design Goals

We design ePriLBS with the following goals in mind.

• Privacy-preserving: The LBSP should not learn the LBS
query or query result of individual user. Likewise,
the proxy should not learn anything about the query
message or query result of individual user.

• Communication efficiency: The protocol should be ef-
ficient in communication in the sense that the query
result returned to the user should not contain any
redundant POI records.

• Computation efficiency: The protocol should incur low
computation overhead for all the parties involved.

3 PRELIMINARIES

In this section, we briefly review some background of ho-
momorphic encryption and k-anonymity.

3.1 Homomorphic Encryption

A homomorphic encryption scheme [29] HE =
(HKeyGen,HEnc,HDec) allows specified computations
on the ciphertexts without the need for decryption
first. Specifically, for any public-private key pair
(pk, sk) and any m1, m2 in the plaintext space,
HDecsk(HEncpk(m1) ⊗ HEncpk(m2)) = m1 ⊙ m2 holds,
where ⊗ denotes the computation on the ciphertexts, and
⊙ denotes the computation on the plaintexts.

In this paper, we use Paillier encryption scheme [30]. The
details of this scheme are described as follows.

• HKeyGen, the key generation algorithm, takes as
input a security parameter, outputs a public key
pkl = n and a private key skl = s, where n := pq is
the product of two prime p and q with equal length,
and s := (p− 1)(q − 1).

• HEnc, the encryption algorithm, takes as input a
plaintext m ∈ Zn, outputs a ciphertext c := (n +
1)mtn mod n2, where t ∈ Z

∗
n2 is a random integer.

• HDec, the decryption algorithm, takes as input a
ciphertext c, outputs a plaintext m := L(cs mod

n2) · s−1 mod n, where L(a)
def
= (a− 1)/n mod n.

The Paillier encryption scheme has two useful proper-
ties: HDecsk(HEncpk(m1) · HEncpk(m2)) = m1 + m2 and
HDecsk(HEncpk(m1)

m2) = m1 ·m2.
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3.2 k-Anonymity

ePriLBS relies on existing privacy-preserving technique to
ensure user privacy against the LBSP. While ePriLBS can be
built on top of many existing privacy-preserving techniques,
we take existing cloaking technique [19] as an example in
this paper, which ensures every user is indistinguishable
from the other k− 1 users from the LBSP’s perspective [31].
The value of k depends on desired privacy level, which is
usually from 5 to 20 in the literature (e.g., [13], [19]).

Specifically, the cloaking algorithm takes
as input k users’ geographical positions
{(x1, y1), (x2, y2), . . . , (xk, yk)}, and outputs a rectangular
area rect which is a minimum boundary rectangle that
contains these k locations. In case there are less than k
user locations, dummy users can be inserted to construct
the area. Note that, the straightforward use of the
aforementioned cloaking algorithm may fail to achieve
k-anonymity, since the LBSP can learn all users’ locations
if their locations are very close to each other. Another
problem of the aforementioned cloaking algorithm is
that it is vulnerable to background knowledge attacks in
which the LBSP has some information about the locations
and users’ potential query messages. Fortunately, many
cloaking algorithms can resist these kinds of attacks, such
as [13] and [19]. The main idea of these clocking algorithms
is to carefully choose some dummy locations and query
messages, and mix the true locations and query messages
with the dummy ones. In this paper, we employ this kind
of cloaking algorithms with strong privacy guarantees.

4 EPRILBS FRAMEWORK

In this section, we first give an overview of the ePriLBS
framework. We then present a novel Blind Filter protocol
and detail ePriLBS’s design.

4.1 Overview

ePriLBS is designed to protect user privacy against both
the LBSP and the proxy. Specifically, we use the traditional
cloaking technique to protect user privacy against the LBSP,
by which the proxy generates an anonymous query with a
cloaking area that contains at least k users. To defend user
privacy against the proxy, we encrypt the query message
and the query result using a session key shared between the
LBSP and the user.

Under the cloaking technique, the encrypted query result
returned by the LBSP contains redundant POI records. To
ensure efficiency on the user side, redundant POI records
need be filtered at the proxy. Recall that each POI record
consists of a geographic position (xi, yi) and associated de-
scription desci, and the query message consists of a radius r
and a predicate f . The user’s location is needed to generate
cloaking area and usually in plaintext, while r and f are
encrypted. The challenge in filtering redundant POI records
is then how to allow the proxy to learn correct POI records
without letting the proxy and the LBSP learn any informa-
tion from this process. One may think that this challenge can
be solved using homomorphic encryption. Unfortunately, it
has been shown in [25] that directly applying homomorphic
encryption would allow the LBSP to learn d2i − r2 from the

TABLE 2
The notations used in the ePriLBS framework

Notation Description
rect area that satisfies the k-anonymity requirement
n product of two primes p and q
m the bit length of the geographic coordinates where

m ≪ |n|
λa security parameter used in the asymmetrical en-

cryption scheme
(pka, ska) LBSP’s key pair of the asymmetrical encryption

scheme
λh security parameter used in the homomorphic en-

cryption scheme
(pkl, skl) LBSP’s key pair of the homomorphic encryption

scheme
(pkp, skp) proxy’s key pair of the homomorphic encryption

scheme
κ, λκ session key and its length
l, λl random label and its length
cκ, cq encrypted session key and query message
c, (c0, c1, c2) encrypted POI record and geographical position

of the POI record
cr , cd challenge sent from the proxy in the blind filter
cp response sent from the LBSP in the blind filter
δ random nonzero integer between

−2(|n|−m−1)/2 + 1 and 2(|n|−m−1)/2

∆ random integer between −2m−1 + 1 and 2m−1

δ′ random positive integer which is less than
2(|n|−m−1)/2

ciphertext, where di is the distance between the POI record
and the user’s position, and r is the query radius. As a
result, the LBSP can learn the POI records that satisfy di = r
and further compute the user’s location via trilateration.

To tackle this challenge, we design a novel protocol
called Blind filter that integrates a lightweight randomization
technique with homomorphic encryption to allow the proxy
to filter out redundant POI records without either the proxy
or the LBSP violating user privacy. Table 2 summarizes the
notations used in the ePriLBS framework.

4.2 Blind Filter

As mentioned in Section 4.1, the core component in ePriLBS
is the Blind filter protocol. In this section, we first give
a formal definition of this protocol, and then propose a
concrete construction.

The Blind filter protocol is executed between the
LBSP and the proxy. Recall that a user’s LBS query is
(id, (x, y), (r, f)), and that the proxy and the LBSP learn
(id, (x, y)) and (r, f), respectively. In our framework, the
proxy constructs an area rect that contains (x, y) via cloak-
ing technique, and sends this area to the LBSP. Then, the
LBSP can determine a subsetD of its POI dataset, that every
record inD is within an expanded area which is determined
by rect and r.

Definition 1 (Blind filter). Let SEnc(·) be a symmetric
encryption algorithm. Blind filter is an interactive protocol
between the LBSP and a proxy. The LBSP inputs a set of
geographic positions D and a radius r, and obtains a set of
encrypted positions C = {SEnc((xi, yi)) | (xi, yi) ∈ D}.
The proxy inputs a geographic position (x, y), and ob-
tains a set of encrypted positions {SEnc((xi, yi)) ∈ C |
√

(x− xi)2 + (y − yi)2 ≤ r}. During the protocol, the LBSP
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could not be aware of which subset is selected by the proxy,
and the proxy cannot learn (xi, yi) or r.

Our realization of Blind filter is based on integrating
homomorphic encryption and a lightweight randomization
approach specifically designed to address the limitation
identified in [25]. In what follows, we first give an overview
of our realization and then detail its construction.

We find that to determine whether a POI record is
redundant while protecting user privacy against the LBSP
and the proxy, the key challenge is to allow the proxy to
learn whether di is smaller than r without the LBSP to learn
this relationship, where di =

√

(x− xi)2 + (y − yi)2. To
tackle this challenge, we let the proxy to compute d2i − r2

in encrypted form. To prevent the LBSP from learning the
relationship between d2i and r2, the proxy randomizes the
encrypted d2i − r2 by a random affine transformation. To
further prevent the proxy from learning the accurate value
of d2i − r2, the LBSP randomizes the encrypted d2i − r2 by
a random scale. Then, the proxy can only learn the relation-
ship between di and r, while the LBSP learns nothing.

We now detail the Blind filter protocol, which consists
of four stages: setup, challenge, response, and output. Let
(pkl, skl) be the public-private key pair of the LBSP, and
(pkp, skp) be the public-private key pair of the proxy.

Setup stage. The LBSP processes as follows with a
session key κ, the radius r, and each position (xi, yi) in D.

• Encrypt the position (xi, yi) by running
SEncκ((xi, yi)) with the session key κ.

• Compute

c0 ← HEncpkl
(x2

i + y2i − r2)
c1 ← HEncpkl

(−2xi)
c2 ← HEncpkl

(−2yi)
(1)

• Send C = (SEnc((xi, yi)), c0, c1, c2) to the proxy.

Challenge stage. The proxy processes as follows with
(x, y) and C.

• Choose a random nonzero integer −2(|n|−m−1)/2 +
1 ≤ δ ≤ 2(|n|−m−1)/2 and a random integer−2m−1+
1 ≤ ∆ ≤ 2m−1.

• Compute

cr ← HEncpkl
(∆)·

(HEncpkl
(x2 + y2) · c0 · c

x
1 · c

y
2)

δ

cd ← HEncpkp
(−∆)

(2)

• Send the challenge (cr, cd) to the LBSP.

Response stage. The LBSP processes as follows.

• Choose a random positive integer δ′ ≤ 2(|n|−m−1)/2.
• Compute

cp ← (HEncpkp
(HDecskl

(cr)) · cd)
δ′ (3)

• Send the response cp to the proxy.

Output stage. The proxy processes as follows.

• Accept SEnc((xi, yi)), if HDecskp
(cp) · δ ≤ 0. Other-

wise, reject it.

The value ranges of δ, ∆, and δ′ ensure that the
computations will not cause overflow. It is easy to prove

the correctness of our Blind filter protocol. Let di =
√

(x− xi)2 + (y − yi)2 be the distance between (x, y) and
(xi, yi). We have

cr =(HEncpkl
(x2 + y2) · HEncpkl

(x2
i + y2i − r2)

· HEncpkl
(−2xi)

x · HEncpkl
(−2yi)

y)δ · HEncpkl
(∆)

=HEncpkl
(x2 + y2 + x2

i + y2i − r2 − 2xxi − 2yyi)
δ

· HEncpkl
(∆)

=HEncpkl
(δ · (d2i − r2) + ∆)

and

cp =(HEncpkp
(δ · (d2i − r2) + ∆) · HEncpkp

(−∆))δ
′

=HEncpkp
(δδ′ · (d2i − r2)).

If di ≤ r, then d2i − r2 is not greater than 0. We thus have

HDecskp
(cp) · δ = δδ′ · (d2i − r2) · δ = δ2δ′ · (d2i − r2) ≤ 0,

which means that the proxy can determine whether a par-
ticular POI record is within a circle of radius r centered at
(x, y).

4.3 ePriLBS Design

We now detail ePriLBS framework. Besides the tools de-
scribed in Section 3, we also use a public-key encryption
scheme such as RSA, and a symmetric encryption scheme
such as AES in our framework. The key generation al-
gorithm, the encryption algorithm, and the decryption al-
gorithm of the public-key encryption scheme are denoted
by PKeyGen, PEnc, and PDec, respectively. The encryption
algorithm and the decryption algorithm of the symmetric
encryption scheme are denoted by SEnc and SDec, respec-
tively. We also extend the Blind filter protocol in Section 4.2
to POI record which contains a point and an additional
description as shown in Section 2.1. The ePriLBS framework
consists of six phases: System Initialization, Query Genera-
tion, Query Process, Data Retrieval, Response Filtering, and
Result Recovery. The workflow of our framework is shown
in Fig. 2.

4.3.1 System Initialization

In this phase, the LBSP generates its public-private key pairs
via the LBSP initialization stage. When a proxy intends to
register in the system, it runs the proxy initialization stage.

LBSP initialization stage. According to the security pa-
rameters λa and λh, the LBSP executes following operations.

• Generate a key pair (pka, ska) ← PKeyGen(1λa) of
the public-key encryption scheme.

• Generate a key pair (pkl, skl) ← HKeyGen(1λh) of
the homomorphic encryption scheme.

• Publish the public keys pka and phl, and keep ska
and skl secret.

When a user or a proxy joins the system, he obtains the
public keys of the LBSP.

Proxy initialization stage. According to the security
parameter λh, the proxy executes following instructions.

• Generate a key pair (pkp, skp) ← HKeyGen(1λh) of
the homomorphic encryption scheme.
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Send redundant response

R*={(l, {(c, c0, c1, c2), ...}), ...}

Fig. 2. The workflow of the ePriLBS framework

TABLE 3
The query information table

User ID Position Label
id1 (x1, y1) l1
id2 (x2, y2) l2
. . . . . . . . .
idk (xk, yk) lk

• Publish the public key pkp, and keep the private key
skp secret.

Note that users do not generate any key in this phase.
In addition, if some proxies need be revoked, traditional
approaches such as Certificate Revocation List can be used.

4.3.2 Query Generation
In this phase, a user generates an encrypted location-
based query Q′. Suppose that the original LBS query is
Q = (id, (x, y), (r, f)). The user executes the following
operations.

• Generate a session key κ← {0, 1}λκ , where λκ is the
bit length of the key.

• Choose a random label l ← {0, 1}λl , where λl is the
bit length of the label.

• Encrypt the session key cκ ← PEncpka
(κ) under the

public key pka of the LBSP.
• Encrypt the query message cq ← SEncκ((r, f)) un-

der the session key.
• Send the encrypted query Q′ = (id, (x, y), (l, cκ, cq))

to the proxy.

4.3.3 Query Process
In this phase, the proxy constructs an anonymous query
Q∗ from k encrypted queries Q′

1, . . . , Q
′
k, where Q′

j =
(idj , (xj , yj), (lj , cκj

, cqj )) for all j ∈ [1, k]. A proxy runs
the following operations with a set of encrypted queries.

• Initialize an empty query information table as shown
in Table 3.

• Construct a k-anonymity rectangle area rect that
contains k users.

• Insert query information of each user in the k-
anonymity area into the query information table.

• Send anonymous query Q∗ =
(rect, {(lj , cκj

, cqj )}
k
j=1) to the LBSP.

In some situations, users need rapid response and there
are not enough users for constructing k-anonymity area.
A proxy can then generate fake queries to achieve k-
anonymity [19].

4.3.4 Data Retrieval

In this phase, the LBSP searches appropriate POI records
and encrypts them under the session key. Then, it sends all
the encrypted POI records to the proxy. The LBSP processes
each (lj , cκj

, cqj ) in Q∗ as follows.

• Decrypt the session key κ ← PDecska
(cκj

) using its
private key ska.

• Decrypt the query message (r, f) ← SDecκ(cqj )
using the session key κ.

• Search all appropriate POI records for (rect, (r, f))
in the POI dataset.

• For each satisfied POI record ((xi, yi), desci), com-
pute c ← SEncκ(((xi, yi), desci)), and calculate
corresponding (c0, c1, c2) as in Equation (1).

After processing every (lj , cκj
, cqj ) in the anonymous

query Q∗, the LBSP sends the response R∗ =
{(lj , {(c, c0, c1, c2)ζ}

ν
ζ=1)}

k
j=1 to the proxy, where ν is the

number of POI records that satisfies (rect, (r, f)).
Note that computing c0, c1, and c2 can be accelerated

by pre-computing HEncpkl
(x2

i + y2i ), HEncpkl
(−2xi), and

HEncpkl
(−2yi). Then, the LBSP does not need to compute

c1 and c2 during the data retrieval phase. For computing c0,
the LBSP only needs to compute HEncpkl

(−r2) once. Then,
c0 can be obtained by HEncpkl

(x2
i + y2i ) and HEncpkl

(−r2)
via lightweight homomorphic operations. Thus, for each
(lj , cκj

, cqj ) in the anonymous query, the LBSP only needs
to run the time-consuming operation (i.e., the encryption
algorithm) once no matter how many POI records satisfy it.

4.3.5 Response Filtering

In this phase, the proxy generates filtered result R′ using
the Blind filter protocol. Then, the proxy sends the fil-
tered result to corresponding user. The proxy who fetches
(lj , {(c, c0, c1, c2)ζ}

ν
ζ=1) in the set R∗ does the following.

• Search the entry (id, (x, y), l) in the query infor-
mation table with the label matching the label in
(lj , {(c, c0, c1, c2)ζ}

ν
ζ=1).

• For each (c, c0, c1, c2), choose two random integers δ
and ∆ and compute cr and cd as in Equation (2).

• Send the challenge {(cr, cd)ζ}
ν
ζ=1 to the LBSP.

On receiving the challenge, the LBSP does the following.

• For each (cr, cd), choose a random positive integer
δ′, and computes cp as in Equation (3).

• Send the response {(cp)ζ}
ν
ζ=1 to the proxy.

After receiving the response {(cp)ζ}
ν
ζ=1, the proxy does

the following.
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• Initialize an empty filtered result R′.
• For each cp and corresponding c, δ, insert c into R′ if

HDecskp
(cp) · δ ≤ 0.

• Send R′ to the user whose identity is id, and remove
corresponding row in the query information table.

Note that computation can be accelerated as shown in
the data retrieval phase.

4.3.6 Result Recovery

In this phase, the user recovers the query result R from the
filtered result R′. When the user receives R′ from the proxy,
he decrypts R′ with the session key κ as R← SDecκ(R

′).

5 ANALYSIS

In this section, we first analyze the correctness of proposed
ePriLBS framework, and then examine the user privacy
against the LBSP and the proxy, respectively. We also give a
formal definition of privacy against the semi-trusted proxy.

5.1 Correctness

For each query message (r, f), the LBSP fetches all ap-
propriate records based on the rectangle rect. Then, the
query result to ((x, y), (r, f)) is covered by the response R∗.
As shown in Section 4.2, the Blind filter protocol outputs
all encrypted records that satisfy (x, y) and r, and only
outputs the satisfied records. Thus, the proxy can output the
result that exactly satisfies the original query, which means
ePriLBS framework achieves accurate query result.

5.2 Privacy against the LBSP

We adopt the k-anonymity definition for privacy against the
semi-trusted LBSP [19]. To measure the privacy offered by k-
anonymity, entropy-based metric is defined as follows. The
entropy H of identifying the location of target user out of

the anonymous query is defined as H = −
∑k

i=1 pi log(pi),
where pi denotes the probability that the i-th query message
belongs to the target user. When all pi has probability 1/k,
the entropy achieves maximum.

Since the anonymous query is constructed via cloaking
technique, such as [19], the ePriLBS framework provides
entropy H as the underlying cloaking technique does,
which means that the LBSP cannot identify the target user
from the anonymous query. The only difference between
our framework and other k-anonymity-based schemes is
that the LBSP runs Blind filter protocol in the ePriLBS
framework. More precisely, in ePriLBS, the LBSP knows
all POI records that satisfy the query (rect, (r, f)), and
receives cr and cd in the response filtering phase. Recall
that cr = HEncpkl

(δ · (d2i − r2) + ∆) is a ciphertext under
the public key of the LBSP, and cd is a ciphertext under the
public key of the proxy. Since the homomorphic encryption
scheme is secure, the LBSP cannot learn anything from cd.
That means, the LBSP can only obtain δ ·(d2i −r

2)+∆ via the
response filtering phase by decrypting cr. However, δ and ∆
are two random integers, which obfuscate the relationship
between di and r. Specifically, the LBSP cannot distinguish
the following three cases: 1) d < r, 2) d = r, and 3) d > r.
Thus, the LBSP cannot learn anything from the response

filtering phase, which means our framework can protect
both original queries and query results against the LBSP,
as the underlying cloaking technique does [19].

We then consider the case that the LBSP runs the dual
identity attack. As we discussed, since the LBSP cannot
learn any information from the response filtering phase, our
framework provides the same privacy protection against the
LBSP as the underlying cloaking technique does. Thus, if the
cloaking technique employed in our framework can resist
the dual identity attack (e.g., [13] can resist this attack), the
ePriLBS framework is secure against such attack.

Note that, the cloaking operation executed by the proxy
may fail if all k users are at similar location. In this case,
we can employ other techniques to process users’ positions,
such as location-label based approaches [32].

5.3 Privacy against the proxy

To the best of our knowledge, there has been no formal
definition of the privacy against the semi-trusted proxy in
LBS. We define the privacy against a semi-trusted proxy by
the following game, where the proxy acts as an adversary.

1) The proxy chooses an identity id and a geographic
position (x, y) and sends them to the user.

2) The proxy does the following for a polynomial
number of times.

a) The proxy chooses a query message (r, f)
and sends it to the user, which in
turn generates the encrypted query from
(id, (x, y), (r, f)).

b) On receiving the encrypted query, the proxy
generates an anonymous query and sends it
to the LBSP.

c) The proxy executes the Blind filter protocol
with the LBSP and obtains filtered result.

3) The proxy generates two distinct queries Q0 =
(id, (x, y), (r0, f0)) and Q1 = (id, (x, y), (r1, f1)),
and sends them to the user. We require that the
redundant response and filtered result of Q0 and Q1

contain the same number of POI records, otherwise
the proxy can distinguish Q0 and Q1 via the number
of POI records. We also assume that the length of
each encrypted POI record is identical for the same
reason, which can be achieved by padding all POI
records to the same length.

4) The user chooses a random bit b ∈ {0, 1}, and sends
encrypted query Q′ to the proxy, that Q′ is gener-
ated from Qb. The proxy generates an anonymous
query for Q′, sends the anonymous query to the
LBSP, and obtains filtered result from the redundant
response.

5) The proxy outputs a bit b′. The game returns 1 if
b′ = b, and 0 otherwise.

Definition 2 (Privacy against the proxy). A scheme is se-
cure against the semi-trusted proxy, if for any Probabilistic
Polynomial Time (PPT) proxy, the probability that the game
outputs 1 is negligible greater than 1/2.

Since the proxy can always randomly guess, we define
the system is secure against semi-trusted proxies if the game
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cannot outputs 1 with probability non-negligibly greater
than 1/2. Definition 2 covers various existing attacks, in-
cluding the dual identity attack in Section 2.2. To see that,
the proxy can generate k − 1 encrypted queries when it
constructs an anonymous query.

Theorem 1. The ePriLBS framework is secure against the semi-
trusted proxies, if the symmetric encryption scheme, the asymmet-
ric encryption scheme, and the homomorphic encryption scheme
are secure.

Proof. Recalling the game in Definition 2, the proxy can
obtain (lj , cκj

, cqj ), (lj , {(c, c0, c1, c2)ζ}
ν
ζ=1), and {(cp)ζ}

ν
ζ=1

when a user submits Q′ to the proxy. First, lj is a random
label which is independent with the query message msgb
and corresponding query result, therefore, the proxy can-
not obtain any information from lj . Second, cqj and c are
ciphertexts under a random session key. Since the symmet-
ric encryption is secure, the proxy cannot learn anything
about msgb and corresponding query result, even when it
knows some relationships between other msg and corre-
sponding query results via Step 2 in the game. Third, cκj

and (c0, c1, c2) are ciphertexts under the public keys of the
LBSP. Again, the proxy cannot infer any information, since
the asymmetric encryption scheme and the homomorphic
encryption scheme are secure. Finally, the proxy can decrypt
cp and obtain δ′ · (d2i − r2), where δ′ is a random number
chosen by the LBSP. However, the proxy cannot solve r or
(xi, yi) from these numbers. Thus, the construction is secure
against the semi-trusted proxy.

More formally, we can construct a series of games by
replacing cqj , c, cκj

, and (c0, c1, c2) with random values step
by step. Then, the probability that the proxy can distinguish
these games is negligible. In the last game, since cp is
computed by random (c0, c1, c2), the probability that the
proxy wins is exactly 1/2. Thus, the probability that the
proxy breaks Definition 2 is negligible greater than 1/2.

6 PERFORMANCE EVALUATION

Due to both ePriLBS and FINE are TTP-free schemes in
which the computation and communication on the user side
are efficient (other TTP-free schemes do not achieve such
efficiency on user side), we compare our framework with
the FINE framework [22] in terms of theoretical comparison
and experimental performance, respectively, in this section.

6.1 Theoretical Comparison

In this section, we give theoretical comparison between
ePriLBS and FINE. The notations used in comparisons are
shown in Table 4.

Table 5 compares the computation cost. We omit some
constant cost in both frameworks for simplicity. The com-
putation cost on the user side in both frameworks only
depends on the number of POI records NR satisfying the
original query. That means both frameworks achieve com-
putation efficiency on the user side. However, our frame-
work is more efficient, since for each encrypted POI record
in the filtered result, the user in FINE has to compute the
decryption key before decrypting it.

The computation cost on the server (the third party
server and the LBSP) side is more complex, but they can be

TABLE 4
The notations used in the performance evaluation

Notation Description
ND the number of POI records in the database
NR the number of POI records satisfying the original

query
NQ the number of POI records satisfying the anonymous

query
NP the number of points in the query range
NS the number of attributes in the system
Ts the time of symmetric encryption and decryption
Tl the time of location-based search
Tm the time of multiplication
Te the time of exponentiation
Tp the time of pairing
|E| the size of encrypted POI record
|Z| the element size in Z

|G| the element size in G

divided into two stages: search and process. The computa-
tion cost in search stage (i.e., search suitable POI records) de-
pends on the number of POI records ND in the database. In
FINE, for each geographic point in the query range, the third
party has to test every encrypted POI record in the database,
and the computation cost for testing grows linearly with the
number of attributes NS . Thus, the computation complexity
in search stage is O(ND ·NP ·NS), and the operations (i.e.,
pairing) in search stage is time-consuming. In contrast, the
computation complexity of our framework in search stage is
at most O(ND), and there is no time-consuming operation
in this stage. In process stage (i.e., process suitable POI
records), the computation cost (pairing, exponentiation, and
multiplication) grows linearly with NR in FINE, while the
computation cost (exponentiation and multiplication) grows
linearly with the number of POI records NQ satisfying
the anonymous query in our framework. However, since
NR · Tp ≈ NQ · Te in practice, our framework is as efficient
as FINE in process stage.

Table 6 compares the communication cost. TYPE I means
the communication cost between the user and the third
party server, and TYPE II presents the communication cost
between the third party server and the LBSP. Again, we
omit some constant cost in both frameworks for simplicity.
The communication cost on the users side (i.e., TYPE I) in
both frameworks only depends on NR. That means both
frameworks achieve communication efficiency. However,
the user in FINE has to receive a decryption key for each POI
record in the query result. Therefore, the communication
cost in FINE is larger.

Due to Blind filter, the communication cost on the server
side (i.e., TYPE II) in our framework is larger than FINE.
However, this extra communication cost is acceptable for
the servers. Also it is worthwhile, since increasing the com-
munication cost on the server side can significantly reduce
the computation and communication costs on the user side.

6.2 Experimental Performance

The ePriLBS framework is implemented by OpenSSL 1.0.1
on a computer with Intel 3.2 GHz CPU. We also implement
FINE [22] with OpenSSL 1.0.1 and PBC library 0.5.14 (with
Type A pairings). The symmetric encryption and public-
key encryption are AES-256-CBC and RSA-2048/RSA-4096,
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TABLE 5
The computation comparison with FINE

User Third party server LBSP
ePriLBS NR · Ts 10NQ · Tm + 10NQ · Te NQ · Ts + 8NQ · Tm +10NQ · Te +ND · Tl

FINE [22] NR · Ts +NR · Tm +NR · Te (2NDNPNS+2NRNS+2NDNP )·Tm+(4NDNP +
3NR) · Te + (4NDNPNS + 4NRNS) · Tp
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Fig. 3. Experimental results of ePriLBS and FINE in terms of computation and communication costs.

TABLE 6
The communication comparison with FINE

TYPE I TYPE II
ePriLBS NR · |E| NQ · (|E|+ 6|Z|)

FINE [22] NR · (|E|+ 3|G|) 0

respectively. The homomorphic encryption is also based
on RSA-2048/RSA-4096. We choose a POI dataset which
contains 486822 POI records for following experiments, and
the radius of query is 1 km.

Fig. 3a presents the computation cost on the user side. In
both ePriLBS and FINE, the computation cost for generating
the encrypted query is constant, and the computation cost
for obtaining the query result grows linear with the number
of POI records in the query result. In ePriLBS, users only
need to perform the time-consuming algorithm once, i.e., in
the query generation phase. Since users have to carry out
exponentiations before decrypting encrypted POI records
for every item of the query result in FINE, ePriLBS is more
efficient than FINE.

Fig. 3b shows the communication cost on the user
side. In both ePriLBS and FINE, the sizes of data sent by
users are constant, and the sizes of data that users receive
grow linearly with the number of POI records in query
result. However, users only receive encrypted POI records
in ePriLBS, while three extra elements of group should be

received for each item of the query result in FINE. Thus, the
communication cost in ePriLBS is more efficient in practice.

We accelerate computations on the server side in both
ePriLBS and FINE by pre-computation. Note that additional
storage cost for acceleration grows linearly with ND and
ND · NU in ePriLBS and FINE, respectively, where ND is
the number of POI records in the dataset, and NU is the
number of users in the system. However, the computation
time for searching appropriate POI records is large in FINE
which is almost 5ms for each test, while searching the entire
database which contains 486822 POI records spends less
than 1 second in ePriLBS. Thus, we reduce the size of LBS
database to 1000 for comparison, and decrease the number
of points in the query range in FINE to 100 (which should
be 1000 · 1000 since the unit is 1 meter). Fig. 3c shows
the computation cost on the server side. ePriLBS is more
practical than FINE due to the difference of computation
cost in searching. Although RSA-2048 is secure enough in at
present, the efficiency of using RSA-4096 in ePriLBS is still
significantly better than FINE.

Finally, Fig. 3d shows the communication cost on the
server side (i.e., between the LBSP and a proxy). There is no
communication cost on the server side in FINE. The commu-
nication cost in ePriLBS is determined by the homomorphic
encryption algorithm used in Blind filter. However, since
the LBSP and proxies usually communicate via high-speed
channels, the communication cost (less than 1MB when
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using RSA-4096 based homomorphic encryption algorithm)
in ePriLBS is acceptable in practice.

7 RELATED WORK

A number of privacy-preserving techniques have been pro-
posed to protect users’ privacy in LBS [10], [11]. Based on
whether a Trusted Third Party (TTP) is employed, current
solutions can be divided into two main categories: TTP-based
and TTP-free. In this paper, we focus on the techniques that
protect users’ location privacy via position manipulation;
therefore, pseudonym-based solutions [33]–[35] are beyond
the scope of this paper.

TTP-based solutions. The most common TTP-based
solutions are built on the cloaking technique which was
introduced into LBS by Gruteser and Grunwald [12]. As an
entity between the LBSP and users, a TTP server receives a
user’s LBS queries which includes her/his sensitive infor-
mation (e.g. user’s identity and geographic location), and
then blurs them by constructing new LBS queries with the
quires of other k − 1 real or dummy users. The new dis-
guised queries are then sent to the LBSP to request services.
Meanwhile, the TTP server needs to maintain all the original
LBS queries, in order to resolve the correct results when
it obtains any response from the LBSP. By employing the
k-anonymity technique, it can safeguard location privacy
against malicious LBSPs, and minimize the computation
and communication cost on the user side. To enhance the
indistinguishability of the cloaking technique, it also com-
bines with other techniques, such as l-diversity [14], game
theory [15], and so on [13], [31], [36]. However, since TTP
servers know too much sensitive information of users, they
may become the security bottleneck of the LBS applications.

TTP-free solutions. To avoid the leakage risk caused by
TTP servers, researchers proposed other techniques to re-
duce TTP’s necessity in LBSs, such as dummy location [19],
[37], obfuscation [17], [38]–[41]. Solutions in [1], [18] intro-
duced a cryptographic technique, Private Information Re-
trieval (RIP), to achieve private retrieval on public database
into LBSs. Geometric-based technique [42], [43] and differ-
ential privacy technique [27], [44], [45] also did not rely on
TTP servers to protect location privacy. Unfortunately, all
these solutions cause significant computation cost on the
user side either when constructing LBS queries or when
processing redundant POI records, which is unaffordable
to the mobile devices. To design a privacy-preserving so-
lution in mobile environments, Shao et al. [22] presented
framework FINE, which relies on a semi-trusted third party
that acts like a virtual provider. Data transferred between
the semi-trusted third party and users are encrypted under
the public key of the LBSP, to prevent leakage on the third
party. Users can acquire decryption key from the LBSP for
decrypting the encrypted POI records. However, FINE is
vulnerable to dual identity attack on the semi-trusted third
party. Also, it brings unnecessary cost on the third party,
and only supports simple queries, instead of complex ones,
which are used in most current applications. Zhu et al. [46]
proposed a similar solution, called EPQ, in which all LBS
data is outsourced to a semi-trusted cloud server. Since the
security of EPQ depends on a secret key that is only known

by the LBSP and registered users, EPQ is also vulnerable to
dual identity attack on the semi-trusted third party.

8 CONCLUSION

In this paper, we have proposed an efficient privacy-
preserving framework for location-based services, named
ePriLBS, which adopts a semi-trusted third party, called
proxy. By designing and exploiting Blind filter, a novel
filtering protocol, ePriLBS preserves users’ privacy against
both the LBSP and the proxy, while the computation and
communication cost on the user side is kept efficient. Specif-
ically, our solution not only enhances system security by
resisting dual identity attack, but also improves efficiency
in terms of the computation and communication cost on all
parties in LBSs. Comprehensive analysis and experiments
show that the ePriLBS framework is suitable in mobile
environments.
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