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Abstract —Most of the existing app vetting mechanisms only estimate risks at a coarse-grained level by analyzing apps syntax but not
semantics. We propose a semantics-aware privacy risk assessment framework (SPRISK), which considers the sensitivity discrepancy
of privacy-related factors at semantic level. Our framework can provide qualitative (i.e., risk level) and quantitative (i.e., risk score)
assessment results, both of which help users make decisions to install an app or not. Furthermore, to find the reasonable weight
distribution of each factor automatically, we exploit a self-learning weight assignment method, which is based on fuzzy clustering and
knowledge dependency theory. We implement a prototype system and evaluate the effectiveness of SPRISK with 192,445 normal apps
and 7,111 malicious apps. A measurement study further reveals some interesting findings, such as the privacy risk distribution of
Google Play Store, the diversity of official and unofficial marketplaces, which provide insights into understanding the seriousness of
privacy threat in the Android ecosystem.
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✦

1 INTRODUCTION

MOBILE computing has gained unprecedented popu-
larity, since users can run all sorts of applications on

mobile devices to play, communicate, and work whenever
and wherever they want. Almost all users store sensitive
data on their mobile devices, including contact lists, SMS
messages, and phone numbers. Due to the affinity between
users and their mobile devices [1], privacy leakage has
been considered as one of the critical challenges in mobile
computing and security.

Currently, Android warns users about the required per-
missions when an app is installed or at runtime, trust-
ing that users can make the right decision. However, this
approach is inefficient to indicate potential privacy risks
since most users do not have enough technical knowledge
and patience to infer the potential privacy risks from the
permission descriptions. As a result, users prefer to allow
the required permissions and ignore its implications. Fur-
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thermore, privacy risks can be introduced by malicious be-
haviors which cannot be handled by checking permissions.

To help users understand potential privacy risks intu-
itively, a number of approaches have been proposed to
measure apps’ risks and present the measured risks to users.
Most of the existing solutions only classify risks at a coarse-
grained level. For example, a binary risk indicator is used
to label each app as either normal or not [2]–[6]. These
solutions confuse users and are not practical to help them
make decisions, because apps with similar functions often
have the same risk level. As a more informative indicator,
a detailed score is provided to distinguish the risks of
homogeneous apps. For example, Peng et al. utilize prob-
abilistic generative models to develop risk scoring functions
based on permissions requested by apps [7], but it does
not consider other factors. RiskMon [8] combines users’
coarse expectations and runtime behaviors of trusted apps
to generate a risk score. However, they analyze apps at
syntax level but not at semantic level.

There are two challenges in evaluating the privacy risk
of an app. Firstly, determining whether an app has the
possibility to disclose users’ privacy is associated with
multiple factors, including execution context, transmission
destination, etc. Each factor has its own potential privacy
risk, which is called sensitivity in this paper. For instance,
the leakage of location information may be more dangerous
than that of device ID. At the same time, we need to
determine whether the data are sent out of the device, which
is critical to the privacy risk assessment. Thus, we should
consider more factors in both syntax and semantic levels.
Secondly, the actual influences of each factor are different
and the weight assignment for multiple factors is another
challenging problem. Obviously, manually specifying or
averaging the weights on different factors is inappropriate.
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Therefore, the privacy risk assessment should also include a
reasonable and systematic weight assignment method.

In this paper, we propose a semantics-aware privacy risk
assessment framework for Android apps, called SPRISK.
SPRISK considers the resource diversity in semantic lev-
el, and concerns APIs’ execution context by dealing with
the trigger conditions of data transmissions. Meanwhile,
SPRISK also takes the transmission destination into account,
while the outgoing private data has a higher risk than the
one staying on the devices. SPRISK does not only offer qual-
itative result, risk level, but also provides quantitative result,
risk score. For an app, the risk level presents a coarse-grained
division, and the risk score indicates how risky the app is
in a fine-grained view. Furthermore, to find the reasonable
distribution of weights for various factors, we propose a
novel self-learning weight assignment method, which can
learn the weights from the training apps automatically.

We use SPRISK to evaluate the privacy risk distribution
of real-world Android apps and malicious apps. Compared
to Androguard [9], the proposed approach shows consid-
erable improvement of accuracy. Moreover, our evaluation
of SPRISK also discloses interesting and valuable findings
related to risk distribution of Android marketplaces1.

The contributions of this paper are summarized as fol-
lows:

• We propose a novel semantics-aware risk assessment
framework to evaluate the privacy risk of Android
apps. It deeply analyzes apps in semantic level while
considering contextual API dependency correlations.
Our framework provides qualitative and quantita-
tive results, which help users understand and choose
apps before installing those apps.

• Based on fuzzy clustering and knowledge dependen-
cy theory, we propose a self-learning weight assign-
ment method to measure each factor’s significance
automatically. Trained with 10,000 apps, the resulting
weight distribution captures the actual influences of
various factors, which makes the assessment model
more reasonable.

• We implement SPRISK and assess the privacy risks
on 192,445 normal apps as well as 7,111 malicious
apps. The experimental results demonstrate the ef-
fectiveness of our weight assignment method and the
accuracy of SPRISK. A measurement study further
presents some important issues, such as the risk
distribution of Google Play Store and the diversity
of official and unofficial marketplaces.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the problem and provides
the architectural overview of SPRISK. Section 3 describes the
design of SPRISK. Section 4 presents the self-learning weight
assignment method. Section 5 presents the performance
of SPRISK on a large number of samples and elaborates
the experimental results, followed by a brief discussion on
SPRISK in Section 6. Section 7 describes the related work. In
Section 8, we conclude the paper.

1. The service of SPRISK is available at
http://csp.whu.edu.cn/SPRisk

onCreate(...){

L4: String imei = getSubscriberId();
L5: WifiInfo wi = getConnectionInfo();

}

onCreate(...){

L1: double d1 = getLatitude();

L2: double d2 = getLongitude();
}

onClick(...){

L3: SmsManager.

                  sendTextMessage(...);

}

onResume(...){

L6: httpClient.execute(post);

L7: Log.i(wi);

}

APP1: GPSSMSSpy APP2: Wifilocating

SinkSource Callbacks

Fig. 1: Two motivating examples.

2 OVERVIEW OF SPRISK

In this section, we present an overview of the problem and
the architecture of our proposed solution.

2.1 Problem Statement

In Android, the sensitive data transmission contains two
necessary parts: sources and sinks, which are invoked by
various callback methods. Specifically, sources mean the
APIs which acquire sensitive data, and sinks indicate the
APIs which deliver sensitive data. From sources to sinks,
there exist some data transmission paths (including call-
backs, system APIs, and other statements), called sensitive
data flows. When assessing the privacy risk of Android
apps, traditional approaches may design precise methods
to find more sensitive data-flows. However, they ignore
two import facts: what the privacy is and how it is used.
Obviously, the leakages of different data (e.g., location and
device information) have different severities, so it is more
reasonable to distinguish them in a fine-grained mode. In
addition, sending privacy data out of the device has a
higher risk than moving them on the same device. Hence,
the transmission destination may also affect the assessment
result. Furthermore, it is crucial to estimate whether the
data transmissions follow users’ intention or not, thus, the
entry points of callback methods also have an impact on the
privacy risk assessment.

To motivate our work, we analyzed the sensitive data
flows of two examples, as shown in Fig. 1. The first app
GPSSMSSpy (MD5:ebae9b3a1078daa2d1a74d566780e26c) is
a malware collected from Malgenomeproject [10], which
accesses users’ locations by sources getLatitude() (L1)
and getLongitude() (L2). Then, it sends these infor-
mation to remote server by a sink sendTextMessage()
(L3). The data transmission is triggered in onCreate()
and onResume(), which indicates that users’ location-
s are accessed automatically. The second app Wifilocating
(MD5:21b64328e450afad7845d1caceda26da) is an app col-
lected from Google Play Store, which accesses device’s infor-
mations (i.e., device id and WiFi configuration) by sources
getSubscriberId() (L4) and getConnectionInfo()
(L5). Once users click the “Search” button (onClick()),
it sends the collected information to a remote server by
httpClient.execute() (L6) and stores them locally by a
sink Log.i() (L7) at the same time.

When assessing the privacy risk of these two apps, we
should consider three factors: 1) the importance of data; 2)
the trigger condition of data access; and 3) the distinction of
data transmission. No prior work takes all three facts into
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Fig. 2: Architecture overview of SPRISK.

consideration when evaluating the privacy risk of Android
apps. In SPRISK, to address the aforementioned problems
and complements existing vetting techniques, the following
design goals are considered:

• Semantic-based Assessment. Our approach evalu-
ates the privacy risk of an app in semantic level.
Instead of relying on the frequency of sensitive data,
SPRISK performs static program analysis for the
trigger condition and destination of sensitive data
flow and also considers the sensitivity of different
data and permissions.

• High Adaptability. Our approach must be scalable
to present different privacy risk levels and factors. To
satisfy different demands, SPRISK needs to provide
both qualitative and quantitative assessment results,
which can classify privacy risk into different levels
while concerning various factors.

• Reasonable Weight Assignment. The importance
of each factor must be considered by designing a
self-learning weight assignment method, which is
more reasonable for evaluating apps’ privacy risk.
Through analyzing diverse apps in the wild, SPRISK

should measure the dependency of each factor and
learn the weight distribution from the training data
automatically.

2.2 Architectural Overview of SPR ISK

SPRISK consists of the following four major components:
(i) Factor Extraction; (ii) Sensitivity Distribution Matrix
Generation; (iii) Weight Assignment and (iv) Privacy Risk
Assessment, as illustrated in Fig. 2.

(i) Factor Extraction. This component performs static pro-
gram analysis to extract sensitive data transmission
paths and permissions. In addition, our program anal-
ysis obtains more contextual information in semantic
level. We consider the sensitivity of privacy data for
providing the fine-grained assessment.

(ii) Sensitivity Distribution Matrix Generation. After ex-
tracting the factors, we exploit a matrix-based scheme
to address the complexity challenge of multiple factors
with various sensitivities. The result of this module
is expressed via a sensitivity distribution matrix that
describes the statistics of each factor’s privacy risk.

(iii) Weight Assignment. Given predefined factors, this
module finds the reasonable weight distribution by
designing a self-learning weight assignment method.
Based on fuzzy clustering and knowledge dependen-
cy theory, this module produces a weight coefficient
vector, which represents the significance of each factor.

(iv) Privacy Risk Assessment. Once the sensitivity distri-
bution matrix and weight coefficient vector are gen-
erated, this module evaluates the privacy risk of an
app with qualitative and quantitative assessments. The
risk level and risk score are provided in this module to
intuitively help users understand the result.

3 DESIGN OF SPRISK

3.1 Factor Extraction

We define the Evaluation Set V = {v1, v2, · · · , vn}, where vi
denotes the i-th risk level. Inspired by prior works [8], [9],
we define the evaluation set with a symmetric bipolar scale,
namely V = {v1, v2, v3, v4, v5} ={very low, low, average,
high, very high}, which can also help readers understand
the proposed framework.

The Factor Set (U = {U1, U2, · · · , Um}) represents the
privacy-related factors. We use a static analysis method to
extract these factors from Android apps. More specifically,
we focus on the sensitive data flows and the requested
permissions, which can be obtained by a broad analysis over
the apps’ content. The detailed descriptions of these factors
are as follows.

3.1.1 U1 Source

In Android, a large variety of data (e.g., SMS, Con-
tact, and Location) should be protected, and most of
these sensitive data can be accessed by specific APIs.
For example, in the scenario of Fig. 1, we have three
source methods: getLatitude(), getLongitude(), and
getDeviceId(). By calling each source, an app can ac-
quire the corresponding data, e.g., calling getLatitude()
will return the location area code. As mentioned before,
different privacy data have different risks, so the sources
should be assigned with different sensitivities, according to
their potential privacy risks.

To have a comprehensive list of sources, we utilize
SuSi [11] to extract the privacy-related data, which includes
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TABLE 1: The Sensitivity Distribution of Source, Sink, and Permission.

Factor Category Sub Category Sensitivity

U1

Source

PROPERTY ACCOUNT very high

INFORMATION SMS MMS CONTACT EMAIL high

DATA
LOCATION IMAGE BROWSER

average
CALENDAR DATABASE FILE

DEVICE
NETWORK NFC SYSTEM SETTINGS

low
BLUETOOTH UNIQUE IDENTIFIER

OTHER SYNCHRONIZATION DATA very low

U2

Sink

LEAVE

NETWORK SMS MMS BLUETOOTH

highVOIP SYNCHRONIZATION DATA EMAIL

NFC BROWSER PHONE CONNECTION

NOT LEAVE

ACCOUNT FILE CONTACT

lowLOCATION LOG AUDIO

PHONE STATE SETTINGS CALENDAR

U6

Permission

CORE

ACCOUNTS CONTACT LOCATION

very highMESSAGES CALENDAR COST MONEY

PERSONAL INFO BOOKMARKS SOCIAL INFO

IMPORTANT

CAMERA MICROPHONE PHONE CALLS

highSTORAGE APP INFO USER DICTIONARY

NETWORK VOICEMAIL

NORMAL
AUDIO SETTINGS BLUETOOTH NETWORK

low
SYNC SETTINGS DEVICE ALARMS

18,077 sources and 8,315 sinks. Due to the volume of this da-
ta, it is impractical to assign the sensitivity level to each API
manually. In this paper, instead of assigning the sensitivity
to each source individually, we consider the privacy risks
of their categories. Specifically, we classify the identified
sources into several categories based on SuSi, which can
offer additional information about what has been leaked. For
example, the API getLatitude() belongs to the category
LOCATION, and the API getDeviceId() belongs to the
category IDENTIFIER.

Next, to determine the sensitivity of each category, we
manually investigate the report of DCCI [12], which ranks
resources by sensitivity. For example, ACCOUNT is the most
concerned category from the users’ perspective. Thus, its
sensitivity is very high. Similarly, the sensitivity of catego-
ry INFORMATION is high, etc. The sensitivity distribution
is shown in Table 1.

Though averaging the sources’ sensitivity may not be
the best way towards different users’ preference (i.e., users
may have different views on the leakage damage of re-
sources), the approach mentioned above is reasonable e-
nough to demonstrate our model. Moreover, distinguishing
the privacy-relevant preference of users would require a
dedicated analysis for the users’ cognitive experience, which
is still a general, open problem for the community, and
beyond the scope of this work.

3.1.2 U2 Sink

The sinks are the potential leakage exits, which indicate
the target of data transmission, such as sending SMS mes-
sages (sendMessage()) and writing information to log

files (Log.v()). In this work, we classify those methods into
two categories: leave or not leave the device. Hence, there are
mainly two sensitivity levels for sinks. If a sink sends data
out of the device, the sensitivity should be high. On the
contrary, if data stays on the device, the data transmission
has a relatively small risk and the sensitivity should be low.

Similarly to sources, there are also a large number of
sinks in Android. Therefore, to determine the sensitivity
of each sink, we also consider the API list and categories
based on SuSi, as shown in Table 1. Specifically, according
to the category of a sink method, we can determine where
the corresponding data have been sent and then assign the
sink’s sensitivity. For example, the sink sendMessage()
belongs to the category SMS MMS, and it sends the data
out of the device. Hence, its sensitivity is high. The sink
Log.v() belongs to the category FILE. Because data stays
on the device, its sensitivity is low.

3.1.3 U3 UI Invoke & U4 State Change

Not all sensitive data transmissions indicate a privacy
leakage, it is necessary to extract whether it is users’ in-
tention to transmit. We consider the condition of a data
transmission event by defining two triggers: UI Invoke and
State Change. The UI Invoke methods are related to the app’s
view (e.g., onClick()), which are typical user interactive
APIs. From a security analyst’s perspective, it is acceptable
that private data are authorized by the user. In other words,
the UI Invoke method can decrease the privacy risk of an
app. Conversely, the State Change methods are invoked
without users’ approval (e.g., onGpsStatusChanged()).
A malicious app developer commonly exploits background
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callbacks to perform sensitive functionalities, and increases
the possibility of privacy leakage.

Unlike the sensitivity distribution of sources and sinks,
we cannot determine the sensitivity of UI Invoke and S-
tate Change by simply using their appearance. Indeed, those
trigger conditions act on the following source or sink
methods. For both sources and sinks, the UI Invoke can
decrease the sensitivity, while the State Change can increase
the sensitivity. For example, assuming that the sensitivity of
source is average, if it is called by UI Invoke, the sensitivity
will be decreased to low. However, when it is triggered by
State Change, the sensitivity will be increased to high. As
a result, SPRISK can evaluate the privacy risk of an app in
semantic level, rather than simply consider the sensitivity of
data.

Note that, the UI Invoke factor become inefficient when
malware masquerades as a normal app and clicks a button
before performing malicious behaviors. Therefore, simply
detecting the appearance of UI Invoke methods is not suf-
ficient to declare a privacy violation. However, encoding
user preference and expectations inside automated analy-
sis is difficult, which needs the participation of users. To
address this problem, we use a strict rule as follows: we
consider a user-intended data transmission when an app
access sensitive information with notifying the user through
a prompt or license agreement. We check if a notification
is displayed to the users in the causal taint tracking path
from source to sink. Then, we also try to determine if the
notification contains messages informing the user of data
collection or requesting permission to transmit the data in
question. If the condition is satisfied, the UI Invoke factor is
confirmed.

3.1.4 U5 Sen Path
We also take the whole transmission path called Sen Path
into account. An app usually contains multiple sensitive da-
ta flows, and there may exist many (source, sink) pairs with
their own sensitivities. For example, there exist two trans-
mission paths (getSmsMessage() → · · · → Log.v() and
getString() → · · · → sendMessage()). The sensitivity
of getSmsMessage() is higher than that of getString(),
while Log.v() has a lower risk than sendMessage(). If
we evaluate the sources and sinks individually, the inner
relationship between them will be lost, and the privacy risk
of the analyzed app may be inaccurate. In particular, if we
map getSmsMessage() with getString() incorrectly,
the app will be evaluated with a higher privacy risk level
than its actual risk level. Therefore, SPRISK also treats the
sensitivity transformation rule of different combinations as
an indispensable factor.

There exist two transformation rules of Sen Path,
including remain intact and increase the risk. In fact, the
sensitivity of a Sen Path is based on its source, while it
may be affected by the risk of its sink. For example, if the
sensitivity of a sink is low (i.e., the privacy data has not
been sent out of the device), the Sen Path has the same
sensitivity with its source. Otherwise, if the sensitivity
of sink is high, the sensitivity of Sen Path will be higher
than that of the source. Having both factors, UI Invoke and
State Change, the evaluation of the whole transmission path
further enhances the semantics-aware capability of SPRISK.

Source & Sink UI_Invoke & State_Change Sen_Path

very_high

UI_Invoke State_Changed

very_low low average high

Fig. 3: The multi-level evaluation of the sensitive data trans-
mission.

As shown in Fig. 3, our approach adopts multi-level
evaluation. First, the privacy risks of sensitive data and
transmission destinations are determined (U1 and U2),
which offer information on how many data and channels
have been accessed. Secondly, to capture the APIs’ execution
context, we look into the trigger conditions of each data
transmission path(U3 and U4), which provide clues on how
these data operations are invoked. Finally, we evaluate the
sensitivity of the entire path (U5), which is necessary to
determine what privacy has been leaked to where. Although
the basic measurement is the sensitivity of sources and
sinks, the appearance of other factors are independent
and should be treated simultaneously. In such a way, we
can have a comprehensive privacy risk evaluation of the
sensitive data flows in an app.

3.1.5 U6 Permission

Permission is one of the security mechanisms in An-
droid [13], which controls the privacy- and security-relevant
parts of Android’s rich API. To access sensitive data, an app
should require corresponding permissions at first, and the
user is notified during installation about what permissions
an app will request. If developers routinely request more
permissions than they require, the bug or vulnerability of
the overprivileged app would increase the potential privacy
risk. Thus, SPRISK treats permission as an important factor
(U6).

To implement permission assessment, we define the
sensitivity by the group to which the permission belongs.
In Android, each permission has been assigned to a protec-
tion level, i.e., normal, dangerous, signature, and signature-
OrSystem. Unfortunately, this classification policy cannot be
used for SPRISK directly. As dangerous permissions may
not be related to users’ privacy, there exists no congruent
relationship between the protection level and the risk level.
For example, the BRICK is a dangerous permission, which
is able to disable the device. However, from the perspective
of privacy protection, the possibility of leakage is small.

Therefore, we define a classification rule by the im-
portance of permission which is determined by a large
number of questionnaires [12], instead of protection levels.
Specifically, we classify the permission groups into three
levels: Core, Important, and Normal, as shown in Table 1. For
example, a great percentage of users concerns the leakage
of SMS, thus, the permission group MESSAGES belongs to
the Core level, and the sensitivity is very high. In contrast,
few people worry about the leakage of Bluetooth, thus, the
permission group SENSORS belongs to the Normal level,
and the sensitivity is low.
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3.1.6 U7 Third Party Library

Third-party libraries on Android have become a common
part of apps and can provide convenience for the app
developers, such as single-sign-on service, advertisement
library, and online social media. However, as illustrated
by a number of prior studies [6], [14], third-party libraries
also increase the host apps’ attack surface and have become
security and privacy hazards for end users. For example,
third-party libraries can leak users’ SMS information, ex-
pose their host app’s privileges, or track users’ locations.
Given the high popularity of third-party libraries and their
serious impact on users’ privacy, it is necessary to take the
sensitivities of third-party libraries into consideration.

To detect the privacy risk of third-party libraries, the
first task is to identify popular Android libraries as many
as possible. In this work, we utilize LibScout [6] to build
a library database that contains the ground truth of each
available library version. Specifically, the collected database
contains 164 libraries with 2,065 versions. In particular,
advertising libraries are one of the most prevalent library
types for Android, which have attracted many researchers
to study the risk of them [15]–[18]. Therefore, we further
utilize MAdScope [18] to retrieve 101 advertising libraries
that cover the majority of existing Android advertising
platforms.

Instead of relying on the number of third-party libraries,
we also consider the gap between current and latest ver-
sions. As illustrated in LibScout [6], app developers only
slowly adopt new library versions, exposing their end-users
to large windows of vulnerability. However, not all version
upgrade focuses on the repair of bugs, but in some cases
tend to deliver new features. Therefore, we must define
what we consider to be a bug or vulnerability upgrade. To
this end, we further analyze the CHANGELOG file of each
version, and look for some specific words. For example, if
a new version has fixed some bugs of an old version, it
may include words like “Fixed”, “Crash”, and “incorrect”.
Specifically, we collect the CHANGELOG file of third-party
libraries by utilizing Scrapy [19]. By checking each file been
collected manually, we have saved 1,865 CHANGELOG files
of 135 libraries. Through analyzing these files, we further
extract static strings that typically appear in stable and test
versions by parsing the CHANGELOG files. At last, we have
collected 56 bug-fix related keywords and phrases in total.

When evaluating the sensitivity of third-party library, we
first determine if the current version is the latest version. If
not, we further determine whether the latest version has
fixed some known bugs or not. To this end, we utilize
LibScout [6] to identify the version of extracted third-party
library. Specifically, if the version is latest one, its sensitivity
should be very low. If the version is not latest one and
the version upgrade are only deliver new features, then its
sensitivity should be normal. While if the version upgrade is
related to bug fix, then its sensitivity should be very high.
For instance, the latest version of an advertising library is
v2.1.0, while the evaluated app is equipped with v1.2.2
version. By mapping the predefined database, we find that
the latest version has fixed several bugs of old ones. Thus,
the sensitivity of this current advertising library version in
the evaluated app is very high.

3.2 Sensitivity Distribution Matrix Generation

To represent the above-mentioned factors efficiently, we
define Sensitivity Distribution Matrix (SDM) which can reflect
the privacy risks of the data flows and permissions by a real
matrix. A formal definition is presented as follows:

Definition 1. A Sensitivity Distribution Matrix (Sm×n) is a
matrix over a set of pre-defined factors and sensitivities,
where:

• m denotes the number of factors, n is the number of
risk levels. In this work, m = 7 and n = 5.

• In Sm×n, each row si = (si1, si2, · · · , sij) represents
the sensitivity distribution of factor i, and sij denotes
the number of APIs or permissions in the context of
factor Ui with the risk level vj (0 < j ≤ n).

Table 2 presents an example of SDM. The sample app
contains 89 sensitive data flows and requests 4 permissions.
The sensitivity distribution of sources is shown in the first
row. There are 89 sources in total which have different
sensitivities, while 8 of them are very low, 62 of them are
low, 19 of them are very high, and none of them is average
or high. Hence, we can get s1 = (8, 62, 0, 19, 0). By the same
method, the sensitivity distribution of other factors can also
be constructed.

TABLE 2: A SDM example.

Factor Set v1 v2 v3 v4 v5

Source 8 62 0 19 0

Sink 75 0 0 0 14

UI Invoke 31 7 0 5 0

State Change 0 2 5 0 0

Sen Path 0 70 0 19 0

Permission 0 0 0 2 2

Third Party Library 2 0 1 0 0

Among the factors mentioned above, determining the
sensitivity distribution of Sen Path is the non-trivial task. As
introduced in Section 3.1.4, the sensitivity of each Sen Path
is determined by the corresponding source and sink in the
data flow. Note that the sensitivities of sources and sinks
are influenced by the trigger conditions. For example, there
exists one data flow, OnClick()→ getSmsMessage() · · ·
onGpsStatusChanged() → log.v(). The sensitivity of
getSmsMessage() is very high, while it is triggered by
OnClick(), thus, the sensitivity of source is decreased to
average. The sensitivity of log.v() is average, while it is
triggered by onGpsStatusChanged(), thus, the sensitivi-
ty of sink is increased to high. As a result, the sensitivity
of this data flow will be higher than that of source, i.e.,
increasing from average to high.

3.3 Privacy Risk Assessment

In this section, we introduce the privacy risk assessment
model, which is essential to reveal the privacy risk of
an app. We present a framework, which consists of two
modules for qualitative and quantitative assessments. In
the qualitative assessment, SPRISK attempts to examine
the risk level of an app automatically, e.g., very high or
very low. In the quantitative assessment, SPRISK takes
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the risk level as input, and produces the risk score of an app.

Qualitative Assessment. For the qualitative assessment, we
build a single-factor evaluation matrix A = (aij)

m×n from
SDM at first.A is constituted by the single-factor evaluation
vectors. In our approach, the evaluation of each factor is
denoted by a vector ai = (ai1, ai2, · · · , ain), where aij =

sij∑
n
j=1

sij
and sij is the element of SDM.

Next, we perform the qualitative assessment by the
weight coefficient vector w and the single-factor evaluation
matrix A of an app. w = (w1, w2, · · · , wm) denotes the
weight distribution of the factor set, which will be described
in Section 4. In particular, the qualitative assessment result
is denoted by a risk distribution vector b = (b1, b2, · · · , bn),
where bi indicates the possibility of each risk level vi, and it
is calculated as follows:

b = w · A = [w1, w2, · · · , wm] ·



a11 · · · a1n

...
. . .

...
am1 · · · amn


 (1)

The elements in vector b are normalized and their sum
is 1. According to the principle of maximum subordination,
the biggest bi in b should be the result of qualitative
assessment, which means that the evaluated app has the
most possible with the risk level vi.

Quantitative Assessment. For the quantitative assessment,
we introduce a score vector c, which is a n-dimensional
vector c = (c1, c2, · · · , cn) and ci (0 ≤ ci ≤ 100) is a
score corresponding to each risk level vi. The larger the
score is, the higher risk an app has. In our example, n = 5
and we have c = (0, 20, 40, 60, 100). Specifically, ci = 0
indicates that the analyzed app has no privacy risk at all,
while ci = 100 means that the possibility of privacy leakage
is extremely high. Finally, we adopt the following function
to calculate the risk score φ of an app:

φ = b · cT =
n∑

i=1

bici (2)

In practice, the quantitative assessment results can help
an app marketplace manager to rank the privacy risk of
apps. Based on the risk ranking, the marketplace manager
can design an enhanced recommendation system from the
perspective of users’ privacy. Moreover, SPRISK offers a
significant assistance for users to decide whether a new app
should be installed or not. Given several candidate apps
that could provide similar services, users can choose the one
which has the minimum privacy risk score.

4 SELF-LEARNING WEIGHT ASSIGNMENT

In this section, we design a self-learning weight assignment
method to evaluate weights of various factors. The main
idea is that when we remove a factor, the more significant
the influence is, the higher weight should be assigned to
the factor. To achieve this goal, our approach contains two
phases: fuzzy clustering and knowledge dependency. As
illustrated in Fig. 4, in the fuzzy clustering phase, SPRISK

takes apps as input and classifies the dataset by the com-
plete factor set automatically. In the knowledge dependency

phase, our approach performs the classification by removing
different single factor in turn. As a result, we can obtain the
dependency between factors and factor sets to generate a
weight coefficient vector.

4.1 Fuzzy Clustering

To classify apps into different risk levels, we first design
a clustering method. The discrepancies of various privacy
risks are vague, there is no clear boundary existing.
Therefore, our first module, called Fuzzy Clustering, is
based on the soft clustering method. In soft clustering,
data elements can belong to more than one cluster. More
specifically, the process can be divided into three stages, as
in Fig. 4.

Stage 1: Data pre-processing (Step: 1 ). The main task in this
stage is to process the original data to meet the requirements
of fuzzy clustering. Let X = {x1, x2, · · · , xu} be the dataset,
and u is the number of samples. As mentioned in Section 3.2,
we represent each app xi by a SDM. Then, we quantify the
risk score xij of each factor Uj for the sample xi as

xij =
n∑

k=1

ajkck (j = 1, 2, · · · ,m) (3)

where ajk is the element of the single-factor evaluation
matrix A of sample xi, and ck is the element of score vector
c introduced in Section 3.3.

As a result, X is represented by a real matrix R =
(xij)

u×m. Then, we continue to normalize each element xij

into [0, 1] as

x
′

ij =
xij − x̄j

tj
(i = 1, 2, · · · , u; j = 1, 2, · · · ,m) (4)

where x̄j =
1
u

∑u
i=1 xij and tj =

√
1
u

∑u
i=1(xij − x̄j)2.

Stage 2: Fuzzy equivalence matrix generation (Step: 2 -

3 ). From Fig. 4, we observe that this stage contains two
steps. Firstly, we transform the matrix R to a fuzzy similarity

matrix R̃ = (rij)
u×u, where rij denotes the similarity

between two samples xi and xj . Formally, this similarity
rij can be defined as

rij =

∑m
k=1 |x

′

ik − x̄i||x
′

jk − x̄j |√∑m
k=1(x

′

ik − x̄i)2 ·
√∑m

k=1(x
′

jk − x̄j)2
(5)

where x̄i =
1
m

∑m
k=1 x

′

ik and x̄j =
1
m

∑m
k=1 x

′

jk .
Secondly, we obtain the fuzzy equivalence matrix R∗

from R̃. To be specific, we find the least k (k ∈ N) that

satisfies R̃(2k) · R̃(2k) = R̃(2k). Then, R∗ = R̃(2k). Note that
R∗ = (δij)

u×u is a symmetry matrix, δij = 1 (i = j), and
δij < 1 (i 6= j).

Stage 3: Data classification (Step: 4 ). In this stage, we de-
duce the classification result based on R∗. Let λ (0 ≤ λ ≤ 1)
denote the membership of an app to a certain risk level,
which controls the classification criteria. If δij > λ, the sam-
ples xi and xj should be classified into one level. Intuitively,
through adjusting the value of λ, we can have different
clustering results. In the most rigorous case (λ = 1), every
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Fig. 4: The weight assignment pipeline.

app is self-contained and different apps are never classified
into one risk level. When we relax the restriction (e.g.,
λ = 0.8), the samples, whose similarity are greater than
80% will fall into one cluster.

To find the optimal classification, we set different λ and
measure the diversities of results. Our approach utilizes F-
test [20] to achieve this goal, which shows the ratio between
inner-group mean square deviation and intra-group mean
square deviation. Let r denote the number of classes which
are generated by λ. nj indicates the number of samples in
the j-th class. The samples in the j-th class is labeled as

x
(j)
1 , x

(j)
2 , · · · , x

(j)
nj . Thus, the cluster center of the j-th class

can be represented as x̄(j) = (x̄
(j)
1 , x̄

(j)
2 , · · · , x̄

(j)
m ), where

x̄
(j)
k is the average value of the k-th feature, thus

x̄
(j)
k =

1

nj

nj∑

i=1

x
(j)
ik (k = 1, 2, · · · ,m)

Formally, the F-test can be defined as

F =

∑r
j=1 nj ‖ x̄

(j) − x̄ ‖2 /(r − 1)
∑r

j=1

∑nj

i=1 ‖ x
(j)
i − x̄(j) ‖2 /(n− r)

where

‖ x̄(j) − x̄ ‖=

√√√√
m∑

k=1

(x̄k
(j) − x̄k)2

The larger the F-test is, the better the classification is. In
fact, a large F-test indicates that the inner-group difference
is great, while the intra-group difference is small.

4.2 Knowledge Dependency

In this section, we measure the factor dependency, namely
factor weight, based on the knowledge dependency theo-
ry [21]. It provides a measurement to evaluate the depen-
dency of different attribute subsets. The process is depicted
in Algorithm 1, which takes the dataset X as input and
produces the weight coefficient vector w.

First of all, we leverage the clustering method (i.e.,
equClassify()) described in Section 4.1 to classify the o-
riginal dataset. After this step, we obtain the optimal classi-
fication Y = {Y1, Y2, · · · , Ys} on X .

Secondly, to determine the importance of each factor

(Step 5 ), we define the concept of Factor Dependency (FD)
as

Definition 2. Given two factor sets U and P , we say that U
depends on P with a degree k (0 ≤ k ≤ 1), if and only if

k = γ(P,U) =
|POSP (U)|

|X |
(6)

where POSP (U) is a set of samples classified by U as well
as P , and |X | denotes the cardinality of the dataset. If k = 1,
we say that U completely depends on P , which means that
P is equivalent to U . If 0 < k < 1, we say that U partially
depends on P , and if k = 0 we say that U is completely
independent of P .

Thirdly, we narrow the factor set U to Ci by removing
the factor Ui, and construct a new dataset X̄ from X (Step

6 ). Based on Ci and X̄ , we perform equClassify() again
to achieve the classification Ei = {E1, E2, · · · , El}. To
calculate the dependency between Ci and U , we realize
the method depDegree() by equation (6), i.e., γ(Ci, U) =|
POSCi

(U) | / | X |, where POSCi
(U) = ∪{Ei, Y }. Then,

we can obtain the importance of the factor Ui as

SGF (Ui) = 1− γ(Ci, U) (7)

where γ(Ci, U) is the dependency of the remaining factor
set Ci from U after removing the factor Ui.

Finally, we leverage the method valueNorm() to nor-
malize the weight coefficient vector w = (w1, w2, · · · , wm)
in Step 7 , i.e., wi = SGF (Ui)/

∑m
i=1 SGF (Ui). Note that

it is quite easy to extend our current framework to comple-
ment more factors, such as dynamic code, binary files etc.

5 EVALUATION AND MEASUREMENT

5.1 Dataset

We conducted experiments with two datasets, including
malware dataset and normal app dataset. We collected the
malware dataset from three research projects (Drebin [3],
DroidAnalytics [22], and Malgenomeproject [10]). We re-
moved repeated samples and had 7,111 malware in total,
as shown in Table 3. To the best of our knowledge, this is
one of the largest datasets that has been used to evaluate the
privacy risk on Android.

To collect normal app dataset, we crawled five repre-
sentative marketplaces, including the official Android mar-
ket (Google Play Store [23]), and four third-party Android
markets (Anzhi, Anruan, Nduoa, and Gfan). We used Play-
Drone [24] to obtain 172,445 apps from Google Play Store.
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Algorithm 1: The Weight Assignment Algorithm.

Input: X as the original dataset.
Output: w as the result of weight coefficient vector.

Y ← equClassify(X,U)
for i = 1 to m do

Ci := U − {Ui}
X̄ ← construct a new dataset from X
Ei ← equClassify(X̄, Ci)
if length(E) 6= 0 then

γ ← depDegree(Y,Ei)
end
weight[i] := 1− γ

end
w← valueNorm(weight)
return w

TABLE 3: Summary of Malware Dataset.

Drebin DroidAnalytics Malgenomeproject

Number 5,560 2,258 1,260

Total 7,111

For other four markets, we also built a crawler on the
basis of Scrapy [19], and collected 5,000 samples from each
market. Our resulting app corpus is described in Table 4.
Note that we call “normal app” instead of “benign app”,
because the collected dataset may contain some malicious
apps which were undetected yet. However, we focus our
effort on the evaluation of privacy risk, not the detection of
malware, thus those noisy apps would not be a problem for
our approach.

We implemented the prototype of SPRISK on the basis
of FlowDroid [25] with 2,437 lines of code (LOC) in Java.
In particular, the weight assignment algorithm was imple-
mented in Java and Matlab together, which introduces 924
LOCs.

5.2 Effectiveness of SPR ISK

5.2.1 Weight Assignment

To examine the effectiveness of our self-learning weight
assignment method, we randomly selected 5,000 apps from
malware and normal app dataset, respectively. Then, we
converted the selected dataset into a matrix (see Section 4).
However, this way may induce unreasonable computation
and storage costs (e.g., 10,000 apps need to construct a
10000 × 10000 matrix), which is unpractical. To solve this
problem, we leveraged a divide-and-conquer method to
save memory. In detail, the dataset was divided into 10
groups, each group has 1,000 apps. Because all the weight
coefficient vectors from different groups have the same

TABLE 4: Summary of Normal App Dataset.

Official Unofficial

Google Play

Store
Anzhi Anruan Nduoa Gfan

Number 172,445 5,000 5,000 5,000 5,000

Total 192,445
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Fig. 5: Weight distribution of the factor set.

influence, we could average them to achieve the final result.

As shown in Fig. 5, the two most important factors
are Source (U1) and Sink (U2). We compared the sensitivity
distribution of these two factors by selecting 1,000 apps
with high and low risk, respectively. In these high (low)
risk apps, there are 2,346 (1,621) sinks and 80% (82%) of
them have the sensitivity high (low). Compared with sinks,
there are 1,865 (1,041) sources and only 51% (46%) of them
have the sensitivity high (low). On one hand, the sensitivity
distribution of Source is more balanced than that of Sink,
and we cannot decide the privacy risk according to the
sensitivity of Source. On the other hand, the sensitivity of
Sink has a strong relationship with the privacy risk of an
app. In other words, if an app has many sinks that have
the sensitivity of high, it would have a high possibility of
privacy leakage, which means that the destination of the
sensitive data flow has a great influence on the privacy risk
of an app.

For the privacy risk of permissions, many researchers
have suggested that developers should follow the least-
privilege principle and request only necessary permissions.
In our approach, permission is also an impactful factor,
which has the higher weight than the other four factors
(U3, U4, U5, and U7). As illustrated in Section 3.1.5, different
permissions have distinct influence on the privacy risk.

5.2.2 Accuracy

Note that mobile users have distinct security preference,
there is no unified criterion for privacy risk assessment
of apps. Therefore, evaluating accuracy is a challenging
task since manually running all apps and examining each
user’s expected appropriate behaviors are not feasible. In
this experiment, we opt for an approximation of accuracy
for SPRISK. We want to evaluate how well SPRISK is able
to assigning high scores to malware apps and low scores to
normal apps. To this end, we randomly selected 5,000 apps
from malware and normal app dataset, respectively. Fig. 6
summarizes the characteristics of the risk distribution.

We can find that most apps in the malware dataset
(SPRisk-M) have higher risk than that in the normal app
dataset (SPRisk-N). Especially, in the malware dataset, the
percentages of apps that have risk scores higher than 60
are 73.72%. For all apps been labeled as very high, 90.79%
come from the malware dataset, which illustrates that our
approach can obtain equivalent results. Moreover, there are
9.96% apps in the malware dataset with risk scores lower
than 40. This is because that some malware samples do not
aim at stealing users’ private data. Therefore, the privacy
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risk scores of them are low. On the other hand, 12.65% apps
have risk scores higher than 60 in the normal app dataset.
In other words, privacy risk is a ubiquitous problem in most
apps.

We compared the accuracy of SPRISK with Andro-
guard [9], which is a popular static analysis tool. Andro-
guard also provides a toolkit to evaluate the risk of an
app, and the evaluation result is represented by a number
between 0 and 100. Fig. 6 also shows the privacy risk
distribution for evaluating malware (Androguard-M) and
normal (Androguard-N) apps by Androguard. From our
experiments, we find that more than 56%(2,815) of malware
apps are labeled with risk scores under 60 and less than
38%(1,956) of normal apps are scored under 20. The re-
sults indicate that Androguard cannot provide appropriate
evaluation for many malware and normal apps. Moreover,
compared with SPRISK, we find that the gap between
malware and normal apps in Androguard is little, which
means that Androguard cannot differentiate the semantic
of sensitive behaviors. Through analyzing the source code
of Androguard, we find that its risk evaluation model is
too simple. It only chooses partial factors (Permissions,
DexClassLoader, and Binary Files), and it does not consider
the weight distribution of each factor.

5.2.3 Case Studies
In this section, we constructed several cases to evaluate
the rationality of SPRISK. In particular, we selected two
apps mentioned in Section 2 (i.e., GPSSMSSpy and Wifilo-
cating), and performed the privacy risk assessment. Fig. 7
illustrates the results in the form of hexagon. Each vertex
of the hexagon denotes the risk score of a factor, which is
calculated by the equation (3) in Section 4.1.

In the first app, locations are sent out of the device and
the data are accessed automatically, which means that the
process is transparent to the user. Therefore, the probability
of leakage is relatively high and this stealthy manner should
be allocated with high risk. Fig. 7(a) shows the evaluation
result of this app. The final risk level is very high, and the
risk score is 94.9694. The risk assessment of the second app
is more complicated than the first one, since there are mul-
tiple sensitive data flows with different sensitivities. Both
getSubscriberId() and getConnectionInfo() have
less severity than getLatitude() and getLongitude().
For the sensitivity of trigger condition, onResume() in-
creases the privacy risk, while onClick() is the opposite.
As shown in Fig. 7(b), the final risk level is normal, and the
risk score is 55.5482, which is better than that of the first
one. Fig. 7(c) shows the difference between them. From this
figure, we can easily compare the privacy risk diversity of
them. In addition, we also find that the bigger hexagon area
indicates the higher privacy risk, which is quite intuitive to
compare the privacy risks of different apps.

Moreover, we also conduct a user study by recruit 50
participants in our school, and randomly assigned them
into two parts. In the first part, participants were shown
the permission screen that traditional Market uses. In the
other part, participants were shown our qualitative and
quantitative result by our approach. For each part, 50 apps
were selected, including 20 malicious apps that steal user’s
sensitive data, 20 normal apps that access user’s sensitive
apps for legal functions, and 10 apps do not access user’s
data. Participants were asked whether they could under-
stand the privacy risk of apps easily, and whether they could
select the appropriate apps with the lowest risk. In this
experiment, we mainly focused on the usability of SPRisk.
This is measured by counting the number of participants
who make the right decisions when select appropriate apps.
At last, a total of 1,568 responses were submitted. Generally
speaking, more people in the second part mentioned privacy
risk concerns when they noticed the evaluation result. When
we asked people in both parts to divide high, normal and
low privacy risk apps, people in the second part also demon-
strated a higher accuracy compared to their counterparts.
This finding suggests that our approach can provide more
privacy risk evaluation information and help users make
decision appropriately.

5.3 Measurement Results

5.3.1 Privacy Risk Distribution

In this analysis, we focused on the privacy risk distribution
of Google Play Store by evaluating 172,445 samples, as illus-
trated in Fig. 8. Specifically, the ratio of very low (51,805),
low (35,868) and average (62,080) samples in the dataset
is 86.84%, which indicates that Google Play Store indeed
makes effort to mitigate the high risk apps. For example,
Google Play Store operates Bouncer [26] to scan an app for
known malicious code, which also executes the app within a
simulated environment to detect hidden malicious behavior.
However, the ratio of very high (7,897) and high (14,795)
apps is 13.16%, due to the centralized role of Google Play
Store, those apps can still affect a tremendous number of
devices. In fact, more than 9,000 such apps have already
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Fig. 8: The privacy risk distribution of 172,445 normal apps
in Google Play Store.

been installed over 500,000 times. Also, there are a few
extremely popular ones, such as AngryBird, with the install
count reaching 100 million or even more.

Although high privacy risk may not indicate that an
app is malicious, we still need to pay more attention. To
verify the independence of privacy risk, we scanned these
very high samples (7,897) in the normal app dataset by
VirusTotal [27]. For each sample, we recorded the test results
of different scanners. At last, only 136 apps were labeled as
malware by at least two scanners.

Furthermore, we randomly selected and manually an-
alyzed 100 apps that are not detected by VirusTotal. The
analysis result shows that 21 of them are highly suspicious.
On one hand, 13 apps send sensitive data out of the device
(sink: sendTextMessage()) without any notice or warn-
ing, e.g., device information (source: getDeviceId()) and
users’ locations (source: getLatitude). Most seriously,
these data are transmitted in plain text, which can be easily
hijacked by attackers. On the other hand, 8 apps can ac-
cess many high risk resources, including contacts (source:
content://contacts/data/phones) and SMS (source:
content://sms/inbox). Although these high risk data
are not sent out of the device (sink: log.d()), they are
accessed automatically (state change: onReceive()) and
the process is transparent to users. Therefore, these stealthy
manners should be allocated with high risk. In our exper-
iment, SPRISK label these apps as very high risk level,
which illustrates that our approach can effectively disclose
the potential privacy risk of normal apps and obtain equiv-
alent results.

5.3.2 Official VS. Unofficial

We further present the privacy risk diversity in official (i.e.,
Google Play Store) and unofficial (i.e., Anruan, Anzhi, Gfan
and Nduoa) markets. We randomly selected 20,000 apps
from Google Play Store and 5,000 apps from each unofficial
market, respectively. The assessment results are shown in
Fig. 9(a). It is evident that the average privacy risk in unoffi-
cial markets is higher than that in official market. Among
those apps labeled as very high (4,206), over 65.12% of
them are from the unofficial markets. In addition, the num-
ber of very high and high apps (4,893) in these unofficial
markets is almost twice of that (2,391) in the official markets.
This observation points out the fact that unofficial markets
are lack of sufficient censorship, compared with Google Play
Store. More seriously, users can download apps from any
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websites and copy the apk files to device, which further
attracts the attention of malware authors.

Another interesting work is to rank these unofficial mar-
kets. Table 5 depicts our discovery. One can readily observe
that none of the four unofficial markets can guarantee that
their ratios of very low and low apps exceed 50%. In par-
ticular, the privacy risk in Gfan is the most serious: among
5,000 apps, 842 of them are evaluated as very high (16.84%)
and 758 are high (15.16%). This can be attributed to the fact
that this market exclusively focuses on releasing Android
games. Many games do not need sensitive data to realize
their functions, but they still attempt to collect users’ data
for other purposes. From this experiment, we believe that
there is an urgent requirement to deploy a rigorous vetting
mechanism in unofficial markets.

5.3.3 Discrepancy among Different Categories
As mentioned before, the app market, which mainly releases
game apps, has a high privacy risk score. To further study
this issue, we investigated the privacy risk discrepancy a-
mong different app categories. Without loss of generality, we
focused on three common categories: 1) Games, 2) Tools, and
3) Business. For each category, we collected 2,000 samples
from the normal app dataset and evaluated them by SPRISK.
Fig. 9(b) shows the evaluation result. Unsurprisingly, for
the category “Games”, 556 (27.8%) apps’ privacy risk levels
are evaluated as very high, and its ratio is higher than the
others’. In addition, the privacy risk distribution of category
“Business” is the best, and there are 1,451 (72.55%) apps
with the risk level that is not higher than average. This is
because that apps in category “Business” have few sensitive
functions than that in “Games” and “Tools”, which leads to
a lower privacy risk. These results validate the effectiveness
of our semantics-aware privacy risk assessment framework,
and illustrate that SPRISK can capture the tiny discrepancy
of different app types.

Finally, we evaluated the privacy risk of apps which
belong to the same category and have similar utilities. For
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TABLE 5: Privacy Risk Distributions of Four Unofficial Markets.

Markets
Risk level Average

scorev1(very low) v2(low) v3(average) v4(high) v5(very high)

Anzhi 1,446 891 1,717 382 564 33.03

Anruan 1,603 757 1,497 528 615 33.88

Nduoa 1,211 712 1,873 486 718 35.45

Gfan 1,162 643 1,595 758 842 38.14

Total 5,422 3,003 6,682 2,154 2,739 35.13

TABLE 6: Analysis Time for Privacy Risk Assessment.

Step
Factor

Extraction

Matrix

Generation

Privacy Risk

Assessment
Overall

Mean 138.14s 11.50s 2.47s 152.11s

Median 56.38s 7.17s 1.35s 64.9s

convenience, we handpicked ten Android games, includ-
ing PewDiePie, Mortal Kombat, Doodle Jump, Vainglory,
Minecraft, War, Hearthstone, LEGO Marvel, Prune, and
Angry Bird 2. All of these games are very famous globally,
and have more than 100 million players. To satisfy the
individual requirement of different users, these apps always
access some sensitive data. Although these behaviors may
be necessary for the service, they still increase the privacy
risk. We evaluated these samples through SPRISK and sort-
ed them by their risk scores, as shown in Fig. 10. We could
find that though each game has a different score, none of
these games is labeled as very low and all the scores are
higher than 30. Especially, Doodle Jump achieves the highest
risk score 71.53. Therefore, on the basis of satisfying service
quality, we suggest users choose the app with the lower risk
score, which can reduce the privacy risk.

5.4 Runtime Performance

To illustrate the runtime performance of SPRISK, we select-
ed 5,000 samples from normal apps dataset. Table 6 shows
the mean and median time of each step and the overall
time for privacy risk assessment. SPRISK took an average
of 152.11 seconds and a median of 64.9 seconds to perform
the evaluation of an app. Fig. 11(a) shows the cumulative
distribution of analysis time. For approximately 85% of
apps, SPRISK finished the assessment within 5 minutes. As
a static analysis tool, such an evaluation time is acceptable
to most servers that have normal computing power.

To analyze deeply, we also evaluated the time spent
with the increasing sizes of APK files. From the Fig. 11(b),
we can find that the analysis time has no relation to the
APK size. This occurs because the number of sensitive data
transmission is independent with the scale of dexcode. In
other words, a bigger APK size does not indicate more
complex code logic, it may contain some big assistant files
which are unrelated to privacy-risk assessment.

Moreover, we also measured the breakdown of SPRISK

analysis time. In fact, the breakdown shows that around 85%
to 92% of the analysis time is spent on factor extraction.
We are planning to adopt a multi-threaded implementation
to accelerate this phase. Meanwhile, we also discover that
some data transmission paths are presented similarly and

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

E
m

p
ir

ic
al

 C
D

F

Evaluation Time (s)

(a) CDF Distribution

0

200

400

600

800

1000

0 5 10 15 20

E
v
al

u
at

io
n
 T

im
e 

(s
)

Size of Dexcode (MB)

(b) Time vs APKSize

Fig. 11: The runtime performance of SPRISK.

exclude these unnecessary paths could be a direction for
optimization as well.

6 DISCUSSION AND L IMITATIONS

We have demonstrated that SPRISK can automatically eval-
uate the privacy risk of Android apps in semantic level.
Obviously, except the factors mentioned above, there also
exist other factors which can be extracted by static code
analysis, such as dynamic code, binary files, etc. Fortunately,
SPRISK is designed as a flexible solution, and it is quite easy
to extend our current approach to consider more factors. To
add a new factor, we only need to recalculate the weight
distribution of the new Factor Set, and the whole evaluation
model does not need any change. Accordingly, it provides
a scalable approach to evaluate the privacy risk of an app,
and forces future developers to design trade-offs properly
to protect users’ privacy.

While we have demonstrated promising results, we do
not claim that our system is mature and has addressed
all the problems. SPRISK chooses FlowDroid to perform
static taint analysis, which turns out to be feasible and can
have a good coverage of sensitive data transmission path.
However, in our testing, we found that the overhead of
FlowDroid is costly. Although the cost is acceptable for
the server, it cannot be deployed on the device directly.
To alleviate such issues, we may need to leverage more
light-weight static taint analysis techniques in the future for
evaluating downloaded apps directly on the device.

Furthermore, due to the code obfuscation issue of static
analysis approach, there always exists the possibility that
attackers find ways to evade the defender’s detection by
improving their technique. We expect the same to occur in
our approach. To deal with this issue, we expect to combine
SPRISK with dynamic analysis. With the help of automatic
trigger and symbol execution techniques, the privacy risk of
an intellectual app can be evaluated at runtime. Eventually,
it will allow SPRISK to evaluate new variants of apps.
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7 RELATED WORK

7.1 Analysis of sensitive data flows

Extracting sensitive data flows is a vivid research area in
the past few years. Existing schemes can be divided into
two branches. The first branch focuses on identifying more
precise sensitive data flows [25], [28]–[31]. FlowDroid [25]
performed context, field, object, and flow-sensitive taint
analysis for Android apps. IccTA [29] sought to identify
sensitive inter-component and inter-application information
flows. The second branch considers more sensitive data [11],
[32], [33]. For example, SuSi [11] leveraged a supervised
learning approach to detect more sensitive APIs in Android
platform. SUPOR [32] and UIPicker [33] automatically ex-
amined the UIs to identify sensitive user inputs that involve
privacy. Different from these approaches, SPRISK well con-
siders the risk diversities of different sensitive data flows,
which can be deployed as a supplement of the existing static
and dynamic analysis approaches.

7.2 Malicious app detection

There are lots of works focus on malicious app detection [1]–
[4], [6], [34], [35]. To reduce manual effort, the best technique
for most situations is automatic analysis. For example, Taint-
Droid [1] performed dynamic taint tracking of data, and
tracked the sensitive data by inserting profiling code into
the app. DREBIN [3] took a hybrid approach and considered
both Android permissions and sensitive APIs as malware
features. CHEX [36] performed static information-flow anal-
ysis to identify component hijacking vulnerabilities in An-
droid app. DroidAPIMiner [37] extracted malware features
at the API level and provided light-weight classifiers to
defend against malware installations. However, the goal
of these studies is to detect malware. As a result, neither
of these solutions actually attempt to evaluate the privacy
risk level of common apps, including benign and malicious
apps. Moreover, privacy risk is an independent threat and
it is not appropriate to evaluate such an app by simply
utilizing existing malware detection methods.

Some researchers also took users’ intention into consid-
eration [38], [39]. For example, AUTOREB [38] explores the
user review information, and utilizes the review semantics
to predict the risky behaviors in Android apps. AppIntent
[39] studied a method to separate user-intended Android
data transmission from unintended ones. It proposes a
symbolic execution approach for Android GUI applications
to extract event inputs and data inputs. Inspired by these
studies, SPRISK aims at helping end users to understand
the privacy risk of Android apps, and therefore provides
more fine-grained evaluation result.

7.3 Privacy risk assessment

There also exists some risk assessment schemes for Android
apps [7], [8], [40]–[42]. For example, RiskMon [8] combined
users’ coarse expectations and runtime behaviors of apps to
evaluate the risk of an app. It required users to provide their
selection of trusted apps, thus the approach can satisfy the
diverse preferences of different users. However, it analyzed
apps in syntax level but not in semantic level. Peng et

al. [7] proposed a permission-based risk assessment ap-
proach. They argued that a binary risk signal has significant
limitations, which is consistent with our opinion. However,
it only considered permissions to exploit risk scoring func-
tions, which is superficial and needs more in-depth analysis.
AppAudit [41] relied on static and dynamic analysis to
provide real-time app auditing. WHYPER [42] leveraged
Natural Language Processing techniques to automatically
assess the risk by revealing the discrepancy between app
description and the permission usage. Moreover, both of
these solutions took no account of the actual influences
of various factors. Our approach can address all of these
problems in privacy risk assessment of Android apps.

Most related to our work is proposed by Lin et al.
[40], which also assign grades to Android apps by using
a privacy model they built. The privacy model measures
the gap between people’s expectations of an app’s behavior
and the app’s actual behavior. Unlike them that only uses
third-library as the indicator of what sensitive data that
apps use and how that data is used, which could easily lose
other potential channels, SPRISK utilize static taint analysis
to extract sensitive data transmission flow, and ensures a
good coverage of source code. Certainly, their techniques
in analysis third-library could complement our factor set to
further improve our approach.

8 CONCLUSIONS

In this paper, we presented SPRISK, a privacy risk assess-
ment framework. SPRISK considers multiple factors not
only in syntax level but also in semantic level. To determine
the actual influence of various factors, we introduced a
self-learning weight assignment method. We implemented a
prototype system, which provides the qualitative and quan-
titative results that can intuitively help users make decisions
before installing the target app. Experimental results clearly
demonstrated that SPRISK is effective and feasible. With
the help of SPRISK, an analyst can further reveal various
helpful findings to mitigate privacy leakage in the mobile
ecosystem, such as the diversity between apps with different
popularities and the integrated privacy risk of a mobile
device.
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