
IEEE Wireless Communications • June 2018 211536-1284/18/$25.00 © 2018 IEEE

Abstract
With the development of recent innovative appli-
cations (e.g., augmented reality, natural language
processing, and various cognitive applications),
more and more computation-intensive and
rich-media tasks are delay-sensitive. Edge cloud
computing is expected to be an effective solu-
tion to meet the demand for low latency. By the
use of content offloading and/or computation off-
loading, users’ quality of experience is improved
with shorter delay. Compared to existing edge
computing solutions, this article introduces a new
concept of computing task caching and gives the
optimal computing task caching policy. Further-
more, joint optimization of computation, caching,
and communication on the edge cloud, dubbed
Edge-CoCaCo, is proposed. Then we give the
solution to that optimization problem. Finally, the
simulation experimental results show that com-
pared to the other schemes, Edge-CoCaCo has
shorter delay.

Introduction
Due to the rapid development of wireless tech-
nology and the Internet of Things (IoT), more and
more mobile devices (smartphones, wearable
devices, etc.) access wireless networks with various
requirements in terms of bandwidth and compu-
tation. In the future, mobile devices will become
more intelligent, while the applications deployed
on them will require extensive computation power
and persistent data access [1]. However, the devel-
opment of these emerging applications and ser-
vices is restricted by the limited computational
capacity and battery life of those devices. If com-
putation-intensive and rich-media tasks could be
offloaded to the cloud for task execution, it would
be able to overcome the limitation of insufficient
computing ability of mobile devices. However, rel-
atively long delay appears when mobile devices
are connecting to the cloud through wireless net-
works [2], which is not suitable for delay-sensitive
tasks such as transcoding for virtual reality (VR)
streaming and image processing for augmented
reality (AR) games.

Recently, edge cloud computing has provided
computing services with short delay and high per-
formance to users through computing nodes or
servers deployed on the network edge in order to

meet the computing requirements of delay-sensi-
tive tasks [3, 4]. There are two major advantages
of using the edge cloud:
•	 In contrast to local computing [5], edge cloud

computing can overcome the restrictions of
limited computation capacity on mobile devic-
es.

•	 Compared to computation offloading toward
the remote cloud [6], edge cloud computing
can avoid the high latency that may be caused
by offloading the task contents to the remote
cloud.

Thus, edge cloud computing typically exhibits a
better trade-off for delay-sensitive and computa-
tion-intensive tasks.

To the best of our knowledge, all previous
work on edge cloud computing focuses on the
following three aspects:

Content offloading, or edge caching. On this
topic, various caching policies were proposed to
reduce the latency and energy cost of users get-
ting the requested content [7, 8].

Computation offloading. Its main design issues
are when, what, and how to offload users’ task
from their device to the edge cloud in order to
reduce the computation latency with energy saving
[9]. For instance, Chen et al. proposed a scheme
to schedule computation tasks on the edge cloud
under the circumstance of user mobility [10].

Mobile edge computing. Its main concern is
to deploy edge clouds near the base station [11].
By considering both communication and comput-
ing resources, optimal solutions were designed for
reducing energy cost and latency [12]. Howev-
er, there is no work considering computing task
caching. In this article, we first introduce the new
concept of computing task caching. Then joint
optimization of computation, caching, and com-
munication on the edge cloud, dubbed Edge-Co-
CaCo, is proposed.

In order to explain “computing task caching,”
and illustrate the difference between edge cloud
computing and Edge-CoCaCo, we use the scenar-
io of a typical video processing task, as shown in
Fig. 1.

Edge cloud computing: As shown in Fig. 1a,
a mobile device (e.g., smartphone, wearable
device, vehicle, and cognitive device) offloads
video decoding tasks T1, T2, T3, and T4 to the
edge cloud through a cellular network or WiFi.

Min Chen, Yixue Hao, Long Hu, M. Shamim Hossain, and Ahmed Ghoneim

Edge-CoCaCo: Toward Joint Optimization of
Computation, Caching, and

Communication on Edge Cloud

CONTENT-CENTRIC COLLABORATIVE EDGE CACHING IN 5G MOBILE INTERNET​

Min Chen, Yixue Hao, and Long Hu are with Huazhong University of Science and Technology;
M. Shamim Hossain is with King Saud University; Ahmed Ghoniem is with King Saud University and Menoufia University.

Digital Object Identifier:
10.1109/MWC.2018.1700308

IEEE Wireless Communications • June 201822

After edge cloud finishes the tasks, the computing
results are fed back to the mobile device.

Computing task caching: As shown in Fig. 1b,
among the requested video decoding tasks T1, T2,
T3, and T4, let us assume that tasks T3 and T4 are
already cached on the edge cloud. This is because
the videos corresponding to T3 and T4 happen to
be cached due to their high popularity. Therefore,
the mobile device only needs to offload T1 and
T2 to the edge cloud. The processing results of
T1 and T2 are fed back to the mobile device after
the edge cloud finishes the tasks, while the cached
results of T3 and T4 are sent back to the mobile
device immediately. Since there is no need to off-
load tasks T3 and T4, their communication cost is
saved, while the task duration is shorter.

Edge-CoCaCo: In Fig. 1c, a mobile device has
five delay-sensitivity tasks that need to be pro-
cessed, namely T1, T2, T3, T4, and T5. In order to
finish the required processing of tasks as soon as
possible, the scheme of Edge-CoCaCo is designed
as follows: Since T2, T3, and T4 are relatively
popular tasks, they are already cached on the
edge cloud, and the mobile user does not need
to offload them again. Task T5 has a larger data
size and needs a lot of data transmissions, but its
requirement for computing resources is relative-
ly small. Therefore, it is processed locally. Task
T1 needs fewer data transmissions but is compu-
tation-intensive with higher need for computing
resources. Therefore, it can be offloaded to the
edge cloud for processing.

Hence, the computing task caching and Edge-Co-
CaCo need to be considered in order to achieve
the lowest latency of the task execution at the edge
cloud. However, there are three challenges:

•	 How the task is cached: Considering the com-
puting task diversity (i.e., task popularity, data
size, and the required computation capacity
of the task), caching of computing tasks is still
challenging.

•	 How computation offloading works with com-
puting task caching: During the execution of
a task, a computing task can be processed not
only on the edge cloud, but also locally. How-
ever, when the task is cached in the edge cloud,
it may not need to be processed locally. There-
fore, it is challenging to make a computation
offloading decision with computing task caching.

•	 How to solve the joint optimization problem
at Edge-CoCaCo: Edge-CoCaCo includes a
computing task caching problem and a task
offloading problem that are hard to solve.
In this article, we first analyze the influence

factors on caching policy and give the optimal
computing task caching policy. Then we solve
the optimization problem of Edge-CoCaCo using
an alternating iterative algorithm. The simulation
experiment shows that processing delay of tasks
can be decreased significantly by deploying the
computing task caching and computing offloading
strategy reasonably. In summary, the main contri-
butions of this article include:
•	 Considering task diversity and whether tasks

can be cached on the edge cloud, there are
three possibilities:

	 –The computing task is not cached.
	 –The computing task is cached.
	 –The computing task result is cached.
	 In terms of the deployment scheme of comput-

ing task caching, the experiment shows that
caching of computing tasks relates to the pop-
ularity and size of task contents, as well as the
required computation capacity of tasks.

•	 We propose Edge-CoCaCo to achieve the low-
est delay of task processing, which includes the
computing task caching placement and task
offloading decision optimization problems.

•	 Through joint optimization of communication,
caching, and computing on the edge cloud,
we develop innovative caching and offloading
schemes of computing tasks. The experimental
result shows that the delay of computing tasks
in the Edge-CoCaCo scheme is the shortest.
The article is organized as follows. In the next

section, the architecture and problem formulation
of computing task caching are described. Then
the Edge-CoCaCo model and problem formula-
tion are presented. After that, the obtained exper-
imental results and related discussions are given.
Finally,we conclude the article.

Architecture and Problem Formulation of
Computing Task Caching

In this section, we introduce the architecture of
computing task caching and propose a comput-
ing task caching strategy.

From Content Caching to Computing Task Caching
In recent years, content caching has been stud-
ied extensively, including caching policy, the
distribution of caching contents, and so on [13,
14]. In content caching, a content provider
can cache popular content on the edge cloud
to reduce the delay of user requesting content.

FIGURE 1. Illustration of: a) edge cloud computing; b) computing task caching;
c) joint optimization of computation, caching, and communication on edge
cloud (Edge-CoCaCo).

Task offloading
results

Edge cloud

Computing
resource

Storage
resource

Task offloading
Results

T1

Edge cloud

T2 The task is caching on edge cloud

T5
Local processing

Task T1 not
cached in the
edge cloud

Task T2,T3,T4
is cached

in edge cloud

T

Edge cloud

Offloading

Result

Mobile
device

Mobile
device

Video
task

Video
task

Mobile device

T2T1 T4T3 T5

T2T1 T4T3

T2T1 T4T3

T2T1 T4T3

T2T1 T4T3

T2T1 T4

(a)

(b)

(c)

T3

T2T1 T4T3

T2T1 T4T3

T4T3

IEEE Wireless Communications • June 2018 23

The specific process is explained below. When
a mobile device requests a content, the request
will go to the edge cloud. If the edge cloud has
cached the content, it will transmit the content
to the user who is requesting the content, which
is shown in Fig. 2a. In computing task caching,
by considering task diversity, we divide the com-
puting task processing on the edge cloud in
three situations.

Computing task not cached: The tasks of a
mobile device that need to be processed are not
cached on the edge cloud. The specific process
is shown in Fig. 2b. Namely, the mobile device
requests a computing task that needs to be off-
loaded, and the edge cloud discovers that it does
not cache the task. In that case, the mobile device
needs to offload the computing task to the edge
cloud first, and when the edge cloud finishes the
task, it transmits the result back to the mobile
device.

Computing task cached: The tasks of a mobile
device that need to be processed are cached on
the edge cloud. Alternatively, if other different
cached tasks can be transformed to the requested
ones, we also count the tasks as being indirectly
cached. The specific process is shown in Fig. 2c,
where the mobile device first requests the com-
puting task that needs to be offloaded; then the
edge cloud informs the user that the task exists on
the edge cloud, and the mobile device does not
have to offload the computing task to the edge
cloud. Finally, when the edge cloud finishes task
processing, it transmits the result to the mobile
device.

Computing task result cached: The result of
the task of a mobile device that needs to be pro-
cessed is cached on the edge cloud. In this case,
the control flow is as shown in Fig. 2d. Namely,
the mobile device does not need to offload the
task to the edge cloud, and the edge cloud does
not need to process the task. The edge cloud just
needs to transmit the task result to the mobile
devices directly. This situation is similar to content
caching.

In the case of computation-intensive and
rich-media computing tasks, offloading and
computing of tasks typically cause various
delays. According to the above discussion, the
delay of task offloading and computing can be
reduced by caching the task that needs to be

processed on the edge cloud or caching the
task result after being processed on the edge
cloud, so as to meet the requirement for short
delay of the task.

Key Design Problem of Computing Task Caching
In this subsection, we consider the factors that
affect computing task caching. Figure 1b shows
an example of computing task caching. For
instance, mobile devices have four video tasks
that need to be decoded, T1, T2, T3, and T4.
Among these tasks, T2 and T4 are relatively pop-
ular videos, while T1 and T3 are not popular
videos. In this article, the number of requests is
used to represent the popularity of a task (i.e.,
the number of requests for a task). Let us assume
the popularity of T1, T2, T3, and T4 be 1, 4, 3,
and 2, respectively. Let the size of data associ-
ated with the four tasks (i.e., T1, T2, T3, and T4)
be 20 Mb, 5 Mb, 30 Mb, and 10 Mb, respective-
ly. The required computation resources for the
executions of the four tasks are 6 gigacycles, 2
gigacycles, 4 gigacycles, and 10 gigacycles. Let
the data rate for delivering task contents be 20
Mb/s. Let the computation capacity of the edge
cloud be 10 GHz.

There is a following question: Given the capac-
ity of the edge cache as 40 Mb, what is the best
allocation scheme of computing task caching?
Based on the aforementioned parameter config-
urations, it can be calculated that 1.6 s will be
reduced for T1 by use of computing task caching.
Likewise, computing task caching for T2, T3, and
T4 leads to a delay reduction of 1.8 s, 3.8 s, and
4.5 s, respectively. Thus, caching T3 and T4 is the
optimal solution to achieve the lowest latency.

Thus, in the computing task caching strategy,
there are still challenges related to computing task
caching:
•	 Although the caching capacity and computing

capability of the edge cloud are better than
those of a mobile device, the edge cloud is still
not able to cache and support all types of com-
puting tasks.

•	 Compared to content caching, caching of a
computing task needs to consider not only task
popularity, but also data size and computing
resource required for the task.

Therefore, the design of computing task caching
strategy is a challenging issue.

FIGURE 2. Illustration of content and task request process: a) content caching; b) computing task not cached; c) computing task
cached; d) computing task result cached.

 Content request

Edge cloud
Content

 Task request

 Task not cache

 Task offloading

Task processing

 Result

device

 Task request

 Task caching

Task processing

 Result

 Task request

 Task caching

 Result

Mobile

Edge cloud

Edge cloud

Edge cloud

(a) (c)

(b) (d)

Mobile
device

Mobile
device

Mobile
device

Mobile
device

IEEE Wireless Communications • June 201824

Computing Task Caching Model
In this subsection, we give the computing task
caching strategy. We consider an edge com-
puting ecosystem that includes multiple mobile
devices and an edge cloud. Mobile devices can
communicate with the edge cloud through wire-
less channel. The edge cloud is a small data cen-
ter with computing and storage resources, where
the computing resources provide task processing
for mobile devices and storage resource provides
for task content, processing code, and computa-
tion result caching.

We assume that mobile devices have n com-
puting tasks that need to be processed, and the
set of tasks is denoted as Q = {Q1, Q2, …, Qn}.
Since some computing tasks have higher pop-
ularity, they may be processed many times. For
computing task Qi, Qi = {wi, si, oi}, where wi is the
amount of computing resource required for task
Qi (i.e., the total number of CPU cycles needed to
complete the task), and si is the data size of com-
putation task Qi, that is, the amount of data con-
tent (e.g., the processing code and parameter(s))
to be delivered toward the edge cloud. Finally,
oi represents the data size of the task result. For
instance, in the video decoding case, w i is the
computing resource needed for video decoding,
si is the video data size, and oi is the data size
of the decoded video. Since the computing and
capacity of the edge cloud is limited, we assume

that the cache size and computing capacity of the
edge cloud are ce and cs, respectively.

In this article, for the sake of simplicity, we
divide tasks into two categories: computing tasks
cached on the edge cloud and computing tasks
not cached on the edge cloud. We define the
integer decision variable, xi  {0, 1} that indicates
whether task Qi is cached at the edge cloud (xi
= 1) or not (xi = 0). We also define the respec-
tive task caching placement strategy: x = (x1, x2,
…, xn). In addition, when the computing task is
cached on the edge cloud, we define Ti

c as the
task duration of task Qi being processed on the
edge cloud, and Ti

nc as the task duration of task
Qi being processed on the edge cloud when the
computing task is not cached. We give a more
detailed discussion of task duration later.

Consequently, the problem of determining the
computing task caching placement strategy that
minimizes the task duration can be defined as fol-
lows:

minimize
x

pi
i=1

n

∑ xiTi
c + (1− xi)Ti

nc⎡
⎣

⎤
⎦

subject to: xisi ≤ ce
i=1

n

∑
 	

(1)

where pi denotes the probability of requests for
computing task Qi. The objective function com-

FIGURE 3. Computing task caching evaluation: a) task duration with different sizes in three cases: comput-
ing task not cached, computing task cached, and computing task result cached. Task duration achieved
by popular caching, random caching, femtocaching, and task caching for various value of b) the edge
cloud cache capacity; c) the average data size of per task; d) the average computation cacpacity per
task. The default setting is n = 100, ce = 100 MB, l = 0.2; w follows normal distribution with an average
of 2 gigacycles per task; s follows uniform distribution with an average of 50 MB.

0 2 4 6 8 10
0

10

20

30

40

50

60

Ta
sk

 d
ur

at
io

n
(s

)

Computing task result cached
Computing task cached
Computing task not cached

0 20 40 60 80 100
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

Ta
sk

 d
ur

at
io

n
(s

)

Popular caching
Random caching
Femtocaching
Task caching

40 45 50 55 60
7

8

9

10

11

12

Ta
sk

 d
ur

at
io

n
(s

)

Popular caching
Random caching
Femtocaching
Task caching

0 1 2 3 4 5 6
8.6

8.8

9

9.2

9.4

9.6

Ta
sk

 d
ur

at
io

n
(s

)

Popular caching
Random caching
Femtocaching
Task caching

Average data size (MB)

Average data size (MB)

Edge cloud cache size (MB)

Average computations per task (gigacycles)

(a)

(c)

(b)

(d)

The delay of task off-
loading and computing
can be reduced by
caching the task that
needs to be processed
on edge cloud or
caching the task result
after being processed
on edge cloud, so as to
meet the requirement
for short delay of task
computing.

IEEE Wireless Communications • June 2018 25

putes the minimal processing delay of the task
through deployment of task caching. The con-
straint condition is that the data size of a cached
computing task cannot exceed the largest caching
capacity.

For solving the optimization problem, since
the objective function and constraint are linear,
the optimal problem is a 0 – 1 integer linear opti-
mization problem. By the use of a branch and
bound algorithm [15], the optimal solution can be
obtained. The optimal result represents the com-
puting task caching strategy of the edge cloud.

Edge-CoCaCo Model
In this section, we propose the Edge-CoCaCo
model in order to finish task computing more
quickly. The Edge-CoCaCo model deals with the
following two problems:
•	 Computing task caching placement problem: It

refers to the decision of whether to cache the
computing tasks on the edge cloud or not.

•	 Task offloading problem: It refers to the deci-
sion of which task should be processed locally
and which tasks should be processed on the
edge cloud.

Communication Model
We first introduce the communication model and
give the uplink data rate when a mobile device
offloads a task on the edge cloud. Let h and p
denote channel power gain and transmission
power of a mobile device, respectively. Then the
uplink data rate of task Qi can be obtained as fol-
lows:

r = B log2 1+
ph2

σ2
⎛

⎝
⎜

⎞

⎠
⎟ ,

where s2 denotes the noise power, and B rep-
resents the channel bandwidth.

Computation Model
Now we introduce the computation offloading
model. In this article, we assume that a computing
task is divisible, which means that a task can be
divided into two or more parts. Therefore, it can
be processed locally or on the edge cloud. For
task Qi, we define the decision variable ai  [0, 1].
When ai = 1, task Qi is processed locally; when ai
= 0, task Qi is offloaded to the edge cloud; when
ai  (0, 1), part ai of task Qi is processed locally,
and part 1 – a i is offloaded to the edge cloud.
We define the respective task offloading policy: a
= {a1, a2, …, an}. The specific computing delay is
shown as follows.

Local Computing: For local task computing,
we define fl as the CPU computing capability of
a mobile device. Thus, the local execution time of
task Qi can be expressed as Til = wi/fl.

Edge Cloud Computing: For task computing
on the edge cloud, we define fc as a CPU com-
puting capability of the edge cloud. In this case,
the task duration consists of time consumed by
three procedures:
•	 Time consumed when the mobile device off-

loads the task
•	 Time consumed when the computation task is

processed on the edge cloud
•	 Time consumed to feed back the computing

results to the mobile device

Since data size after task processing is gener-
ally smaller than before processing [12], and the
downlink rate from the edge cloud to the mobile
device is higher than the uplink rate from the
mobile device to the edge cloud, we denote the
time consumed to feed back the computing result
to the mobile device as a variable  i(oi), and it
relates to the data size of the computing result.
Therefore, we can obtain the task duration of task
Qi on the edge cloud as follows:

Ti
e =

ωi
fc
+
si
r
+ξi (oi).

Thus, when the task is cached in the edge cloud,
the task duration can be expressed as

Ti
c = ωi

fc
+ ξi (oi).

In comparison, when the task is not cached, the
task duration can be expressed as: Ti

nc = Ti
e.

According to the above discussion, for task
Qi, considering computing task caching, and local
and edge cloud computing, the total task duration
of Qi can be obtained as follows:

Ti = xi
ωi
fc

+ ξi (oi)
⎛
⎝⎜

⎞
⎠⎟
+ (1− xi) αiTi

l + (1−αi)Ti
c⎡

⎣
⎤
⎦

	 (2)

Edge-CoCaCo Model
Our objective is to minimize the task duration of
all tasks under the caching capacity constraints,
which include the computing task caching place-
ment problem and task offloading problem. The
problem can be expressed as follows:

minimize
x,α

piTi
i=1

n

∑

subject to xisi
i=1

n

∑ ≤ ce
 	

(3)

where the objective function computes the min-
imal task duration through deployment of com-
puting task caching and task offloading. The
constraint condition is that the data size of a
cached computing task cannot exceed the edge
cloud caching capacity.

For solving the optimization problem, since the
objective function and constraint are linear, the
optimal problem is a mixed integer linear optimi-
zation problem. Since the objective function with
respect to a is a linear optimization function, the
optimal solution can be obtained based on the
Karush-Kuhn-Tucker (KKT) condition [15]. Then
the objective function is transformed into a 0 – 1
linear programming problem with respect to x.
By the use of the branch and bound algorithm,
the solution can be calculated. Thus, the linear
iterative algorithm can be utilized and obtain the
approximate optimal solution. The optimal result
represents the computing task caching and task
offloading strategy of the edge cloud.

Performance Evaluation
In this section, we evaluate the performance of
computing task caching and the Edge-CoCaCo
model. We assume that system bandwidth B and
transmitting power p of the mobile device are 1
MHz and 0.2 W, respectively. The corresponding

Mobile devices can
communicate with the

edge cloud through
wireless channel. The
edge cloud is a small

data center with com-
puting and storage
resources, whereas

computing resources
provide task process-

ing for mobile devices
and storage resource

provides task content,
processing code, and

computation result
caching.

IEEE Wireless Communications • June 201826

Gaussian channel noise s2 and channel power
gain h are 10–9 W and 10–5, respectively. For task
Qi, we assume that required computing capac-
ity wi and data size si are generated by a proba-
bility distribution [4]. For the task popularity, we
assume that the number of task requests follows
the Zipf distribution with parameter l . Further-
more, we assume that the computing capabilities
of the edge cloud and mobile device are 10 GHz
and 1 GHz, respectively.

Computing Task Caching Evaluation
We first describe the comparison of task dura-
tion in terms of three cases: computing task not
cached, computing task cached, and computing
task result cached. As can be seen in Fig. 3a,
when the computing task result is cached, the
computation delay is the minimum. When the
task is not cached, the computation delay is the
maximum. Thus, computing task caching can
reduce the delay of the task. From Fig. 3a, we can
also see that the bigger the computing task data
size, the longer the delay. This is because when
the task transmission rate is constant, the larger
the task size, the longer the delay.

To evaluate the computing task caching strat-
egy, we compare the task caching strategy pro-
posed in this article with the following caching
strategies.
•	 Popular caching scheme: The edge cloud

caches the computing task with the maximum
number of requests until reaching the caching
capacity of the edge cloud.

•	 Random caching scheme: The edge cloud cach-
es the computing task randomly until reaching
the caching capacity of the edge cloud.

•	 Femtocaching scheme: The caching capacity of
the computing task is set as being empty at the
start. Iteratively, add a task to a cache that min-
imizes the total delay of computing task pro-
cessing (i.e., Eq. 1) until reaching the caching
capacity of the edge cloud.
From Figs. 3b–3d, the task caching strategy

proposed in this article is optimal, and the ran-
dom caching strategy is relatively poor. This is
because the random cache fails to consider the
number of task requests as well as the task com-

putation amount and data size of the computing
task in the case of computing task caching. The
popular caching strategy only considers the num-
ber of task requests, rather than considering the
data size and computation amount of task com-
prehensively. Femtocaching considers the com-
putation amount, data size, and request of the
task to a certain extent. From Fig. 3b, we can also
see that the larger the cache capacity of the edge
cloud, the smaller the task delay. This is because
the capacity of the cache becomes larger, which
leads to caching more tasks; thus, task duration
can be reduced. From Figs. 3c and 3d, we can
see that the impact of task data size on the algo-
rithm is less than the impact of computing capaci-
ty on the algorithm.

Edge-CoCaCo Model Evaluation
To evaluate the Edge-CoCaCo model, we com-
pare the Edge-CoCaCo with the following caching
and computing strategy.
•	 Caching+Local: First, the computation tasks are

cached according to the caching policy pro-
posed in this article, and second, the tasks that
are not cached will only be handled locally
rather than being offloaded to the edge cloud
for processing.

•	 Caching+Edge: The not cached tasks are off-
loaded to the edge cloud for processing rela-
tive to Caching+Local. From Fig. 4 we can see
that the task duration of the proposed Edge-Co-
CaCo model is lowest, that is, reasonably
deploying computation task caching placement
and task offloading can effectively reduce the
computation latency of a task.
From Fig. 4a, we can also see that the differ-

ence of task duration between Edge-CoCaCo and
Caching+Edge is little when the data size of tasks
is small. Also, the difference between Edge-Co-
CaCo and Caching+Local is little when the data
size is large. Thus, we can conclude that under
the same required computation capacity of tasks,
the tasks should be processed at the edge cloud
when the data size of tasks is small; conversely, if
the data size is large, the tasks should be handled
locally. Similarly, we can conclude from Fig. 4b
that under the same data size of tasks, the tasks

FIGURE 4. Edge-CoCaCo model evaluation: a) task duration over different data sizes of computation task;
b) task duration over different required computation capacity of tasks. The default setting is n = 100, ce
= 100 MB, l = 0.2; w follows normal distribution with an average of 2 gigacycles per task; s follows uni-
form distribution with an average of 10 MB.

40 60 80 100 120
1

1.5

2

2.5

3

3.5

Ta
sk

 d
ur

at
io

n
(s

)

Edge-CoCaCo
Caching+Local
Caching+Edge

0 1 2 3 4 5
0

1

2

3

4

5

Ta
sk

 d
ur

at
io

n
(s

)

Edge-CoCaCo
Caching+Local
Caching+Edge

Average data size (MB) Average computations per task (gigacycles)
(a) (b)

The task caching strat-
egy proposed in this
article is optimal, and
the random caching
strategy is relatively
poor. This is because
the random cache fails
to consider the number
of task requests and
also fails to consider
the task computation
amount and data size
of computing task in
the case of the com-
puting task caching.

IEEE Wireless Communications • June 2018 27

should be handled locally when the required
computation capacity is relatively small, and pro-
cessed at the edge cloud when the computation
capacity is large.

Conclusion
In this article, we first propose computing task
caching on the edge cloud, analyze the influence
factors of task popularity and size of task content,
as well as the required computation capacity on
caching strategy, and provide the optimal cach-
ing strategy of a computing task. To the best of
our knowledge, this is the first study of comput-
ing task caching in the edge cloud. Furthermore,
we propose Edge-CoCaCo to meet the low delay
demands of computation-intensive and rich-media
tasks. Simulation results have shown that our pro-
posed scheme has less delay compared to other
schemes. For future work, we will consider multi-
ple edge cloud computing task caching strategies
and use real traces to do experiments.

Acknowledgement
The authors extend their appreciation to the
Deanship of Scientific Research at King Saud Uni-
versity, Riyadh, Saudi Arabia, for funding this work
through the research group Project no. RGP-229.
Long Hu is the corresponding author.

References
[1] M. Chen and Y. Hao, “Task Offloading for Mobile Edge

Computing in Software Defined Ultra-dense Network”, IEEE
JSAC, vol. 36, no. 3, 2018, pp. 587–97.

[2] X. Hou et al., “Vehicular Fog Computing: A Viewpoint of
Vehicles as the Infrastructures,” IEEE Trans. Vehic. Tech., vol.
65, no. 6, 2016, pp. 3860–3873.

[3] M. Patel et al., "Mobile-Edge Computing Introductory Tech-
nical White Paper,” Sept. 2014; http://www.etsi.org/techno-
lo-gies-clusters/technologies/mobile-edge-computing.

[4] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud
Architecture for Mobile Computing,” Proc. IEEE INFOCOM,
San Francisco, CA, 2016, pp. 399–400.

[5] M. Chen et al., “On the Computation Offloading at Ad Hoc
Cloudlet: Architecture and Service Modes,” IEEE Commun.
Mag., vol. 53, no. 6, June 2015, pp. 18–24.

[6] M. Barbera et al., “To Offload or Not to Offload? The Band-
width and Energy Costs of Mobile Cloud Computing,” Proc.
IEEE INFOCOM, Turin, Italy, 2013, pp. 1285–93.

[7] X. Li et al., “Collaborative Multi-tier Caching in Heterogeneous
Networks: Modeling, Analysis, and Design,” IEEE Trans. Wire-
less Commun., vol. 16, no. 10, 2017, pp. 6926–39.

[8] M. Chen et al., “Green and Mobility-Aware Caching in 5G
Networks,” IEEE Trans. Wireless Commun., vol. 16, no. 12,
2017, pp. 8347–61.

[9] W. Shi, et al., “Edge Computing: Vision and Challenges,” IEEE
Internet of Things J., vol. 3, no. 5, 2016, pp. 637–46.

[10] M. Chen et al., “Mobility-Aware Caching and Computation
Offloading in 5G Ultra-Dense Cellular Networks,” Sensors,
vol. 16, no. 7, 2016, pp. 974–87.

[11] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey
on Architecture and Computation Offloading,” IEEE Com-
mun. Surveys & Tutorials, vol. 19, no. 3, 2017, pp. 1628–56.

[12] X. Chen, et al., “Efficient Multi-User Computation Offload-
ing for Mobile-Edge Cloud Computing,” IEEE-ACM Trans.
Net., vol. 24, no. 5, 2016, pp. 2795–2808.

[13] X. Wang et al., “Serendipity of Sharing: Large-Scale Mea-
surement and Analytics for Device-to-Device (D2D) Content
Sharing in Mobile Social Networks,” Proc. IEEE SECON, San
Diego, CA , 2017. DOI: 10.1109/SAHCN.2017.7964925.

[14] X. Wang et al., “D2D Big Data: Content Deliveries over
Wireless Device-to-Device Sharing in Realistic Large-Scale
Mobile Networks,” IEEE Wireless Commun., vol. 25, no. 1,
2018, pp. 1–10.

[15] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge Univ. Press, 2004.

Biographies
Min Chen [SM’09] (minchen2012@hust.edu.cn) has been a full
professor in the School of Computer Science and Technology at
HUST since February 2012. He is Chair of the IEEE Computer
Society STC on Big Data. His Google Scholars Citations reached
12,800+ with an h-index of 55. He received the IEEE Commu-
nications Society Fred W. Ellersick Prize in 2017. His research
focuses on cyber physical systems, IoT sensing, 5G networks,
healthcare big data, and cognitive computing.

Yixue Hao (yixuehao@hust.edu.cn) received his B.E. degree
from Henan University, China, and his Ph.D degree in com-
puter science from HUST in 2017. He is currently working as
a postdoctoral scholar in the School of Computer Science and
Technology at HUST. His research includes 5G networks, the
Internet of Things, and mobile cloud computing.

Long Hu (longhu@hust.edu.cn) has been a lecturer in the
School of Computer Science and Technology, HUST, since
2017. He was a visiting student at the Department of Electrical
and Computer Engineering, University of British Columbia from
August 2015 to April 2017. His research includes the Internet
of Things, software defined networking, caching, 5G, body area
networks, body sensor networks, and mobile cloud computing.

M. Shamim Hossain [SM’09] (mshossain@ksu.edu.sa) is a pro-
fessor with the Department of Software Engineering, College
of Computer and Information Sciences, King Saud University,
Riyadh, Saudi Arabia. He has authored or co-authored more
than 175 publications. He is the recipient the ACM TOMM
Nicolas D. Georganas Best Paper Award. He currently serves on
the Editorial Board of IEEE Multimedia. His research focuses on
social media, the Internet of Things, cloud and multimedia for
healthcare, and smart health.

Ahmed Ghoneim (ghoneim@ksu.edu.sa) received his Ph.D.
degree in software engineering from the University of Magde-
burg, Germany, in 2007. He is currently an assistant professor
with the Department of Software Engineering, King Saud Uni-
versity. His current research interests include address software
evolution, service oriented engineering, software development
methodologies, quality of service, net-centric computing, and
human-computer interaction.

Recently, the edge
cloud computing has
provided computing

services with short
delay and high perfor-

mance to users through
the computing nodes

or servers deployed on
the network edge in

order to meet the com-
puting requirements of

delay-sensitive tasks.

