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Abstract—In recent years, the rapid growth of traffic becomes a serious problem of mobile network operators. For effectively mitigating
this traffic explosion problem, there have been many efforts to research on offloading the traffic from cellular links to direct
communications among users. In this paper, we are motivated by users’ sharing activities, and hence propose the framework of T raffic
Offloading assisted by Social network services (SNS) via opportunistic Sharing in mobile social networks (MSNs), TOSS, to offload
SNS-based cellular traffic by user-to-user sharing. First, a subset of users who are to receive the same content was selected as initial
population depending on their content spreading impacts in the online SNSs and their mobility patterns in the offline MSNs. Then users
move, encounter and share the content via opportunistic local connectivity with each other, the content via opportunistic local
connectivity with each other, e.g., Bluetooth, Wi-Fi Direct, Device-to-Device in LTE. Individual users have distinct access patterns,
which potentially allows TOSS to exploit the user-dependent access delay between the content generation time and each user’s
access time for content sharing purposes. The traffic offloading and content spreading among users are analyzed by taking into
account various options in linking SNS and MSN traces. Four mobility traces and online SNS trace for evaluation are analyzed. An
extended evaluation over a large-scale data set are further carried out, and the effectiveness of TOSS is further proved.

Index Terms—Traffic Offloading, Mobile Social Networks, Social Network, Opportunistic Networks, Device-to-Device Communication
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1 INTRODUCTION

B ECAUSE OF the fast development of mobile communica-
tion technologies, more and more users tend to down-

load and enjoy multimedia content on mobile terminals.
And hence the ever increasing traffic load becomes a serious
concern of mobile network operators (MNOs), but the study
in [2] points out that a large portion of the traffic load
is due to the duplicated downloads of the same popular
files. Therefore, how to effectively reduce the duplicated
downloads over cellular links by offloading the traffic load
via local short-range communications directly, so that users
may cache and re-share the content to potential neighbors,
would be crucial.

Recently there have been many studies to explore the
opportunistic user-to-user (device-to-device, D2D) sharing
during intermittent encounters/meetings of mobile users
for traffic offloading in mobile social networks (MSNs),
which can be considered as a special type of the Delay
Tolerant Network (DTN) with more emphasis on the social
relationship among users [3] [4] [5] [6] [7]. Note that in some
studies [8] a DTN/MSN can be regarded as the opportunis-
tic network as well. Users in MSNs are able to discover
the adjacent neighbors [9] and thus set up temporary con-
nectivities locally, e.g., Wi-Fi Direct, Bluetooth, Near-Field-
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Communication, and D2D [10] in LTE, for sharing content
with each other, without using any 3G/4G cellular network
data, Particularly, D2D has been designed in 3GPP as an
underlay to LTE-Advanced networks, by which users can
utilize operator’s authorized spectrum for direct communi-
cations without intervention of the cellular infrastructure,
and thus is currently gaining significant momentum [10].

(a) Number of online individuals (b) Reduplicate traffic percentage

Fig. 1. Performance of Xender ’s filtered trace, the 1st week of Feb. 2016

In addition, recent evidences demonstrate the great po-
tential capacity of opportunistic D2D communications. Par-
ticularly, there have been a number of mature D2D sharing
applications (APPs) in the mobile markets already, attracting
millions of users, e.g., Xender [11], SHAREit [12] and Zapya
[13]. And hence the cellular offloading capacity would make
the D2D-enabled MSN an effective solution to relieve the
MNO’s traffic burden and to enter a new stage of optimal
Internet service. For instance, Fig. 1 illustrates the time-
varying measurements of a filtered subset trace of Xender,
which includes 5 million mobile users with more than 90
million D2D transmission activities during the first week
of February, 2016. For the whole data set during February
2016 [31], Xender has served around 9 million active users
daily and 100 million active users monthly, as well as 110
million daily content deliveries, in total. Fig. 1(a) represents
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the number of individual online users, and notably, users
who share videos and pictures take the highest portion.
Obviously Xender helps the mobile networks to offload a
large number of large-size videos by D2D sharing activities
because it is free and fast. From the plots of portion of
duplicate traffic (selected content types) in Fig. 1(b), which
is computed as one minus the ratio of the total size of non-
duplicate traffic load to the total traffic load; we see that
approximately up to 40% aggregated traffic is duplicate,
which implies that a huge amount of mobile users request
the same popular content files via Xender, especially videos
and APPs (mobile applciations). Therefore, Xender-like D2D
services are becoming an important and effective method for
mobile video dissemination and APP marketing with great
capacity for traffic offloading.

Many studies are done for exploiting D2D sharing by the
intermittently encounters/meetings among mobile users for
the purpose of traffic offloading in MSNs. It is advocated
that by selecting an appropriate initial set of seeds, the
backbone traffic load can be reduced significantly by 20%
to 50% [4]. As proved in [5], the content dissemination
though a small number of capable users as initial seeds
can efficiently satisfy the delay requirements of users, while
reducing a substantial amount of backbone traffic. However,
there are still several important issues in related research
which are not fully elaborated:

• How to know, to estimate and to predict the dissemination
delays of users’ preferred content for their satisfaction?
As studied in [5] [6] [14] [15], same dissemination
deadline of the same content for all users are as-
sumed; however, users may indeed have various
access delay requirements [16].

• Why mobile users share content with others? Studies in
[3] [5] [6] assume people always exchange content
gratuitously. However, in reality, people mostly share
information by “word-of-mouth” propagation [19],
and realistic social relationship should be exploited.

• How to design the seeding strategy for minimizing the
mobile traffic load while satisfying the delay requirements
of all users? Effective strategies for selecting initial
seeds have been discussed in prior studies [3] [4] [17],
most of which focus on user mobility but ignore the
social impact properties among users.

Considering above issues, we try to exploit the “social”
factors of mobile users, and thus discover that there has
been a dramatic increase in the number of mobile users who
participate in the online Social Network Services (SNSs),
e.g., Facebook, Twitter, Sina Weibo, and so on, where more
and more content is recommended and spread widely and
rapidly [21] [22]. By investigating related measurements
and modeling studies of the MSNs and SNSs, we utilize
following key findings, which are leveraged for effective
content dissemination and traffic offloading:

• Considering the online SNSs, access patterns of users
can be always measured, statistically modeled and
hence utilized for our purpose. We can analyze the
access delay between the content generation time
and the user access time [23], which is per-user
dependent due to people’s various life styles [16]
[21].

• A user’s social influence in online SNSs, or say
spreading impact to other users, can be modeled
based on the analysis of historical activities, i.e., the
probability of forwarding to others.

• The mobility patterns of users in offline MSNs can be
measured and modeled [5] [14] [24], and hence we
can derive different offline mobility impact factors
for users to disseminate the content to others.

• User relationships and interests in online SNSs show
significant homophily and locality properties (to be
detailed in Sec. 2), which is quite similar to those
in offline MSNs [19] [25]. That is, users are mostly
clustered both by regions and interests, which can be
always exploited for traffic offloading.

In this paper, we are motivated to propose a Traffic
Offloading framework by SNS-Based opportunistic Sharing
in MSNs, named TOSS. TOSS initially pushes the content
objects to appropriately selected seeding users, who will
meet and share the content opportunistically with others,
by exploiting their spreading impact in the online SNS
and their mobility impact in the offline MSN. From mod-
eling and analysis, as well as trace-driven evaluation, TOSS
lessens the cellular traffic load significantly (63.8% - 86.5%),
while still satisfying the delay requirements of all users.

We organize the rest of the paper as follows. We re-
view the related work in Sec. 2, and then detail the TOSS
modeling and optimization framework in Sec. 3. The trace-
driven evaluation and analysis are shown in Sec. 4 and Sec.
5, respectively. We further analyze TOSS over a large-scale
realistic trace of social D2D sharing in Sec. 6, followed by
the conclusion in Sec. 8.

2 RELATED WORK

2.1 Opportunistic Sharing in MSNs

Offloading studies are classified into two categories, delayed
and nondelayed offloading. While many of current studies
are for nondelayed offloading, in this paper we mostly
focus on the delayed one, e.g., DTN-based ones. The study
by Zhang et al. [14] has developed a differentiation-based
model to analyze the epidemic content delivery delays.
And by the similar modeling methodology, Li et al. [6] also
have designed an opportunistic content delivery framework
in DTNs focusing on energy-efficiency, while the scalabil-
ity and optimality of content dissemination by exploiting
device-to-device contacts has been explored as a social
welfare maximization problem studied in [3]. Similarly, [15]
has solved the maximization of traffic offloading utility in
DTNs as a knapsack problem. However, epidemic delivery
generally suffers from slow start and long completion time,
and thus strategic pushing schemes have been studied to
expedite the dissemination in [5] [4].

Content dissemination by generic epidemic sharing has
been hotly accelerated by leveraging users’ social relation-
ships in many studies recently. For instance, BUBBLE Rap
[26] utilizes the social grouping characteristics for tieing
friends. And interesting study in [17] analyzes the social
participation for content dissemination in MSNs based on
the optimal initial seeds selection. A friendship is reflected
by not only a impact but also tags, and thus the study
in [27] proposes to assign interest tags to the users and
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content objects to identify their preferences of content, and
then to utilize users local centrality for efficient content
spreading. ContentPlace [28] utilizes social central between-
ness of mobile users to optimize the mobile content shar-
ing. Furthermore the user encounter history is explored
for getting the friendship to disseminate content in the
DTNs/MSNs in [29]. Therefore we are also motivated to
extend the epidewmic sharing in MSNs by considering the
real social relationships in SNSs. Regarding realistic tests,
Bao et al. carried experiments in Manhattan and identified
the effectiveness of sharing-based offloading, which reduced
about 30% to 70% mobile traffic load [30]. Security and
privacy problems are important in sharing-based content
dissemination, but we cannot cover them in this framework
due to the limited space, however, readers may read more
in [32] and [33].

The content dissemination in MSNs highly relies on
those infrastructureless D2D communication techniques,
including Bluetooth, Wi-Fi Direct, NFC and etc. For in-
stance, the Airdrop technique in Apple’s devices provides
convenient local sharing functionality via Wi-Fi connections.
Recently the D2D communication underlaying the 3GPP
LTE cellular network in the operator authorized spectrum
gains lots of popularity [10], which is an effective enabler
of services in proximity with capable and efficient D2D
content dissemination but limited impact of interference in
the primary cellular networks. But D2D-based opportunistic
sharing and offloading cannot provide full guarantee on
the deliveries, and thus some studies like [7] propose to
use effective approach to offload traffic via D2D oppor-
tunistic sharing adaptively if the content spreading progress
doesn’t catch up with the expectation. However, driving the
sharing-based traffic offloading by D2D sharing in the mar-
ket mostly requires incentive-based business models and
proper pricing schemes, which can encourage users to share
with each others willingly. There are a few representative
pricing and incentive studies like Win-Coupon in [34].

2.2 Information/Content Spreading in SNSs

In the real world, “opinion leaders” who are capable of
strong social impacts always perform the key roles for
spreading information to most of other people, according
to the the effect of “word-of-mouth” [19] [35]. Similarly in
online SNSs, a small number of users may significantly
influence the most of the other users for the spreading
of popular information/content, which is studied as the
“power-law” effect. For analyzing the propagation of the
content from “opinion leaders” to others as well as the
re-sharing activities among users, many studies have uti-
lized the probabilistic modeling, which is proved to be
effective and convenient [23] [36]. Measurement studies in
[23] [35] further identify that the recommendation from
famous people, who have potentially strong social impact
to others, may accelerate the topic spreading optimally. The
propagation of content via people by people necessarily
induce delays, and the measurement studies in [23] [21]
[16] point out that delays of re-sharing behaviors as well
as the spreading impacts are accumulated hop by hop. This
delay between the time of generating the content and that
of accessing the content mainly depends on the different life
styles of people. Based on measurement races, researchers

can analyze, and predict the sharing activities and the access
delays of SNS users, and thus utilize them for increasing the
potential of offloading [21] [22] [23].

In SNSs, user relationships and interests have significant
homophily and locality characteristics as similar to those in
MSNs as reported in studies [19] and [25]. The homophily
means the online and offline users are mostly clustered
both by regions and interests, which is also called “birds-
of-a-feather” effect [20], and is regarded as the tendency of
individuals to associate and bond with similar others . And
obviously people with similar interests intend to share and
transfer the related infomation/content with each other. The
locality here means that people may have nearly consistent
behaviors of accessing the content and sharing with people
who are close geographically. Even users in online SNSs
may mostly interact with and thus impact others in prox-
imity as pointed in studies [19] and [25]. Note that, users’
online and offline characteristics of homophily and locality
have been already utilized to facilitate the content delivery
in [2] [25], and thus is further leveraged in TOSS framework
for D2D-based traffic offloading.

3 THE TOSS FRAMEWORK

In this section, we will describe the modeling part of the
TOSS framework, including modeling, online spreading
impact, access delay analysis, offline mobility impact and
the optimization algorithm, respectively.

3.1 Preliminaries
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Fig. 2. Illustration of TOSS with two layers: online SNS and offline MSN

As shown in Fig. 2, the TOSS framework entails both
an online SNS and an offline MSN. Note that we declare
that “online” is for the accounts in the Internet-based
virtual world, and “offline” is for the real people in the
physical world. Suppose there are total N mobile users,
ui, i = 1, ..., N , who have corresponding SNS identities.
Because we focus on the content spreading in an online SNS,
we use a directional graph to model the SNS, e.g., Twitter,
Sina Weibo. TOSS can also work with SNSs based on the
bidirectional graph (e.g., Facebook) since it is a subset of the
directional graph. The online SNS can thus be represented
by, G (V,E), where V is the set of users, and E is the set
of directional edges. If uj follows ui, uj is one follower of
ui and ui is one followee of uj . As we focus on the content
spreading, the directional edge (represented by an arrow) in
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Fig. 2 is from ui to uj , denoted by vij . That is, ui has a direct
impact to uj for content spreading.

We define the home-site, where a user create and shares
content in the SNS platform, as the microblog, and we
define a short message posted by a user containing the
content (or link to the content) as a micropost, e.g., a tweet
in Twitter or a post in Facebook. And then the content
file is called a content object. Furthermore, we define the
timeline of a user in online SNS as the serie of all microposts
published by a user in his/her microblog, sorted by the
publishing time.

At any time, a user may find or create a new interesting
article, image, or video, and share it in the SNS as an
initiator. All his/her followers will then be able to access
the content, and some of them will further re-share in their
timelines. Making comments will not induce any informa-
tion spread; thus we only consider the re-share activities.
Afterwards, what TOSS seeks to achieve is that, while the
micropost with the content is being spread to other users
in the online SNS, the content object will be accessed and
delivered among user devices in the offline MSN. Note
that the TOSS framework is not confined strictly to the
dissemination of one popular content to all the users, but
applies to general deliveries of any content to a group of
potential recipients with any size. That is when we deal
with one particular content, we can collect the online and
offline social information of those users who will access
the content separately from the whole base, and treat them
as a one group for applying for TOSS framework. More
traffic will be inflowed through SNSs inherently due to
the emerging trend of integration of SNSs with Content
Providers (CPs). And hence TOSS will benefit, and thus
becomes more effective for offloading traffic.

TOSS defines four factors for user ui: two for the online
SNS, (1) the outgoing spreading impact, IS→i , and (2) the
incoming spreading impact, IS←i , which indicate how im-
portant the user is for propagating the micropost (to others
or from others, respectively); two for the offline MSN, (3)
the outgoing mobility impact, IM→i , and (4) the incoming
mobility impact, IM←i , which indicate how important the
user is for sharing the content object (to others or from
others, respectively) via encounters. We will discuss their
calculation in Sec. 3.2 and Sec. 3.4.

Considering the above factors, TOSS seeks to select a
proper subset of users as seeds for pushing the content
object directly via cellular links, and to exploit the D2D
sharing in the offline MSN, while satisfying different access
delay requirements of different users. The sharing in TOSS
is considered as “prefetching” in advance before users’
practically accessing activities. We define a vector −→p to
indicate whether to push the content object to a user via
cellular links or not, e.g., pi = 1 means pushing the content
object directly to user ui.

3.2 Spreading Impact in the Online SNS
We extend the previous probabilistic models [35] [36] to
quantify the content spreading impact in the SNS. Hereby,
we define the IS→ factor of user ui to user uj , denoted by
γij , 0 ≤ γij ≤ 1, as the ratio of the number of microposts
of ui that uj accesses and re-shares to the number of all
microposts of uj in uj ’s timeline. And thus, γij is the
probability that uj will re-share the microposts from ui.

Based on the SNS graph G, we define Uhi as the set of
h-hop upstream neighbors (followees) of user ui through all
possible shortest h-hop paths without a loop, and likewise
Dh
i as that of h-hop downstream neighbors (followers). And

we use γhij to denote the IS→ factor from user ui to uj by
any h-hop path (inversely γhji as the IS← factor from user
uj to ui). From uj ’s point of view over a certain period,
we need to consider (1) the number of microposts that uj
has created by himself/herself, cj , (2) the number of re-
shared microposts by uj from ui, rij , and (3) the number of
re-shared microposts from all h-hop followees, to calculate
IS→i as follows:

γ1
ij =

rij
cj +

∑
uk∈U1

j

rkj
, (1)

γ2
ij = 1−

∏

k∈D1
i
∩U1

j

(
1− γ1

ik ∗ γ1
kj

)
, ...... (2)

γhij = 1−
∏

k∈Dh−1
i
∩U1

j

(
1− γh−1

ik ∗ γ1
kj

)
. (3)
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Fig. 4. The access delay distributions of real users with Weibull fitting

We use γ∗ij to denote the impact from user ui to user
uj via all possible paths with less than or equal to H hops,
computed by:

γ∗ij = 1−
H∏

n=1

(
1− γnij

)
, (4)

where H is less than or equal to the maximal diameter of
the SNS graph G. Then IS→i and IS←i of ui to and from the
whole user base is calculated by, respectively,

IS→i =
N∑

j=1

γ∗ij , IS←i =
N∑

j=1

γ∗ji. (5)

Note that it is reported in [20] [21] that the average path
length in SNSs is normally 4.12 and the spreading impact
after 3 hops becomes negligible.
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3.3 Access Delays of Users in the SNS

Access delay between the content generation time and
user’s access time may be different for each user [16] [21].
As illustrated in Fig. 3, user A creates a microblog for an
interesting video in the SNS at t0. One of A’s followers, B,
happens to see A’s microblog after a certain delay at t1 due
to B’s personal business. Once B clicks to play it, a buffering
delay is needed until t2; B will re-share the video at t3 after
watching it. In practice, it is hard to obtain t1 and t2 data.
So we consider B’s access delay as t3− t0, which is captured
from the SNS measurement trace.

To investigate access delays, we collected the SNS trace
data of approximately 2.2 million users from the biggest
online SNS in China, Sina Weibo (measurement details will
be explained in Sec. 4). The access delay is gathered as the
time difference between the generation time of the original
microblog and the time of re-sharing by a follower. We pick
up four real users from the trace, and plot their access delays
by probability distribution function (PDF) in Fig. 4. User u1

is likely to access the content frequently with short delays.
But users u2 and u3 have significant delays, on the order of
hours and days, respectively.

We use a PDF to model the access delays of each user,
say ui, in terms of the probability to access the content at t,
denoted as Ai (t). As similar to [3], Ai (t) can be considered
as the access utility function, in order to calculate the user
satisfaction performance. If the content object is already
obtained locally in the user’s device when he/she has the
highest probability to access the content, he/she will be
mostly satisfied.

In order to model the various distributions of access
delays with different shapes of PDF curves, we choose to
use the Weibull distribution for fitting, which is commonly
used for profiling user behaviors in SNSs [37]:

Ai (t, βi, ki) = ki
βi

(
t
βi

)ki−1

e
−
(
t
βi

)ki
, t ≥ 0, (6)

where the fitting parameters βi and ki can identify the
access pattern of user ui (ki controls the curve shape, and the
betai value (λ values in Fig. 4is act When ki ≥ 1, the Weibull
fitting curve can present the distribution of the access delays
of keen users; if ki < 1, the Weibull fitting curve has a
peak, and thus, can present the distribution of access delays
of dull users. It is measured that (to be discussed in Sec.
4) about 2/3 of SNS users are dull ones with large access
delays, which is a sufficiently large portion of users that
allows TOSS to disseminate the content object by offline
opportunistic sharing.

3.4 Mobility Impact in the Offline MSN

It has been studied that mobile users in the offline MSNs
(or DTNs), have different mobility patterns [5] [14] [24],
and hence different potentials for sharing content. Thus the
mobility impact, IM , is defined to quantify the capability
of a mobile user to share a content object with other users
via opportunistic meetings, or say contacts, while roaming
in the MSN. The temporary connectivity with nearby users
mostly relies on active discovery mechanisms; thus we
assume all mobile users are synchronized with a low duty
cycle for probing as proposed by eDiscovery [9] so that
phones are aware of each other, or the neighbor information

can be also obtained in a centralized manner done by the
operator.

Referring to [3] [5] [6] [14] [24] [27], we assume that
the inter-contact intervals of any two mobile users follow
the exponential distribution. We use λij to denote the op-
portunistic contact rate of user ui with user uj . Note that
there are many practical methods to measure λij values, e.g.,
centralized measurement by the location management entity
in the MNO, or by message exchange during distributed
D2D contacts [28]. The contact duration is ignorable in
TOSS, because we assume the content delivery is always
successfully finished during the contact due to the high
bandwidth of local communications [3] [5] [14] [27].

We adopt the epidemic modeling from [6] [14] [5] with
the continuous time Markov chain to model the opportunis-
tic sharing in TOSS. For now, we assume that file objects
are shared instantly via high-capable device-to-device link
when two users contact, and hence the contact duration
time is thus not considered. In practical, the D2D links may
support up to 10 Mbps transmission speed normally [46]
[47] which is enough for most of the files, and we will
discuss more in Sec. 7. We let Si(t) be the probability that
user ui may have the content at t, 0 ≤ Si (t) ≤ 1, while
1− Si (t) is the probability that user ui has not received the
content until t. The increment of S(t) within a period ∆t,
that is Si (t+ ∆t)− Si (t), will be calculated as following.

The probability of user ui to meet user uj during ∆t,
is 1− e−λij∆t due to the exponential decay of inter-contact
intervals. The probability that user ui can get the content
from another user uj via opportunistically meeting, denoted
by εij , is calculated by:

εij =
(
1− e−λij∆t

)
· γ∗ji · Sj (t) , (7)

where the IS→ impact factor from uj to ui, γ∗ji, is considered
as both (i) the spreading probability that uj will re-share
microblogs from ui and (ii) the sharing probability that ui
can obtain the content object from uj .

By summing εij of ui from all users, the probably that ui
can get the content from others within ∆t is,

1−
N∏

j=1,j 6=i
(1− εij). (8)

The increment of the probability that ui has the content is,

Si (t+ ∆t)−Si (t) = (1− Si (t)) ·


1−

N∏

j=1,j 6=i
(1− εij)


 .

(9)
Letting ∆t→ 0, the derivative of Si(t) will be,

•
Si (t) = lim

∆t→0

Si(t+∆t)−Si(t)
∆t

= (1− Si (t)) ·
N∑

j=1,j 6=i
λij · γ∗ji · Sj (t),

(10)

where initially Si (0) = pi from −→p .
Solving the above matrix of the ordinary differential

equation system is complicated. However, we can find a
numerical solution easily by approximation with power
series [38]. Due to the limited space, we skip the details
of the procedure for getting numerical solutions.

Given a pushing vector −→p , we can calculate how long
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it will take for any user ui to obtain the content by the
inverse function of Si(t) with Si(t) = 1, defined as the
content obtaining delay of ui, denoted by t∗i :

t∗i = S−1
i

({
γ∗ji
}
, {λij} ,−→p

)
, j = 1, ..., N, j 6= i, (11)

where
{
γ∗ji
}

is the series of IS← factors from all other users
to ui in the SNS, and {λij} is the series of meeting rates of
user ui to all other users in the MSN. Note that TOSS mainly
seeks the optimal −→p to match the content obtaining delays
of all users with their access delay PDFs.

IM→i is actually the same as IM←i since λij = λji for
any ui and uj due to the symmetric nature of contacts. We

define the IM factor for ui as IM→i = IM←i = λ∗i =
N∑
j=1

λij .

We will only use IM to denote the mobility impact. We can
use approximation methods, e.g., the Newton method, to
get the numerical result of the inverse function of Si(t).

3.5 System Optimization and Heuristic Algorithm

TOSS’s main objective (Eq. 12), is to choose proper set
of seeds for initial pushing, −→p , by evaluating IS (both
incoming and outgoing) and IM values of all users, to get
the content obtaining delay t∗ for each user in order to max-
imize the sum of the access utilities (access probabilities)
for all users, where the number of initial pushing seeds is
constrained byC, and we call

∑
Ai(t) the total access utility

function of the whole user base. This problem is similar
to the social welfare maximization problem, discussed in
[3]. With power series approximations, we can find the
maximum values by general numerical methods. Also we
can even tune and find the needed C by given a target total
access utility. One of the key remaining future work will be
the reduction of the complexity of the equations and thus
the optimization problem.

Maximize :−→p

N∑
i=1

Ai (t∗i , βi, ki)

=
N∑
i=1

Ai
(
Si
−1
({
γ∗ji
}
, {λij} ,−→p

)
, βi, ki

)

(j = 1, ..., N, j 6= i)
Subject to : |−→p | ≤ C ,

(12)
We design a heuristic algorithm to find the near-optimal

solution −→p for maximizing
∑
Ai(t) numerically, based on

the popular hill-climbing method, as shown in Algorithm
1. Initially, it selects the top C users from all users sorted
by IM in descending order (IS→ or IS← works similarly)
as the first input of the iteration loop. The assignment of
value 1 means selected as the pushing seed, and 0 means
not pushing at the beginning. Then the algorithm tries to
iteratively exchange the pi and pj values of any two users ui
and uj for a new pushing vector, and calculate the

∑
Ai(t)

by the new pushing vector, to check whether a larger value
of
∑
Ai(t) can be achieved; if so, the values of pi and pj

can be retained. The iteration repeats infinitely until the
increment of

∑
Ai(t) is smaller than a specified threshold.

The algorithm is with complexity around O(M ·N2), where
M is the number of iterations. By default, we set M as 30,
and the threshold is 0.01, but these two factors are managed
regarding the balance between the time cost and the result

Algorithm 1 A Hill-climbing algorithm to seek near-optimal
initial pushing seeds

// Initializing −→p
for all i = 1→ N do
pi=0; vi = λ∗i , γ∗i , or random;

end for
Sort vi by Descent Order (↓);
for all i = 1→ C do
pi=1;

end for

Asum =
N∑
i=1

Ai
(
S−1
i

({
γ∗ji
}
, {λij} , pi

)
, βi, ki

)
,

(j = 1...N, j 6= i);
// Hill-Climbing
repeat

flag=true;
for all i = 1→ N do

for all j = i+ 1→ N do
if (flag==true) AND (pi + pj == 1) then

Exchange(pi, pj);

A′sum =
N∑
i=1

Ai

(
Si
−1
(−→
γ∗i ,
−→
λi , pi

)
, βi, ki

)
,

(j = 1...N, j 6= i);
if A′sum > Asum then
δ = A′sum −Asum;Asum = A′sum;
flag=false;

end if
end if

end for
end for

until δ < Threshold
return Asum, −→p

accuracy under different scenarios and requirements. Note
that the above modeling and the heuristic algorithm are
carried out in MATLAB.

4 ANALYSIS OF SNS AND MSN TRACE RESULTS

In this section, we will carry out realistic measurement and
analysis over small-scale traces to evaluate the factors in the
TOSS framework.

To evaluate the effectiveness of the TOSS framework,
we need SNS trace data to quantify the spreading impact
factors and access delays, as well as MSN trace data to
analyze the mobility impact. However, there is no publicly
available trace data that contains both the SNS and the
MSN activities. Although there is geographical feature for
Weibo posts, after we measured the traces, we discovered
that the geographical information of Weibo posts is quite
discrete, not continuous, which brings difficulty to identify
the mobility impact of the users. Also a portion of posts
don’t have geographical information. However, rich data of
users trajectories is needed for modeling the mobility accu-
rately, and thus we can discover the opportunities for D2D
sharing while users are moving. Therefore, the integrated
geographical information of the Weibo posts cannot be used
unluckily, and thus we have to use the integration method
for the online and offline traces. Thus, we will choose to
take separate measurements, and combine them by certain
mapping schemes as explained in Sec. 5.1.
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We select the most popular online SNS in China, Sina
Weibo, and keep track of 2,223,294 users for four weeks dur-
ing July, 2012. We collected 37,267,512 microposts generated
(and partially re-shared) by the users, and further obtained
the list of all the re-sharing activities for each micropost.
We implemented the data collection software, which starts
from 15 famous users of distributing popular video clips,
and expands the user base from their followers. Capturing
the next hop followers is carried out iteratively. The cap-
tured data includes details of owner’s account profile, all
microposts with timestamps of the owner, all comments and
reposts with timestamps, as well as the profile of the users
that make comments and reposts to the owner.

4.1 Online SNS - Spreading Impact, γij and IS
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Fig. 5. Analysis of γij

Recall that IS is the overall spreading impact of the user
to all users in the SNS, calculated by Eq. (5). However, cal-
culating IS for the whole user base takes substantially long
time. Thus, we analyze the sub-graphs of corresponding
number of users from the whole social graph by random
walking according to the scale of the mobility traces (to be
detailed in Sec. 4.3). We consider up to 4-hop paths (H = 4)
among the users in the graphs as suggested in [21].

There have been some related measurement studies in
[21] [39] and [40] pointing out that: the SNS is a scale-free
complex network, in which node strength distribution fol-
lows the power-law, at least asymptotically. That is a small
number of nodes make dominant impact to the network,
while many nodes make very small impact, if we consider
the node degree or the spreading impact (re-sharing ratio)
as the strength of a node to the network [39] and [40].
So due to the nature characteristics of scale-free complex
networks, sub-graphs from the whole network graph (with
not too small size) by the random walking method can
still obtain similar power-law characteristics (power-law-
like distribution of node strength).

We then check the sub-graphs that we abstract from
the online SNS graph with the sizes corresponding to the
mobility traces (to be detailed in Sec. 4.3), and for each
trace we abstract sub-graphs for five times, and then make
average value. We draw the log-log plots for IS→ and IS←

of the nodes from the sampled sub-graphs as shown in
Fig. 6. We can see that a smaller number of people have
significant outgoing impact (IS→) to the whole SNS, while
many users have very small impact. Also we see that many
users are more likely to be impacted rather than impacting
others (IS→ < IS←). All of the figures are able to reflect
the asymptotical power-law trend. So conclusively, all of the
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Fig. 6. Measurement values of IS for sub-graphs sampled from the SNS
graph with different sizes corresponding to the mobility traces

(a) Average access delays (b) Weibull parameter, k; Avg. Std.
Err. of k values is 172.42.

Fig. 7. Access delays and fitting parameters

sub-graphs with different sizes can still represent the SNS
characteristics, and it will be an acceptable methodology to
map the SNS sub-graphs to the mobility traces. Note that
in the following part, the online spreading impact factor is
normalized and then applied.

4.2 Online SNS - Access Delay of ui, Ai(t)

Measurement results of the access delays on the whole user
base are shown in Fig. 7. From the cumulative distribution
function (CDF) of the average of all the access delays of each
user in Fig. 7(a), half of the users have the average access
delay larger than 23,880 seconds, which is about 6 hours
and 38 minutes. Taking a closer look, we find (1) 3.67% of
users have the average access delay small than 10 minutes,
(2) 20.38% of users have the delay smaller than 1 hour, and
(3) 26.79% of users access the SNS with average delay larger
than 1 day. Furthermore, we calculate the Weibull fitting
parameters of all users, and the CDF of the shape parameter
k of all users is shown in Fig. 7(b). which indicates that
32.63% of users have k < 1, who are keen users, while
67.37% of users can be classified as dull users. Therefore,
we verify that a large portion of users access the SNSs
with sufficiently large delays, which TOSS can exploit to
disseminate content by offline opportunistic sharing.
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TABLE 1
Mobility Traces (Bl. is for Bluetooth)

Trace Link Users Days Contacts Avg.λ
MIT [41] Bl. 100 246 54,667 0.01532

Infocom [42] Bl. 41 4 22,459 0.14167
Beijing [43] / 182 150 8,894 0.00023
SUVnet [44] / 4,311 30 169,762 0.00131

4.3 Offline MSNs - λij and IM

We choose four mobility traces, MIT [41], Infocom [42],
Beijing [43], and SUVnet [44], in order to evaluate the per-
formance of TOSS. These traces record either direct contacts
among users carrying mobile devices or GPS-coordinates
of each user’s mobile route, and traces details are shown
in Table 1. The four traces differ in their scales, durations,
and mobility patterns; The MIT and the Infocom traces are
collected by normal people, but the Bejing and the SUVnet
traces are collected by vehicles. Beijing and the SUVnet
traces have no contact records, but only GPS coordinates
by time; we assume a contact once two users are within 20
meters during 20s.

We analyze the traces and obtain the inter-contact inter-
vals of all user pairs, as shown in Fig. 8(a). The Infocom trace
has the highest contact rate because users are at a conference
spot, and thus have high contact rates. The MIT trace also
has high contact rates since users are friends within the
campus. The Beijing and the SUVnet traces have large inter-
contact intervals because they have relatively low frequency
of GPS records and large user base. IM values of all users of
the traces (values smaller than 0.001 are ignored) are plotted
in Fig. 8(b), which indicates the similar trends of the traces as
discussed above. Users in the Infocom trace have the highest
potentials to obtain the content by sharing, but users in the
Beijing trace have the weakest potentials.
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Fig. 8. λij and IM values

4.4 Content Obtaining Delays, t∗i
We investigate the content obtaining delays, t∗, of all users
by just 1 random initial pushing (averaging 20 runs with
different random seeds) for the four traces. And then we
put λ values of all pairs extracted from the traces into the
proposed model in Sec. 3.4. From the CDFs in Fig. 9(a),
the Infocom trace has the smallest obtaining delays mostly
within 1 day; the Beijing trace has the longest delays even
up to 10 days. The model with practical λ values in Fig. 9(b)
shows the similar performance to the real traces.

In order to precisely verify the accuracy of our modeling
to the real traces, from the two figures, Fig. 9(a) for the

1m 10m 1h 3h 1d 3d1w2w
0

0.2

0.4

0.6

0.8

1

Content obtaining delay (hour)

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

 

 

Infocom
MIT
Beijing
SUVnet

(a) Real Traces

1m 10m 1h 3h 1d 3d1w2w
0

0.2

0.4

0.6

0.8

1

Content obtaining delay (hour)

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

 

 

Infocom
MIT
Beijing
SUVnet

(b) Trace-based Mobility Model-
ing

Fig. 9. Content obtaining delays by 1 random pushing with modeling

TABLE 2
Correlation regression analysis between the traces and modeling

Trace Pearson Correlation Significance
MIT [41] 0.973 0.000

Infocom [42] 0.979 0.000
Beijing [43] 0.976 0.000
SUVnet [44] 0.968 0.000

real traces, and Fig. 9(b) for the modeling, we carry out the
bivariate correlation regression analysis on them, in order
to get the Pearson correlation coefficients, by using SPSS. As
shown in Table. 2, the results of the correlation coefficients
between the real traces and by the modeling are in the range
of 0.973 to 0.979, which means the simulation and modeling
can fit perfectly with a sufficiently high accuracy.

5 PERFORMANCE EVALUATION

In this section, we evaluate the TOSS framework on how the
spreading and mobility impact factors (IS and IM ) affect the
total access utility function (

∑
Ai(t)).

5.1 How Pushing Vector Impacts Total Access Utility
Due to the lack of a trace that contains the activities of
the same users in both online SNSs and offline MSNs, we
consider three schemes for mapping SNS users to MSN
users in each of the four mobility traces: (1) random: SNS
users are randomly mapped to MSN users; (2) h-h: both SNS
and MSN users are sorted in descending order of IS→ and
IM , respectively, and then are mapped correspondingly; (3)
h-l: both users are sorted as similar to h-h, but an SNS user
with high IS→ is mapped to an MSN user with low IM .
As discussed in Sec. 4.1, since the number of SNS users is
much larger than that of MSN users in each trace, we pick
accounts from the sub-graphs of the SNS by the random
walking method to match the number of MSN users in each
trace. Note that while assigning the SNS accounts to the
MSN users, the corresponding access delay patterns of the
SNS accounts will be retained.

Regarding the methodology of mapping a sub-graph of
online SNS by random-walk sampling to the offline MSN
graph, we carry out following discussion: It is already
studied that when we consider the mobility impact (meeting
rate) of two users as their vector strength, and the overal
mobility impact of one user (sum of all mobility impact to all
other users) as the node strength, the MSN is also classified
as a scale-free network [42] [24]. That is in the MSN, a small
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number of users are always moving quickly and meet many
components, while many of the users are relatively stable to
meet limited number of other users.

So regarding each mobility trace with different amount
of mobile users, as we discussed in Sec. 4.1, we take random-
walking-based sampling to obtain the subgraphs from the
SNS trace with corresponding number of user accounts, and
then map one SNS account to one mobile user by above
mapping choices. Note that the online spreading impact
factor is normalized and then applied. So this is a reasonable
methodology to map between online and offline traces in the
case of lacking such a trace with both information. To seek
or carry out such a measurement study to track both the
online SNS activities and offline MSN activities for a group
of people is one important future work.

To select the users who will be initial seeds, −→p , con-
strained by the allowed total number of seeds, C, we
consider the following five pushing strategies based on the
impact factors:

• p-λ: we sort users by IM (
∑
λ∗i ) in a descending

order and choose the top C ones (similar to [3]);
• p-γ→: we sort users by IS→ (

∑
γ∗ij) in a descending

order and choose the top C ones (similar to [26] [28]);
• p-γ←: we sort users by IS← (

∑
γ∗ji) in a descending

order and choose the top C ones;
• p-λ ∗ γ→: we sort users by IM ∗ IS→ conjunctively

in a descending order and choose the top C ones;
• p-λ ∗ γ←: we sort users by IM ∗ IS← conjunctively

in a descending order and choose the top C ones.

Moreover, there are many viral marketing methods
to evaluate a SNS user’s strength regarding information
spreading, for example we can easily qualify by node
degree including outgoing degree (number of followees)
and incoming degree (number of followers). Note that here
the arrow direction is the “following/followed” relation-
ship, reverse to the spreading direction. Furthermore, the
PageRank algorithm [45] is also comprehensively used for
SNS analysis, which is a link analysis algorithm of Google
by assigning a numerical weighting to each element of a
hyperlinked set of nodes, with the purpose of “measuring”
its relative importance. We apply the general PageRank
algorithm on the selected SNS sub-graphs and obtain the
PageRank scores. We also consider a random pushing and
the heuristic algorithm, and hence we have five more initial
pushing strategies based on the graphs:

• p-R: we randomly choose C users;
• p-D→: we sort users by outgoing node degree in a

descending order and choose C users;
• p-D←: we sort users by incoming node degree in a

descending order and choose C users;
• p-Pr: we sort users by PageRank score in a descend-

ing order and choose top C users;
• p-H: we run the hill-climbing heuristic algorithm to

obtain the near-optimal pushing vector.

We investigate how −→p under the 10 pushing strategies
impacts the total access utility of all users,

∑
Ai(t), with

only the MIT trace as shown in Fig. 10, and we skip to
show the results of other traces since they show very similar
trends. The percentage in the figures is the pushing ratio of
C to the number of involved users in each trace. We can
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Fig. 10. As C increases,
∑

Ai(t) converges - 3 mappting schemes, 10
pushing strategies - MIT trace as an example

see that as the number of initial seeds increases,
∑
Ai(t)

increases and converges to the maximum. In all cases p-H
converges to the maximum the fastest, while p-λ ∗ γ→ and
p-λ ∗ γ← as well as p-Pr perform very well. p-R always
performs the worst, but p-D→ and p-D← also performs
poorly. Note that the maximal value of

∑
A is capped

in different mapping schemes, which means the total user
satisfaction is determined by the scenario user nature. The
results of different mapping schemes show marginal differ-
ences, because TOSS always chooses the users with strong
impact strength, and also the access delays provide large a
space for sharing.

Although we lack of realistic traces with both online SNS
and offline MSN information, the h-h, h-l, and random rep-
resents three different mapping schemes with no significant
different performance, and hence in following parts, we use
the average initial pushing ratio (as well as

∑
Ai(t)) across

the three to reflect general performance under various user
parameters in SNSs and MSNs.

5.2 Satisfying 100%, 90%, and 80% of Users

Recall that the access utility function of ui is Ai(t). A user
is satisfied, if he/she can obtain the content when her/his
access probability (Ai(t)) approaches its maximum (in the
fitting Weibull pdf). If we aim to make 100% of users obtain
the content by initial pushing and sharing, substantially
large delays may take place for certain users (e.g., a user
with low γ and λ values). Therefore, we investigate what
percentage of users (initial pushing ratio) should be initial
seeds to satisfy the access delay requirements of 100%, 90%,
and 80% of users depending on different pushing strategies.

From Sec. 3.5 and Fig. 10,
∑
Ai(t) is an increasing func-

tion of C (i.e., |−→p |), and the number of satisfied user is also
an increasing function ofC. TheC value that makes

∑
Ai(t)

approach its maximum will be the standard number of
initial pushing seeds for satisfying 100% of user. We examine
how C is reduced (for higher offloading gains) if we target
the satisfaction of 90% and 80% of users.

From Fig. 11, to satisfy 100% of all users, p-H always
finds the best initial pushing vector (i.e., the least number
of seeds), and p-R performs the poorest, while p-D→ and
p-D← also performs poorly, so simply pushing by node
degree is not that preferred. In most cases, p-λ ∗ γ→ and
p-λ ∗ γ← perform the second best, which implies that we
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(a) MIT

(b) Infocom

(c) Beijing

(d) SUVnet

Fig. 11. Initial pushing ratios to satisfy 100%, 90%, and 80% of all users

can conjunctively consider the IS and IM factor by simple
multiplication to achieve near-optimal performance. p-Pr
achieves not so good performance compared with strate-
gies by impact factors, as it focuses the connections of the
network graph but ignores the historical spreading impact,
while our proposed factors (γ) make better sense. In MIT
and Infocom traces, λ-based strategies perform better than
γ-base ones, which means the mobility factor decides more
on the sharing process when nodes are with high mobility.
In Beijing and SUVnet traces, γ-base ones perform better,
which means the social factor controls more when nodes
are with low mobility. Note that the Infocom trace always
has the best performance; only 13.5% initial pushing ratio
can satisfy all users by the p-H.

When we target to satisfy 90% of all users, the required
initial pushing ratio is reduced significantly. With simple
pushing strategies, for the MIT and the Infocom traces, only
15.4% and 10.5% of users need to be the initial seeds on
average. The number of initial seeds is further dramatically
reduced, when satisfying 80% of users. Approximately 10%
initial pushing ratio is needed for all traces except the Beijing
trace, which requires about 17% initial pushing ratio. The
Beijing and SUVnet traces always need relatively larger
number of initial seeds due to their low contact rates and
large user bases. The implication from Fig. 11 is that, when
the users have relatively higher mobility patterns, the mobil-

TABLE 3
Percentage (%) of Traffic Reduction With On-Demand Delivery -

Average of 9 Simple Pushing Strategies / Heuristic

Trace 100% 90% 80%
MIT [41] 73.6 / 76.3 74.6 / 76.9 70.9 / 72.2

Infocom [42] 85.3 / 86.5 79.5 / 80.4 73.4 / 74.1
Beijing [43] 65.3 / 68.4 65.0 / 68.9 63.8 / 65.2
SUVnet [44] 68.5 / 70.3 68.7 / 71.0 68.3 /70.7

ity impact will mostly decide the content obtaining delays,
but when people are not moving and meeting frequently
within a large user base, the online spreading impact needs
to be enhanced for initial pushing to offload traffic effec-
tively. Also some worse-case users bring ineffectiveness for
opportunistic sharing, but it may be better to push the
content to them in the beginning, if they have keen access
delay requirement, or it will be better to let them to carry out
on-demand fetching when they approach the peaks of their
access delay PDF. Generally, p-H is about 15-24% better than
p-R, and 12-16% better than p-λ and p-γ, and the multiplica-
tion of p-λ and p-γ will be quite a good solution in practical.
It is a balance between performance and complexity, and
the implication is that, if we focus on the best performance,
we can run the heuristic algorithm; if we want a balance
between complexity and performance, we can evaluate user
online spreading impact and offline mobility impact, and
choose proper strategy (e.g., for offloading. p-R can still
offload certain amount of traffic, which indicates that the
sharing-based offloading can work very well in practical
actually, because this is mainly due to the potential of the
user access delays as discussed in Sec. 3.3.

5.3 On-Demand Delivery
If a user who has not obtained the content (by initial pushing
or sharing) until he/she actually accesses it, we have to
deliver it over a cellular link, which is called on-demand
delivery. Also for instance, as our proposal is based on
opportunistic modeling, and there is the possibility that
the content spreading in realistic scenarios doesn’t match
with the expectation, and thus the system must trigger the
on-demand deliveries correspondingly to make sure of the
quality of service, i.e., users’ delays to obtain content. Then
the cellular traffic of the content delivered on-demand is
not offloaded. We now compare the three target percentages
of satisfied users (investigated above) in terms of total of-
floaded traffic. Table 3 shows how much traffic is offloaded
from cellular links for the three cases, where the offloaded
traffic ratios of the nine pushing strategies are averaged,
which are followed with the results of p-H strategy after
“/”. Note that boldfaced numbers are the highest amount
of traffic reduction for each trace across the three target
satisfaction cases (i.e., 100%, 90% and 80%). When lowering
the percentage of satisfied users from 100% to 90% and to
80%, although the initial pushing ratios become reduced,
in some cases, the on-demand delivery for the remaining
10% and 20% of users may induce the increment of the
total cellular traffic instead. In the MIT, Beijing and SUVnet
traces, initial pushing for satisfying the 90% of users plus
on-demand delivery for the 10% of users actually reduces
the cellular traffic the most.
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6 ANALYSIS OF SOCIAL D2D SHARING TRACES

The above evaluation over the four traces has proved the
effectiveness of TOSS in single small-scale scenarios. For
carrying out a much realistic investigation, in this section,
we further utilize a large-scale social D2D sharing trace from
Xender, which has a large user base and a high diversity
of formations of users, activities and mobility properties.
Xender has been one of the most popular D2D sharing
application services in China and India (as well as many
countries in Asia and South America), and it provides users
with the convenience of sharing various types of content
files without using 3G/4G cellular network, across a large
diversity of system platforms, at a speed around several
MBps, mainly based on Wi-Fi tethering technique. During
February 2016, Xender has served totally around 9 million
daily and 100 million monthly active users, as well as
notably 110 million daily content sharing interactivities [31],
while the service is still attracting a substantially increasing
number of users for dissemination content by D2D sharing.
We then test TOSS over Xender’s large-scale offline trace by
integrating with Sina Weibo online trace appropriately.

6.1 Description of Xender ’s Trace
We capture Xender’s trace for four weeks from 01/02/2016
to 28/02/2016. Since around 70% users are from India
[31], we are motivated to concentrate on analyzing In-
dian users’ activities only. After cleaning invalid and un-
completed entries, the target data set includes 30,485,335
users, 4,434,440,043 transmission interactivity timestamps
conveying 16,785,175 content files, with the data entry
format: <sender; receiver; content<MD5, size>; GPS;
timestampi>. To process our large-scale data (with total size
of 843 GB) efficiently and reliably, we use Python 2.7 along
with Anaconda scientific package and graph-tool library
(v2.18), on a cluster of four Dell PowerEdge R730 servers,
each of which has two E2630v3 CPUs, 32 cores, 64G RAM
and 16T SAS hard disk.

6.2 Integrating Xender ’s Trace with Sina Weibo Data
Directly mapping equivalent amount of offline users with
the whole user base of online users (2,223,294 Sina Weibo
users) induces huge amount calculation workload, which is
beyond the purpose of this paper. Because the social graph
composed by Xender’s user interactivities is not a densely
connected one, we first discover groups (i.e., connected com-
ponents of the graph) and then choose the top 100 largest
groups from the 883,772 groups in total with respect to the
number of vertices, i.e., involved users, as representative
groups for experiments. The largest group has 309 vertices
(users), and there are 11,948 users in the 100 selected groups.
As shown in Fig. 12(a), the sizes of groups follows nearly a
perfect power law effect, which indicates in practice, there
exists a small number of large groups with many users, but
most of the groups (long tail) have small number of users.

The evaluation of the average offline mobility impact
(IM ) of users in each group is shown in Fig. 12(b), while
the ranking is based on the group size by descending order,
corresponding to the group ranking in Fig. 12(a). Although
it seems that there is a trend that smaller groups may have
roughly larger IM , we cannot confirm this effect but will
take in-depth investigation for clues and reasons as a future
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Fig. 13. Initial pushing ratios to satisfy 100%, 90%, and 80% of all users
- Xender ’s trace

work. Similarly to the evaluation procedure in Sec. 5, we
map the online Sina Weibo user dataset with the selected
100 Xender’s groups according to aforementioned 3 schemes
(h-h, h-l, random) and we make sure of the connectivity
of each graph of online users obtained by random walking
corresponding to the sizes of offline Xender’s groups, while
all SNS graphs are non-overlapped, with no common vertex.
Now, groups have different scales (sizes), offline mobility
impact factors, and various combinations of online impact
(outgoing and incoming) factors, and thus our experiments
can reflect TOSS’s performance over Xender’s trace. Fig.
12(d) and Fig. 12(c) show the averaged online social incom-
ing and outgoing impact of each group, while the ranking
is still corresponding to the ranking in Fig. 12(b).

6.3 Offloading Performance Evaluation
By applying the ten pushing strategies (i.e., p-λ, p-γ→, p-
γ←, p-λ ∗ γ→, p-λ ∗ γ←, p-R, p-D→, p-D←, p-Pr, and
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p-H), we evaluate the initial pushing ratio over the 100
groups for satisfying the 80%, 90% and 100% of all the users
(considering all users as a whole user base), while the results
are averaged across the three mapping schemes (randomly,
h-h, h-l). As shown in Fig. 13, initial pushing ratio for Xender
trace is much larger than previous four traces, especially for
100% satisfaction case. Even using the heuristic strategy, p-
H, around 20.1%, 33.6% and 42.3% initial pushing ratios
are needed for satisfying 80%, 90%, and 100% users in
all groups, respectively. Because there are various types of
users and groups in Xender’s trace, while the groups are
also not densely connected compared to Infocom and MIT
traces that are measured from restricted spots of users with
frequent meetings, more initial pushing ratios are needed.
Note that p-λ ∗ γ← performs slightly better than p-λ ∗ γ→,
which provides the same implication as evaluation results
in Fig. 11(c) and Fig. 11(d) that scenarios with low mobility
impact may benefit from the strategy emphasizing more on
incoming social impacts.

Furthermore, by considering the on-demand pushing
to fill up the remaining users, the average ratios of final
traffic reduction are, 52.4%, 47.3%, and 49.8%, for 80%, 90%,
and 100% satisfaction cases, respectively. With p-H pushing
strategy, TOSS may achieve 59.9%, 56.4%, and 57.7% final
traffic reduction in 80%, 90% and 100% satisfaction cases,
respectively, which is worse than previous evaluation over
the four traces, but still soundful to be able to half the mobile
traffic load by D2D sharing.

Due to the locality nature of human-beings, TOSS frame-
work still performs well even facing to the scenarios with
a very large user base; although people move and travel
sometimes, they still meet most of friends in most cases,
which is the clustered effect for a group of users, which
will not be impacted by the whole user base. In another
word, people are constrained by our life style and location
due to the inherent nature of locality.

7 CONTACT DURATIONS AND FILE SIZES

In this section, we try to elaborate the possibility of D2D
sharing considering the potential terminations of encoun-
ters. In previous discussions of the TOSS framework, we
have assumed that as long as two users’ encounters, they
can “instantly” share the content file, which is actually
not true. In the real scenarios, the transmissions may be
interrupted if two people have short encounter duration
(contact duration) or if the link quality is not good enough
to support the high bandwidth for transmitting large files.
Therefore, it is important to verify the disconnections of the
D2D sharing activities.

However, as far as we know, there is no any D2D trace
for tracking whether a transmission is done or not, and even
in the Xender trace, there is no related log for the trans-
mission terminations. Therefore, we carry out an estimation
based on the attracted information of file size distribution,
contact-time distribution, and some measurement results
of D2D bandwidth. From related studies [46] and [47],
the Wi-Fi-based transmission among devices can achieve a
throughput from 7 Mbps to 10 Mbps, within the distance
of 20 metres. and therefore we assume an averaged typical
value as 8.5Mbps for estimation. In Xender trace, we collect

(a) Probability distribution of
file sizes

σ = 7.467

μ = 0.017

α = 1.988

(b) Probability distribution of
contact durations

σ = 1.945

μ = 0.007

α = 0.002

(c) Probability distribution of
inter-TX times within the contact

(d) Probability distribution of
transmissions per contact

Fig. 14. The size of files and durations of contacts

the file size distribution as shown in Fig. 14(a) and collect
the contact duration distribution in Fig. 14(b). Furthermore,
in the trace, during each contact, users may intend to share
more files and thus there may be more transmissions. So
we plot the distribution of inter-transmission times (i.e.,
the interval among transmissions within one contact) as
shown in Fig. 14(c), and the distribution of the number
of transmission per contact in Fig. 14(d) which proves the
meeting time has great potential of sharing not only one but
also more files.

From the traces and figures, we discover that: the aver-
age file size is around 16 MBytes, and the average contact
time is around 493s, which indicates that on average, the
aforementioned bandwidth can easily support the comple-
tion of the file sharing (i.e., 16 MBytes * 8 / 8.5 Mbps =
15s, which is much smaller than 493s). However, we cannot
justify by only average values, so we carry out more detailed
comparison based on the statistics in the Table 4. Sampled
file size at particular percentile is estimated for checking
whether it can be transmitted completely in the involved
encounters (contacts). In most cases, the contact duration is
with larger value than the required time. That is, from the
Xender’s services, the practical D2D transmission may take
place by just using a small portion of the contact duration.
And even they share multiple files during one contact, as
shown in Fig. 14(d). The most of the contacts have only one
transmission, while there are still a large number of contacts
with several transmissions.

Practically, when two people share some large files, in
most cases they need to request and get admissions, and
thus they have an agreement of making the transmission
done. Because of the satisfiable throughput of D2D, they
don’t have to terminate, but can still share more files at one
time. Therefore, the assumption in Sec. 3.5 can be supported.

For evaluating TOSS on real traces with more consid-
eration on the termination of D2D sharing, we apply one
“disrupting factor”, notated by pi, as the probability of
successful transmission. The Eq. 13 is further improved into:

εij =
(
1− e−λij∆t

)
· γ∗ji · Sj (t) ∗ π, (13)



1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2867437, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, XX 2017 13

TABLE 4
Statistics of file sizes and contact durations

Items File Size Estimated TX Time Contact
(MBytes) (Size*8/8.5 seconds) (seconds)

Average 15.97 15.0 493
10% 0.14 0.13 10
30% 3.74 3.52 43
50% 6.33 5.96 128
70% 16.81 15.82 393
90% 44.42 41.81 1512

Since we have evaluated the cases when π = 1, we further
check the performance when π = 0.5, 0.7and0.9 regarded
as the successful ratios of D2D sharing activities. The same
test settings in last section are used, and it can be seen that
the termination can significantly impact the offloading ratio.
When the probability of successful transmission is 0.9, we
need a bit more initial pushing; but when there are more
terminations, e.g., π decreases to 0.7 or 0.5, more seeds for
pushing are needed shown in Fig. 15.

(a) Probability of successful transmission π = 0.9

(b) Probability of successful transmission π = 0.7

(c) Probability of successful transmission π = 0.5

Fig. 15. Initial pushing ratios to satisfy 100%, 90%, and 80% of all users,
considering the probability of successful transmission

8 CONCLUSION AND DISCUSSION

In this paper, we proposed the TOSS framework to offload
the mobile cellular traffic by leveraging device-to-device
local communications, with discussions on the pushing
strategies to select the appropriate initial seeds depending
on their spreading impact in the online SNS and their
mobility impact in the offline MSN. Also the diverse user
access delays are exploited and utilized for content sharing.
Trace-driven evaluation reveals that TOSS can reduce a
large portion (63.8% - 86.5%) of the cellular traffic while
guaranteeing the access delay requirements of all users. Also

we carried out a large-scale measurement-based evaluation
by using Xender’s trace, and further proved the effectiveness
of TOSS for being able to reduce up to 59.9% of the mobile
traffic under much complex scenario settings of 100 groups.

From practical perspective, TOSS framework depends
on a collaboration among the mobile operators, content
providers and social networks, which will induce significant
optimization of the traffic by offloading. An easy beginning
of TOSS is a mobile SNS application, with extra functions
for discovering nearby SNS friends, friends of friends,
and even strangers, for exploring and transmitting files
among them by both active “request-to-share” and proactive
“background-share” mechanisms. Because it is expected to
be able to obtain the content object before users may access
it with high probability, the sharing can be carried out in
the background, which can be considered as prefetching.
When the user wants to directly access the object, which
is not prefetched yet, on-demand delivery will be carried
out then. Practically, D2D sharing alone cannot be the major
methodology of content dissemination in mobile networks,
but as there has been a rising number of new services of
D2D, it should be integrated and utilized together with the
cellular-based content on-demand delivery services to bring
better quality of service and higher quality of experience to
mobile users.
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