
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Cognitive Internet of Vehicles

Min Chen⁎,a, Yuanwen Tiana, Giancarlo Fortinob, Jing Zhang⁎,c, Iztok Humard

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
bDepartment of Informatics, Modelling, Electronics and Systems Engineering, University of Calabria, Rende 87036, Italy
c School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
dUniversity of Ljubljana, Ljubljana, Slovenia

A R T I C L E I N F O

Keywords:
CIoV
Internet of Vehicles
Cognitive computing
Vehicular network

A B S T R A C T

To fully realize future autonomous driving scenarios, Internet of Vehicles (IoV) has attracted wide attention from
both academia and industry. However, suitable cost and stable connectivity cannot be strongly guaranteed by
existing architectures such as cellular networks, vehicular ad hoc networks, etc. With the prosperous develop-
ment of artificial intelligence, cloud/edge computing and 5G network slicing, a more intelligent vehicular
network is under deliberation. In this paper, an innovative paradigm called Cognitive Internet of Vehicles (CIoV)
is proposed to help address the aforementioned challenge. Different from existing works, which mainly focus on
communication technologies, CIoV enhances transportation safety and network security by mining effective
information from both physical and network data space. We first present an overview of CIoV including its
evolution, related technologies, and architecture. Then we highlight crucial cognitive design issues from three
perspectives, namely, intra-vehicle network, inter-vehicle network and beyond-vehicle network. Simulations are
then conducted to prove the effect of CIoV and finally some open issues will be further discussed. Our study
explores this novel architecture of CIoV, as well as research opportunities in vehicular network.

1. Introduction

Since 1970s, the world has witnessed a rapid growth of vehicles,
which have indeed become the most important transportation tool for
people’s daily travelling. However, due to blocked line of sight, fatigue
driving, overspeeding, etc., traffic car incidents could not be effectively
reduced from beginning to the end. According to research statistics [1],
90% of traffic accidents are caused by human driving errors or mis-
judgments. Oppositely, an investigation report published by Eno Center
for Transportation reveals that, if autonomous driving technology and
vehicular communication cooperation could be adopted, traffic acci-
dents caused by driving errors would be significantly reduced and
urban traffic jam would be greatly relieved [2].

Currently, the vehicle industry is going through a huge technolo-
gical revolution in order to deal with challenges mentioned above.
Since 2012, with rapid development of big data technology and Internet
of Things (IoT) [3], the first generation of Internet of Vehicles (IoV) has
become the key enabling technology to realize future autonomous
driving scenarios. Cognition and autonomicity are enabling paradigm
for peculiar features of every IoT systems [4,5], and hence also for IoV.
According to a report by McKinsey & Company in 2016 [6], the

autonomous vehicles in future should be equipped with both in-
telligence and connectivity, and the sales volume of fully autonomous
vehicles will take up 15% of the world’s vehicle market in 2030. The
new business model in autonomous vehicle market may enlarge the
total revenue by about 30%.

Some research has discussed a few problems on IoV at present.
Insights on layered architecture, protocol stack and network model of
IoV have been put forth in [7]. As to vehicle-to-anything (V2X) com-
munication problems, a joint communication scheme with dedicated
short range communication (DSRC) and cellular network has been in-
vestigated and evaluated in [8]. Intuitively, IoV can be regarded as a
powerful wireless sensor network (WSN) moving without human in-
tervention. However, compared with traditional WSN, many problems
remain to be solved due to the extremely strict application require-
ments for IoV:

(1) High speed mobility: the key element in IoV is autonomous ve-
hicles moving at high speed. Due to the complexity and variety of
traffic conditions, it is important to guarantee the accuracy in au-
tonomous vehicles.

(2) Delay sensitivity: in IoV, communication delay need to be
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measured by millisecond. Once a network congestion or long delay
happens, due to slow computation or limited band width, a series of
life-threatening traffic accidents would take place.

(3) Seamless connectivity: in the future, user’s requirements on net-
work quality and service continuity would be much higher.
Specifically, many computation-intense tasks need to be processed
in real time. Therefore, QoS of many vehicular application can be
satisfied only if a stable and uninterrupted network connection is
guaranteed.

(4) Data privacy: large amounts of private information on vehicle
owners are involved in vehicular networks, and it cannot be pro-
tected by traditional network protection mechanism. Additionally,
the urban traffic system needs a secure and robust network en-
vironment to guarantee the orderly conduct of autonomous driving.

(5) Resource constraints: though self-organizing networks of vehicles
may provide real-time communication, the computing resources
and network resources possessed by a single vehicle is still limited,
especially during a transition period of a semi-autonomous driving
scenario. Resources need to be precisely scheduled in real time,
based on actual driving course of massive vehicular networks.

In order to solve those problems, the intelligence of IoV need be
strengthened in comprehensive directions. Therefore, Cognitive
Internet of Vehicles (CIoV) is proposed in this paper to realize in-
telligent cognition, control and decision-making for future autonomous
driving scenarios. In contrast to existing works on IoV, the human-
centric CIoV utilizes hierarchical cognitive engines and conduct joint
analysis in both physical and network data space. To grasp a concrete
idea, we divided main participants in CIoV into intra-vehicle network,
inter-vehicle network and beyond-vehicle network in Fig. 1, different
scaled networks also focus on different cognitive functions. Main ad-
vantages of CIoV are listed below:

(1) Cognitive Intelligence: CIoV enables IoV to bear more accurate
perceptive ability, through cognition in intra-vehicle network
(driver, passengers, smart devices, etc.), inter-vehicle network
(adjacent intelligent vehicles) and beyond-vehicle network (road
environment, cellular network, edge nodes, remote cloud, etc), it
can also provide macrocosmic information and scheduling strate-
gies to the whole transportation system.

(2) Reliable decision-making: by introducing cognitive computing
into autonomous driving systems, learning ability of autonomous
vehicles can be effectively improved. Moreover, the decision-

making process of autonomous vehicles will be more thorough and
reliable through the cognitive cycle of perception, training, learning
and feedback.

(3) Efficient utilization of resources: with perception of network
traffic status and real-time road circumstance, the decisions derived
by analytic technologies such as machine learning and deep
learning, can help resource cognitive engine to conduct more ef-
fective control over vehicles, and to enhance information sharing
efficiency within vehicular networks.

(4) Rich market potentiality: in terms of market opportunities, the
benefits brought by CIoV are not limited to vehicle market, they are
also closely linked to many other aspects in people’s life, such as
entertainment, healthcare, agenda and so on. Such a feature will
also drive many traditional application devices to be transformed
into intelligence embedded application devices.

The remainder of this paper is organized as follows. We first present
the evolution of CIoV and review its related technologies in Section 2.
Then in Section 3, the five-layered CIoV architecture is presented, with
a particular emphasis of interaction between data cognitive engine and
resource cognitive engine under cloud/edge framework. In Section 4 we
explore critical cognitive design issues from three perspectives (intra-
vehicle network, inter-vehicle network and beyond-vehicle network),
aiming to enhance user experience and performance of traffic system. In
Section 5, we simulate a vehicular edge scenario in CIoV to prove the
effectiveness of our proposed architecture. Finally, we discuss some
open issues related with the implementation of CIoV in Section 6 and
draw our conclusions in Section 7.

2. Background and related work

CIoV is proposed as the advanced solution to strengthen cognitive
intelligence of IoV. In order to better understand the development of
vehicular networks, this section will explain the differences between
CIoV and three related concepts, i.e., ITS, VANET and IoV. Fig. 2 il-
lustrates the evolution process of CIoV. Furthermore, key technologies
that enables CIoV, including self-driving technology, cloud/edge hybrid
framework and 5G network slicing, is further presented.

2.1. ITS, VANET, IoV and CIoV

Intelligent transportation system (ITS) is an extensive conception,
put forth before 2000. ITS involves a series of application systems:

Fig. 1. Participants in CIoV.
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vehicle management system, automatic license plate recognizing
system, traffic signal control system. A typical example is that, in order
to realize extraction and utilization of static and dynamic information
of vehicles on information network platform, electronic tags carried on
vehicles can be recognized by technologies such as wireless radio-fre-
quency identification (RFID).

The rapid development of wireless mobile communication tech-
nology attracts researchers’ attention to communication between ve-
hicles as a way to enhance road safety and improve transportation ef-
ficiency. For a long time, vehicular ad hoc network (VANET) has been
under the spotlight. VANET mainly utilizes DSRC communication
technology [9]. Yet a few problems remain unsolved: due to the high
speed mobility of vehicles and currently incomplete infrastructure, the
reliability of service connection in VANET is vulnerable.

As a result, VANET alone could not meet requirements for future
autonomous driving scenarios. The emergence of big data and IoT leads
to the concept of IoV. Under agreed communication protocol and data
interaction standard, wireless communication and information ex-
change may be conducted on IoV between vehicle-to-anything (V2X),
such as other vehicles, road, pedestrian, etc.

In the macro-framework of IoV, CIoV aims to solve the top-level
problem of IoV, i.e., enhancing intelligence of IoV comprehensively. To
be specific, how to fully mine information of all participants (Fig. 1) to
reach the following objectives based on joint cognition of physical data
space and network data space: (1) enhancing user experience as per
private demand; (2) improving driving safety in traffic system; (3)
strengthening data safety in network environment; (4) comprehensively
optimizing network resource allocation. The cognitive design issues will
be explored in detail in Section 4. In order to present a complete and
clear understanding of CIoV, the architecture of CIoV will be provided
in next section.

2.2. Self-driving technology

In recent years, artificial intelligence (AI) technology is again in the
ascendant, and deep learning gradually becomes the most important
part in AI technology. As a vertical application of AI, self-driving/au-
tonomous driving technology attracts much attention in vehicle in-
dustry. The investigation report published by Eno Center for
Transportation reveals that self-driving technology may significantly
reduce the quantity of traffic accidents caused by driving errors [2].

AI-based self-driving technology and IoV can complement each

other. On one hand, large amounts of data generated during driving
process of vehicles can provide sufficient learning and training basis to
AI. On the other hand, with rapid development of electronic circuits
such as GPU, TPU, FPGA, ASIC etc., the performance of deep learning
algorithm in aspect of real-time processing has been improved sig-
nificantly, ensuring real-time business guarantee to environment per-
ception, decision-making and control on CIoV. At present, great pro-
gress has been made in research on self-driving with introduction of
algorithms such as AI-based path optimization algorithm [10] and ob-
stacle and road identification algorithm [11].

In CIoV, information cognition and interaction of intelligent au-
tonomous vehicles, which are able to obtain more information with
adjacent vehicles, road and infrastructure, are brought into considera-
tion. Thus, the perceptive ability of CIoV is greatly increased in contrast
to a single autonomous vehicle.

2.3. Cloud/edge hybrid framework

Characterized by powerful computing and storage capacity, cloud
computing platform can reduce the deployment cost of software ser-
vices [44]. However, with more and more accessed mobile devices and
high-quality local processing requirements, edge computing, as a fra-
mework much closer to the user end, supplements the functions of
cloud computing effectively. Authors in [12] present the advantages of
edge computing pattern in background of IoT, from angles such as delay
constraint, bandwidth constraint and limited resources constraint.
In [13], a comparison is made between feature of Cloud Radio Access
Network (C-RAN) and that of Mobile Edge Computing (MEC), and the
importance of mutual collaboration of MEC in 5G network is elabo-
rated.

Cloud/edge hybrid framework is a rational solution for CIoV.
Specifically, intelligent application services may be provided in the
neighbourhood through collaboration of edge nodes, thus to meet de-
mands of many delay-sensitive vehicular applications that require local
processing, such as real-time road condition analysis and real-time
behavior analysis for driver. However, with limited storage and com-
puting capacity, edge computing could not meet the requirements for
long-term cognition of users and environment. In this case, it is ne-
cessary to unload tasks to cloud for further analysis in idle time of non-
driving condition. In addition, communication between vehicular edge
and cloud is also important, especially in emergent situations.

Fig. 2. Evolution of CIoV.
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2.4. 5G network slicing

With the evolution of mobile communication industry, 5G network
service is booming recently with special features such as closer to user
requirements, enhanced customization capability, deep integration
between network and business, and more friendly services. Due to its
elasticity and expandability, 5G network slicing becomes the research
focus in network communication field. Network slicing may explore
and release the potentiality of telecommunication technology, enhance
efficiency and reduce cost. On the other hand, there is potential market
demand for network slicing in fields such as vehicles, smart city and
industrial manufacturing.

5G network slicing can meet IoV requirements on ultra-low delay
and high reliability and other specific applications [15]. In nature, it
divides the physical network of operators into multiple virtual net-
works, each virtual network corresponds to one of service requirements
such as delay, bandwidth, security and reliability, thus it can cope with
different network application scenarios flexibly. Moreover, with in-
troduction of network slice broker [14], 5G network slicing technology
may realize network resources sharing, and integration & allocation
will be conducted to network resources that were mutually independent
originally, thus to realize real-time and dynamical scheduling of net-
work resources corresponding to special requirements.

At present, attempts have been made in some research projects to
introduce network slicing technology into IoV. In [16], a network
computing resource allocation algorithm on IoV with cluster as unit is
put forth, but the part of core network including road-side unit is not
involved. In [17], the network resources in the space and in air seg-
ments are provided to vehicles in ground segments for shared use, but
the delay indicator, which is most important in service quality of 5G
network slicing, has not yet been taken into consideration. In CIoV,
double cognitive engines are introduced to conduct cognition, control
and scheduling to network resources, and the cognitive design issue on
resource allocation of 5G network slicing will be discussed in Section 4.

3. Architecture of cognitive internet of vehicles

When compared with traditional sensor network, there are higher
requirements on perception accuracy, stability in data transmission,
real-time analysis, intelligent decisions and network reliability for
CIoV, demanding for more complex architectures. In this section, an
architecture that meets requirements of CIoV is put forth, as shown in
Fig. 3, comprising the sensing layer, communication layer, cognition
layer, control layer and application layer.

3.1. Sensing layer

The sensing layer of CIoV is in charge of collecting and pre-pro-
cessing for multi-source heterogeneous big data [45]. These data come
from multidimensional space-time data in physical space on one hand,
and from network traffic and resource distribution data in network
space on the other hand.

Compared with big data set in traditional fields, big data in physical
space are often unstructured. To be specific, driver related information
should be described through driving video, facial expression data and
etc. Route related information such as accurate position and environ-
ment should be described through multiple sensors collecting real-time
data from ambient pedestrians, vehicles and environment, and it should
be transformed into multidimensional space-time data.

The data that are current in network space are mainly operator data,
for example, RSU, information on resource occupation by base station
etc., and service request information of users, basic data information of
user, etc. Generally speaking, the original data set collected may be
unclean, redundant and inconsistent. Therefore, in order to enhance
effective usage rate of resources in edge devices, appropriate data
analysis algorithms should be adopted in perception layer to conduct

cleaning, formatting and normalization for data, thus to extract useful
information preliminarily.

3.2. Communication layer

In order to be adapted to requirements of applications with different
timeliness, cloud/edge hybrid architecture is mainly adopted in com-
munication layer of CIoV. Related radio technologies in communication
layer (such as Wi-Fi, DSRC, LTE etc.) are shown in Table 1. At the scale
of intra-vehicle network, most of the driving data need timely local
processing and computing, exploiting the real-time communication
between intelligent devices on intra-vehicle network and edge cloud.
On premise of meeting connectivity demand, the main objective of
inter-vehicle network is resource optimization. On one hand, real-time
information interaction can be realized through self-organizing network
between vehicles or star network between vehicles and RSUs. On the
other hand, when there is no inter-operable units near a demand, cel-
lular network may be adopted for communication. At large scale, the
cloud needs to conduct centralized control over the whole traffic in-
formation, and to establish the feature model for network topology,
road condition information and space-time service of group autono-
mous moving objects of the whole IoV. Furthermore, the communica-
tion between one vehicle and another vehicle is necessary, e.g., those
in-vehicle services that are not delay-sensitive can be gradually un-
loaded to cloud for computing and analysis.

3.3. Cognition layer

In order to combine specific service demands, and to enhance in-
telligence of CIoV, cognitive engines are arranged at cloud/edge, di-
vided into data cognitive engine at cognition layer and resource cog-
nitive engine at control layer. Physical data space and network data
space provide the data to data cognitive engine.

As for cognition in physical data space, the data cognitive engine
processes and analyzes heterogeneous data flows through cognitive
analysis methods (machine learning, deep learning, data mining, patten
recognition etc.). In detail, data cognitive engine is able to conduct
cognition of user tasks by use of data collected, e.g., driving behavior
model analysis, emotion analysis, road condition investigation and etc.
Based on cognition of user tasks, these can be divided into real-time
vehicle area network services and non-real-time vehicle area network
services. Generally speaking, real-time vehicle area network services
are generally deployed on edge closer to user terminals, and non-real-
time vehicle area network services can be deployed on the cloud, even
far away from user.

In network data space, the data cognitive engine can realize dy-
namic cognition of data such as computing, storage and network re-
sources, based on the resource allocation feedback on cloud/edge net-
work, provide network optimization methods & real-time resource
allocation strategies, and send analysis results to resources cognitive
engine to guide network resource allocation. To be specific, when there
is a delay-sensitive task, the edge will firstly check whether it has suf-
ficient resources to complete this task, if no, those tasks not sensitive to
delay may be transferred to cloud to realize reallocation of resources,
thus to meet the delay demand of the delay-sensitive task. On this basis,
different engines may be deployed as per different business types and
application scenarios, e.g., engine oriented to collection and storage of
mass data, engine oriented to driving behavior analysis and engine
oriented to network security, and etc.

3.4. Control layer

As the scale of IoV constantly extends, exponentially increased data
need to be processed and corresponding strategies need to be provided.
Thus, control layer is the key factor determining system performance.
Since the traditional method of centralized control in data center
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cannot guarantee low delay constraint of interactions between auton-
omous moving objects, it is not suitable for delay sensitive applications
on the edge of IoV. Enabled by technologies like NFV, SDN, SON and
network slicing, the main function of resource cognitive engines are to
manage and dispatch network resources.

Resource cognitive engines are deployed at different locations of
cloud/edge in order to strengthen stability and reliability of the

network where different business requirements need to be satisfied.
Resource cognitive engines deployed on edge support delay sensitive
data management. Although the storage, processing and bandwidth
resources available for edge are limited, distributed decision-making
can be realized to process data from bottom layer. To meet QoS re-
quirements of intra-vehicle cognitive applications, the resource cogni-
tive engine on intra-vehicle edge are responsible for real-time

Fig. 3. Architecture of CIoV.

Table 1
Related radio technologies in communication layer.

Communication scale Radio technology Main functionality Requirement

Delay sensitivity Transmission capacity Stable connectivity

Intra-vehicle network Wi-Fi, WLAN Data collection Medium Large Medium
Inter-vehicle network DSRC Message exchange High Small High
Beyond-vehicle network LTE, WiMAX Connection to cloud Medium Large Medium
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processing of driving data. In this way, the fastest decision-making can
be guaranteed. Resource cognitive engines deployed on cloud conduct
network optimization in a centralized way through effective utilization
of the global information of IoV. Execution on cloud is at the cost of
large centralized data storage, processing and bandwidth resources.
Specifically, the most important work of cloud is to monitor resource
utilization on edge network and to conduct dynamic scheduling for
resources in real time. In addition, cloud receives emergent messages
sent by edge and conducts a series of emergency treatment through
high-performance computing. With cooperative control of resource
cognitive engines at different levels, safety of the whole traffic system
can be improved.

3.5. Application layer

At the operation level, CIoV involves coordination and cooperation
among multiple parties, including manufacturer of automatic driving
vehicles, mobile communication operator, social networking services
provider, manufacturer of intelligent devices, software services pro-
vider and etc. Among plenty of applications provided by CIoV, two
main categories are customized application services and intelligent
transportation applications, it is noted that such services can be defined
as Opportunistic since they are markedly dynamic, context-aware and
co-located [18].

– Customized application services are aimed to reduce safety risks
during driving; typical examples are driver fatigue detection,
driving guidance, driver emotion monitoring and etc. Since many
intelligent devices have access to CIoV, cognitive applications (such
as mobile health monitoring) can be customized based on the dif-
ferent features of users. Cognitive applications will be elaborated in
next section.

– Intelligent transportation applications include intelligent driving,
intelligent transportation management, etc. To be specific, (1) in-
telligent driving helps drivers with accurate judgment on road
conditions through communication between one vehicle and an-
other vehicle/road, in combination with cognition of personal
driving behavior. (2) intelligent transportation management means
helping traffic management department to analyze service condition
of road and vehicles by the use of information analyzed in cognition
layer, thus to relieve traffic jam and improve road condition.

4. Cognitive design issues in multi-scale networks

The key issues of CIoV lies in how to excavate the information of all
participants (Fig. 1) and enhance safety of physical space and security
of network space; in other words, CIoV aims to (1) promote user ex-
perience based on personal demands, (2) improve driving safety of
traffic system, (3) strengthen data security of network environment, (4)
optimize the distribution of network resources. Due to the

heterogeneity and complexity of CIoV network, we divide CIoV into
intra-vehicle network, inter-vehicle network, and beyond-vehicle net-
work from the perspective of scale and main functions. This section will
focus on the cognitive design issues of these three networks. Three
networks own their independent characteristics respectively. However,
we also lay emphasis on the interaction and cooperation of these three
networks to optimize the overall performance.

4.1. Cognition in intra-vehicle network

The edge cognitive computing (ECC) of 5G cognitive network en-
ables the communication between wearable and vehicular embedded
computing devices to be faster, more intelligent and more stable. In the
scale of intra-vehicle space, safety and comfortableness of driver and
passenger become the main concern. Furthermore, through cognition of
intra-vehicle network, we can promote the safety of the whole traffic
system, which will be discussed in detail in the interaction with beyond-
vehicle network.

4.1.1. Driving guidance based on long-term behavioral cognition
Among the existing methods of driving guidance, many articles

consider reducing the traffic accidents by the real-time driver mon-
itoring from two aspects. The first method is through detecting the
driving behavior of drivers. According to the survey of National
Highway Traffic Safety Administration in 2012 [19], several typical
distracted driving activities are shown in Fig. 4. By supervising and
controlling these driving behaviors [20], proper warning beforehand
can be provided and the response time of drivers can be increased to
reduce the occurrence of traffic accidents. The second method is
through monitoring the fatigue state and negative emotion of drivers in
real time, vigilant measures will be taken for the tired drivers [21]. A
novel method of detecting cardiac defense response using ECG
signal [22] is promising since it can be well combined with wearable
computing, effectively monitoring drivers without giving rise to their
uncomfortableness.

These two monitoring methods are feasible, however, both focus on
intervention on the driver. Besides, information of intra-vehicle net-
work is not excavated fully. In fact, intra-vehicle network is a relatively
private environment, and the behavior and mental state of the driver in
the intra-vehicle network can reflect his recent living status. American
Time Use Survey (ATUS) reports the average time of American people
in the vehicle [23] and the result indicates that vehicle has become the
essential part in people’s life. Thus, the long-term cognitive analysis of
intra-vehicle network data is a significant work. In addition, Pope et al.
[24] discusses the influence of basic information (age, gender and ex-
ecutive capability) of the owner. Zhang et al. [25] discusses the in-
fluence of the living status of the owner such as stress disorder on
driving. Chen et al. [26] discusses machine learning methods on dis-
ease prediction problems. These works show that the long-term data
collection, processing and cognition of personal information can further

Fig. 4. (a) Distracted driving activities distribution in 2010 and (b) distracted driving activities distribution in 2012.
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guide the driving behaviors of the driver to avoid the occurrence of
traffic accidents, and also can improve the user experience in all aspects
with customized service. In short, cognitive intra-vehicle network can
help to adjust the living status of the user and provide guidance in many
aspects (such as driving, health, work, amusement and diet) to the user.

Specifically, the vehicular embedded sensors (such as camera, na-
vigator, and speedometer) collect the intra-vehicle network data mainly
involving picture, voice, video, physical health data, and driving re-
lated data. Then the vehicular edge cloud carries out data processing
and real-time data analysis. The vehicular terminal can finish the real-
time computing of most tasks locally. However, the storage space of
local device is limited, so the vehicular edge need to upload the local
data to user’s private cloud for processing and storage in the time when
user leaves the vehicle. The cloud carries out the analysis training of the
private data involving basic information, driving behavior, emotion,
health condition, then converts original data to personalized rules by
cognitive computing. These rules reflect past and current living status
records of the owner (involving driving habits, health history and travel
period). In other words, the cooperation of vehicular edge and remote
cloud maps the history record and real-time information of the user into
an iterative living habit document for the purpose of further guiding
specific user. Particularly in the case of emergence, for example, if the
driver is detected of fatigue driving, the vehicular edge will send the
abnormal message to the cloud. Due to small data size but high real-
time performance of such message, communication mode of mobile
network will be adopted. The cloud will make the emergency treatment
in view of different message types, involving taking measures such as
playing the prompt voice or music to stimulate the emotion and fatigue
state of the driver, and adjusting the vehicular device into the safe
autonomous driving mode forcibly. The safety driving can be guaran-
teed by the cooperative effect of long-term behavioral cognition and
real-time behavioral detection.

4.1.2. Mobile cognitive application based on interactions among multiple
smart devices

In recent years, due to rapid development of artificial intelligence
and chip design, the quantity of mobile intelligent device is increased.
For example, it is estimated that 325 million devices in 2016 will be
significantly increased to about 929 million devices in 2021 glob-
ally [27]. The mobile intelligent devices include smart phone, aug-
mented reality helmet, smart clothing, and smart watch, etc. These
enhanced devices have been commonly defined as Smart Objects
(SOs) [28,29] and represent fundamental building block for all IoT
scenarios, including IoV.

Under the environment of vehicle-mounted edge cloud, the strict
requirements on latency and reliability of the majority of mobile in-
telligent devices can be met. NB-IoT technology can also enhance the
seamless connection among numerous devices [30]. Meanwhile the
mobile intelligent device can enhance the user experience of vehicle-
mounted environment, provide the convenient channel of information,
and facilitate other aspects of people’s life based on different applica-
tions. We explain the mobile cognitive application based on multi-in-
telligent device interaction with the example of mobile health surveil-
lance (Fig. 5).

The health status of the driver not only influences his/her own
safety, but also influences the safety of passenger in the vehicle, safety
of other drivers, and even the traffic system security. In the case of poor
health or fatigue driving of the driver, the attention of the drive will be
significantly reduced, and the response time will be increased, which
often results in the occurrence of traffic accidents. Therefore, it is very
important to monitor the physical health of the driver during the
driving process.

Under the traditional driving environment, the passenger and driver
fail to understand the mutual healthy conditions before. Due to wea-
kened state of consciousness, the tired driver even fails to know his/her
own status but selects to drive continuously, which greatly threatens

the safety of personnel in the vehicle. To improve such situation, the
cognitive intra-vehicle network carries out the emotion analysis,
driving behavior surveillance, and physical health surveillance. The
camera of the intra-vehicle network can entrust the facial expression
data of the driver to the vehicle-mounted edge device for analysis. As
for the driving behavior detection, the camera detects the eyelid state
and micro-nod of the driver, to discover the micro-sleep behavior ef-
fectively, analyze in combination with the data collected by the devices
such as steering wheel and intelligent odometer embedding in the
sensor, remind and give an early warning to the driver, and prevent the
occurrence of traffic accidents. In addition, the healthy and physiolo-
gical index data of each passenger and driver can be collected by the
smart clothing and other wearable device, and uploaded to the vehicle-
mounted edge for real-time analysis. D2D can be applied in this situa-
tion [31]. The vehicle-mounted edge assesses the health grade of each
user by the data cognitive engine, and reports the analysis result to
user’s smart phone. Users in the same intra-vehicle network can select
the visible window sharing the health status. If the driver suddenly feels
unwell (such as burst of acute disease) during the driving activity, the
vehicle-mounted edge will perceive the critically ill condition of the
driver timely from the data collected by the smart clothing, adopt the
safety automatic driving mode timely, and give an alarm to the nearby
vehicles and cloud. The cloud will dispatch more resources (commu-
nication resources of cellular mobile network, and computing resources
of remote data center, nearby vehicles and RSU) to carry out deeper and
more comprehensive condition analysis for the ill driver. At the same
time, the cloud rapidly contacts the ambulance, doctor and driver’s
home [32]; and delivers the analysis result to the doctor, so as to make
the diagnostic analysis for patients by the time of the ambulance is on
the way and enhance the survival rate of the ill driver.

4.2. Cognition in inter-vehicle network

Inter-vehicle network is composed of all vehicles that can commu-
nicate and share flexible resources. There are various communication
modes of inter-vehicle network, involving the road edge communica-
tion, V2V communication, and mobile network communication. The
intelligent autonomous moving object is the most important element in
CIoV. Therefore, we take the inter-vehicle network into consideration,
and solve the issues of data instability collected by the vehicle and 5G
network resource optimization distribution by the cooperation cogni-
tion of inter-vehicle network.

4.2.1. IoV stable service modeling based on group cognition
Due to diversity of real road environment, the environmental data

reported by the vehicle has the definite error. At the same time, the
high-speed mobility characteristic of vehicle and the lower stability of
wireless channel result in the vehicle data failing to reach timely and
the larger data delay variation. Excavating the useful information from
the data with the definite error and delay variation becomes the key
issue of realizing the IoV landing. Next, the density of vehicle data
service is characterized by the non-uniformity of spatial and time do-
mains. In the spatial domain, the service volume of vehicles in the rural
area is very large, while the vehicle data service volume in rural area
and expressway is relatively low. In the time domain, the change in
data traffic is drastic. The data traffic is large in the traffic peak period,
while it is opposite in the work and rest time. The dynamic change of
vehicle data traffic in the spatial and time domains is very large, thus it
is very urgent to meet the flexibility and intelligent demand of IoV in
the issues of site deployment, hotspot coverage, and resource dis-
tribution. In a word, the data instability and the high requirements on
latency and reliability of communication link are two challenges of IoV
service modeling.

The cooperation cognition of inter-vehicle network can enhance the
stability of IoV service modeling. The theoretical model of vehicle data
service built by CIoV includes three aspects of space, time and mobility.
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The space model depicts the spatial position of the service data flow.
The time model depicts the dynamic change of each data flow with the
time. The mobility model depicts the change of service spatial position.
When the cognitive IoV bears the data service, the space-time dis-
tribution of data service and the IoV transport service are closely cou-
pled. By utilizing cognitive computing to tackle waving error and delay
variation problems of vehicle data, useful information is extracted, the
generalization ability of theoretical model is improved and the gen-
eralization error is under control. From the perspective of group co-
operation of inter-vehicle network, the mutual cognition between the
intelligent moving objects in the group can greatly enhance the pure
vision-based environmental perception. Next, the sharing map mod-
eling information by the group cooperation is more reliable. Finally by
cognition of vehicle behavior in the time and space, the transport me-
chanism of vehicle data service with space-time random characteristics
in IoV is established, and prediction accuracy of IoV service is en-
hanced, to enable the limited resources to provide an outstanding ser-
vice.

4.2.2. Optimization of 5G network slicing resources distribution based on
dynamic demand

There are different vehicle types on the traffic roads, such as private
car, public car, freight wagon, ambulance, and police car. The vehicle-
mounted device abilities (ratio of computing resource and flexible re-
source) and actual service demands (driving speed and passenger car-
rying capacity, whether being the special service) in different vehicle
types are different. There are many different intelligent application
demands inside CIoV, such as personal customizing information service,
safety unmanned system, and real-time health surveillance system. In
addition, the resource demand in driving is often changed dynamically.
Thus, the traditional fixed resource distribution mode fails to satisfy the
future driving environment.

5G network slice can create the special slice for the service with
different requirements in CIoV. Specifically, it places the virtual net-
work function in different positions (i.e., edge cloud or core cloud) in
accordance with different service characteristics. The operator can
customize different network slices (such as billing and strategy control)
in the way as needed by the service to meet the user demands, and also
it is the most cost-effective mode. Chen et al. [33] addresses green and
mobility-aware caching issues in 5G networks. However, more research
is required to discuss 5G resource allocation problems under the fra-
mework of Artificial Intelligence. In CIoV, we set forth the design idea
of solving and realizing the closed loop optimization by double cogni-
tive engine (Fig. 6).

Based on different demands (latency, reliability and flexibility) for
different cognitive applications [40,41], the network slice service re-
quest types of IoV are also different. The data cognitive engine will
combine the current resource distribution and real-time request of
lessee, and carry out the fusion cognitive analysis of isomerous data in
the methods of machine learning and deep learning. Then, the data
cognitive engine reports the dynamic flow pattern analyzed to the re-
source cognitive engine. Resource cognitive engine jointly optimizes
the comprehensive benefits and resource efficiency. Firstly, resource
cognitive engine controls and screens the access request, then conducts
the dynamic scheduling distribution of resources based on cognition to
network resources, and feeds back the scheduling result to the data
cognitive engine, to realize the closed loop optimization. By utilizing
double cognitive engines for the dynamic scheduling of 5G network
slice technology, different service qualities in IoV can be satisfied, total
costs can be saved and the operation efficiency of network resources
can be enhanced. Besides that, in order to further improve QoE of 5G
network slicing, a delay announcement method is a new research di-
rection [34].

4.3. Cognition in beyond-vehicle network

From the large scale, CIoV can collect and analyze the physical
space data, involving data of intra-vehicle network driver, driving data
of adjacent vehicles, and beyond-vehicle road environmental data. We
provide the scheme of strengthening the cooperation of beyond-vehicle
network, intra-vehicle network, and inter-vehicle network to achieve
the total improvement of road traffic safety in CIoV in Fig. 7. On the
other hand, due to its complexity, IoV has very strict requirements for
the reliability of network safety. For the avoidance of events such as

Fig. 5. A vehicular cognitive application: mobile healthcare scenario.

Fig. 6. 5G network slicing resource cognition.
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personal information disclosure, traffic accident and breakdown of road
system, CIoV realizes the network safety protection by the joint cog-
nition of physical space and network space.

4.3.1. Road traffic safety enhancement mechanism based on cooperation of
intra-vehicle network, inter-vehicle network, and beyond-vehicle network

As the most important element in CIoV, the intelligent autonomous
moving object (represented by autonomous vehicle) has the correct
perception and comprehension ability for the surroundings, and also
has the automatic decision-making ability. The unmanned vehicle
should recognize the driving behavior of the driver within the scope of
intra-vehicle network. If the autonomous vehicle production, the people
and the unmanned vehicle will coexist for a long term in the future, and
the driving behavior of the people should be understood by the un-
manned vehicle, so it is very important to research the cooperation
driving mechanism between the unmanned vehicle and the driver. The
driving state of each driver is the factor to be considered in the cog-
nitive IoV. Through the cognition of intra-vehicle network to the driver
state, the nearby inter-vehicle network shares the information, and
gives an early warning to the driver in the fatigue state. The cloud will
also distribute more resources to the driver in the fatigue state, and
promote the ability of traffic system in dealing with the emergency
situation.

For the cognition of beyond-vehicle environment, the intelligent
autonomous moving object perceives the environment and collects the
data by a series of self-equipped sensors such as radar, camera, navi-
gator, and intelligent speedometer, and then finishes the environment
modeling and builds the real-time 2D/3D map in accordance with the
observed data and existing map, and automatically decides how to
control the action of moving object by the motion trajectory planning
modeling. At present, MODAT (Moving Object Detection and Tracking)
technology of the intelligent autonomous object can solve the detection
and trajectory tracking of (multiple) dynamic objects, and meanwhile
predict their future trajectory, and accordingly provide the necessary
information for the real-time obstacle avoidance planning. In addition,
in the beyond-vehicle network environment, predicting the behavior of
pedestrians is the most important category in the obstacle behavior
prediction. The pedestrian detection and behavior prediction are aimed
at detecting the nearby pedestrian target in the complex road

conditions, classifying in accordance with the characteristics such as
gray level, edge, texture, color and gradient histogram of target in the
follow-up cognition process, identifying the pedestrian target, ana-
lyzing the height, age and other information of pedestrian, and pre-
dicting the dangerous acts of target. Started in the 1990s [35], the re-
search of pedestrian behavior identification had been extensively
applied to the aspects of medical rehabilitation and virtual reality, and
had mainly analyzed and inferred the object behavior by monitoring
the activist behavior or surroundings. The behavior identification is
cored by behavior classification. There are many researches focusing on
the performance of classification algorithm, such as [36] combining the
decision tree and discrete hidden markov model (DHMM) for distin-
guishing the behavior.

The mutually adjacent intelligent autonomous moving objects can
share the environmental map in real time based on the group cognition,
to obtain more detailed and comprehensive perception. In addition,
each intelligent autonomous moving object sends the collected traffic
route information to the cloud, and the cloud gives the report of traffic
road conditions based on the vehicle route. The traditional graph theory
method (such as Dijkstra algorithm) and mathematical programming
method have large computing amount, to result in long computing
time. Moreover, according to the geometrical distance and road quality,
it computes the optimal route and fails to describe the time variation of
real-time traffic network objectively. CIoV makes the real-time de-
scription of traffic network possible, and also has the function of traffic
flow prediction, to enable the large-scale topological network modeling
to be more exquisite. The dynamic route planning optimization based
on real-time traffic update of CIoV and the mechanism and algorithm of
exploring the distributed solution of group intelligent moving object
will be an important research direction of IoV.

4.3.2. Network data security strengthening mechanism based on joint
analysis of physical space and network space

The network environment of IoV is different from the traditional
network environment. Once the attacker invades, the remote control is
conducted for the autonomous vehicle, to result in inestimable harms
and threaten the life and property of the driver, and the massive net-
work attack even affects the breakdown of overall traffic system.
Therefore, the network security of IoV is very important. However, the

Fig. 7. Road traffic safety cognitive mechanisms.
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safety automatic drive is confronted with great challenges. Firstly, due
to complex yet diversified IoV service terminal, different service flow
characteristics can not be extracted simply depending on the traditional
intrusion detection model. Secondly, due to numerous devices carried
in IoV, the corresponding bugs are various, and the platform difference
is larger. The network security cognition should solve the issue of how
to fix bugs rapidly without influencing the traffic safety. The traditional
bug scanning mode has very high degree of dependence on the device
and platform, and should put into lots of human and financial resources
in the case of fixing the bug rapidly.

The network security protection of CIoV mainly involves two parts.
Firstly, in view of characteristics of privatization and diversity of intra-
vehicle network, it utilizes the semi-supervised learning algorithm,
generates the large-scale accurate labeled data set based on a small
amount of labeled data, to guarantee the validity of model training, and
introduces the private feature encryption mode of the owner (such as
basic biological feature and habitual driving behavior of the owner) on
this basis, to realize the exact identification of attack on the intra-ve-
hicle network. At the same time, in combination with the joint analysis
of physical and network space, it realizes the prediction of threatening
route. In the network space, the resource cognitive engine carries out
the implementation monitoring for the network flow. The data cogni-
tive engine makes the cognitive analysis on the network flow fed back
from the resource cognitive engine, and provides the real-time feedback
for automatic drive in combination with joint analysis of perception
data of vehicle to peripheral road conditions, driving data of adjacent
vehicles, and data collected from the intelligent traffic system (traffic
network density and vehicle moving state) in the physical space. Once
an abnormal driving tendency of a vehicle is discovered, the sensitivity
of network data security will be enhanced rapidly, and the network
space bug will be detected and repaired promptly. We will provide
several possible solutions in the next section of Open Issue about more
network security issues involved.

5. Simulation and evaluation

In order to evaluate the performance of the proposed CIoV, we si-
mulate a network resource allocation strategy based on cognition of
fatigue driving. In the simulation, we will focus on a vehicular edge
system called component, which consists of RSU, BS and a range of
vehicle ad hoc networks. We use MATLAB R2014a to conduct our si-
mulation and the CPU type is AMD FX-8150 8-core. The result shows
that CIoV can improve network resource utilization while ensuring
QoE. In future work, a more complex experimental scenario will be
considered.

5.1. Simulation setting

In our simulation scenario (Fig. 8), the resource cognitive engine on
edge is responsible for the analysis and management of network re-
source within the component. The vehicles in the same component
reports the driver’s real-time fatigue state to the resource cognitive
engine, and the cognitive engine allocates network resource based on
the fatigue level. Specifically, we set our simulation setting as follows:

(1) Definition of component: we use the concept of component proposed
in [37]. In a component, each vehicle can reach to one another and
resource cognitive engine manage the entire network resource. The
size of the component, denoted as S, is defined as the number of
vehicles within it. In our simulation, considering the actual vehi-
cular communication range, component size is chosen from 1 to 30.
For each size of the component, the average of 20 groups of data are
used for result analysis.

(2) Definition of average network resources obtained per person: for sim-
plicity, we combine communication, computing and storage re-
source as network resource. Due to the component size is S, the user

number is ∈ …i S{1, 2, 3, , }. Based on continuous driving time, we
classify the users into three levels of fatigue levels, namely, low,
medium and high as shown in Table 2.
Users who drive for a long time are inclined to be more tired,
correspondingly, CIoV should allocate more network resource to
monitor and analyze these users’ real-time status. In our simulation
setting, we will quantify the network resources required by users of
low, medium and high fatigue levels as 0.5, 1, 1.5, respectively. In
other words, network resources required by user i should be r
(i)∈ {0.5, 1, 1.5}, and the average network resource obtained per
person R can be derived by formula (1).

∑=
=

R
S

r1

i

S

i
1 (1)

According to formula (1), the average network resource obtained
per person R can well quantify the utilization efficiency of network
resources in the car network. As for the requirement of QoE, since
the network resource allocated to tired drivers are more, this
strategy can well reflect the feasibility of the resource allocation.

(3) Concept of QoE: we make the following assumptions on the concept
of QoE: 1. If the resource obtained by the user is equal to or more
than the resource required, then QoE of the user achieves its
highest; 2. If the resource obtained by the user is less than required,
then QoE of the user declines. It is worth noticing that extra re-
source will not improve the user’s QoE. In this specific scenario,
fatigued users require more network resource, on the contrary,
users who have just started their journey would not require in-
tensive computing resource since they are very energetic and less
inclined to make driving misjudgments.

(4) Concept of cognition: in the absence of cognition, each driver is al-
located with equal amount of network resource, where =r i( ) 1 and

∈ …i S{1, 2, 3, , }. Since in the actual situation, the allocation of
resources is not uniform due to delay constraint and stability con-
straint, we set a up to 2% random error fluctuation in the resource
obtained. In contrast, with the cognition of fatigue driving within
the component, the resource cognitive engine is aware of each
driver’s condition and allocate corresponding network resource to
meet different users QoE. The system flow is shown in Fig. 9.

Fig. 8. Illustration of simulation scenario.

Table 2
Simulation parameter setting.

Driving time (h) Fatigue driving level Network resources required

< 1 Low 0.5
1–2 Medium 1
>2 High 1.5
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5.2. Result and analysis

The simulation result are revealed in Fig. 10. Fig. 10(a) shows the
driving time for users normally follows an exponential distribution. It is
noted around 90% of the users actually drive less than 1 h, which leaves
great space for optimizing network resources. Taking into account the
fact that network resource on edge is relatively limited, if drivers who
travel more than 2 h are allocated the same amount of network resource
as those who travel less than 1 h, it not only causes the abuse of limited
network resource, but also greatly ignores the actual needs of drivers in
the state of fatigue driving due to the invalid resource distribution.
Therefore, optimization of the network resource based on cognition of
fatigue driving is necessary.

As mentioned in simulation setting, network resource allocation is
conducted with the guarantee of best satisfying the QoE of all users
within the component. In other words, resource allocation with cog-
nition of fatigue driving should naturally outperform the one without
cognition in meeting the requirement of QoE. The simulation result of
Fig. 10(b) shows that, the average network resource obtained per
person with cognition of fatigue driving is around 0.6, which is far less
compared to the one without cognition of fatigue driving. Therefore,
with cognition of fatigue driving, less network resource is needed
within a component while ensuring the QoE, in other words, the effi-
ciency of utilization of network resource is greatly improved.

6. Open issues

6.1. Orchestration and automation

CIoV has large amount of heterogeneous access devices, e.g., an
intelligent vehicle has multiple sensors, driver and passengers carry
diversified intelligent devices. The structure of beyond-vehicle network
is also quite complex, and high-performance computing should be
considered in highly mobile network environment, otherwise, the ac-
cess ways of devices are different at different scales. Therefore, how to
realize automatic coordination and management among networks of
different types is a quite challenging problem. Take mobile health
monitoring scenario as an example. Through collecting and analyzing
physiological indices, the smart clothes on cognitive intra-vehicle net-
work has detected a driver with acute symptoms. After the hospital
cloud receives alarm sent by smart clothes, it is necessary to feed back
the true situation to mobile network operator, and urge mobile network
operator to allocate more communication and computing resources to
the specific vehicle. In this case, automatic orchestration problem of
network slice resources is involved. Otherwise, if a driver is in fatigue
driving, how could intelligent vehicles, pedestrians, nearby vehicles
and road traffic system in the framework of CIoV automatically and
rapidly make correct response in extremely short time, thus to avoid
occurrence of traffic accidents. With development of 5G technology,
under specific application requirements of CIoV, plenty of research
work is needed to consider problems of task orchestration and auto-
mation. A feasible solution through opportunistic smartphone-based
mobile gateways is proposed in [38] to address this issue.

6.2. System performance

There are a lot of limitations for control decisions of autonomous
moving objects based on independent sensors, for example, in case of
severe weather conditions (such as being late at night, rainstorm, fog
and haze), or in case of complicated road condition scenarios (such as
crossroads and turnings), the observation accuracy of radar or cameras
of intra-vehicle sensors may decrease. If sensors with ultra high accu-
racy and stronger performance are to be developed in allusion to these
special scenarios, consumers could not bear corresponding cost. AI
technology provides possible solution ways to us, but the problem of
system performance could not be completely solved at present. For

Fig. 9. Flow diagram of fatigue driving recognition and follow-up measures.

Fig. 10. Simulation result.
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instance, in aspect of image recognition, certain research progress has
been made in DCNN (Deep Convolutional Neural Network) and the
potential is also proved in intelligent driving field. However, there are
still some defects for DCNN: on one hand, deep learning technology
needs large amount of manually annotated training data, on the other
hand, though recognition performance may be enhanced by adding
hidden layer in hierachical framework [39], but the complexity of
model would increase greatly. Finally, the training problem of model
would become harder and harder. How to combine environment col-
laborative perception technology in physical space and flow data
mining and prediction technology in network space on basis of AI
technology will be the direction in future research on IoV.

6.3. Privacy and security

As a human-centered ecological system, CIoV will be faced with
various challenges concerning privacy and security. Intra-vehicle net-
work stores large amount of private information of the vehicle owners:
the sensors on intra-vehicle network include driving videos and voices
of vehicle owner in the vehicle; pictures, locations, activities and etc.
may be shared on vehicular social platform; mobile healthcare appli-
cation would also collect physiological health data of vehicle owner.
Therefore, the information on cognitive intra-vehicle network is quite
sensitive and needs extra protection. A possible solution is to conduct
information encryption with biometric information, e.g., device access
may be protected with iris and face recognition, otherwise, data sharing
may be conducted through identifying heart rate and etc. Some data
need to be shared to remote server for analysis, cooperation with net-
work architecture and transmission protocol should be conducted in
encryption [42].

Deploying machine learning capacity on vehicular edge cloud and
establishing a strong distributed peer-to-peer network among edge de-
vices is one of research trends in protection of privacy-sensitive cog-
nitive applications. However, in the evolution course toward CIoV,
there would necessarily be many vehicular devices with low in-
telligence and limited computing resources, and it is easier for these
devices to be attacked by cyber attackers; these devices not only could
not sufficiently protect their own resources, but they may also do harm
to security in the whole road system. Consumers are often unwilling to
upgrade vehicular devices with long service life. Therefore, with the
reliability of large amount of distributed devices and system being
taken into consideration, it is quite crucial to create a safe semi-auto-
matic future driving scenario.

6.4. Power supply

With rapid development of smart grid technology, battery would
probably become the chief energy storing device for automatic driving
vehicles in the future. Since IoV is constantly evolving, the require-
ments on battery would be higher and higher. Intelligent vehicular
devices contains many high-power consumption parts, such as network
chips, GPS and continuous high precision sensors; furthermore, with
comfort degree in driving experience being taken into consideration, it
is also quite important to keep them concealed to passengers. Currently,
the cruising duration of self-driving vehicles is limited, because the
technological level of lithium ion batteries adopted is limited. If the
energy efficiency problem is to be solved, advanced energy acquisition
technology should be developed, thus to enable intelligent vehicles to
acquire energy from ambient environment for direct use or storage in
vehicular batteries. On the other hand, researchers are making great
efforts to seek new materials, to improve energy density of batteries,
and to reduce charging time, thus to enhance battery performance and
to provide better user experience. Battery Management System
(BMS) [43] is a possible solution which is safe, reliable and with ac-
ceptable cost.

7. Conclusion

In this paper, after overviewing the special demand brought out by
future autonomous driving scenarios, a novel human-centric archi-
tecture called CIoV has been proposed, aiming to strengthen in-
telligence of IoV comprehensively. Embedded with cognitive in-
telligence, CIoV extracts and utilizes data from both physical and
network space. To meet the rigorous application requirements, this
novel architecture also brings abundant research challenges and op-
portunities. We have discussed cognitive design issues from three per-
spectives referred as intra-vehicle network, inter-vehicle network and
beyond-vehicle network, respectively. To be specific, with the co-
operation of three networks, safety of the transportation system can be
guaranteed, efficiency of the network resource can be achieved and
security of the cyberspace can be enhanced. Most importantly, CIoV is
strongly connected with individual characteristic, therefore it can im-
prove QoE of the driver and passengers. In our future work, we will
implement the emotion communication technology in CIoV and also
experiment on network slicing for more authentic driving scenarios.
Though CIoV is still in its early stage, this architecture shows great
potentiality in enabling future autonomous driving scenarios. end-
document
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