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       a b s t r a c t

              In this paper, we propose a new wearable device named smart clothing. Compared with traditional
              equipments smart clothinghas lots of advantages in manyaspects. This paper introduces the construction

               of smart clothing system, discusses its usage scenario and the data transmission mode with the terminal,
               cloud platform, and builds an efficient healthcare system. This paper also discusses the use of smart
              clothing for measurement of human body signs such as blood oxygen, body temperature, heartbeat, and
               ensures users being in good health by real-time monitoring. Finally, this paper focuses on the collection

         of ECG signals and the experiment of analyzing user’s feelings.
      © 2018 Elsevier B.V. All rights reserved.

 1. Introduction

   1.1. Background and preliminaries

        Chronic disease has become a worldwide problem. Since 2000,
       the World Health Organization (WHO) has made considerable
        efforts to improve chronic disease prevention and control. WHO

        has also helped to establish partnerships and networking among
        its member states, to encourage the development of policies,

       networks, and programs, aiming at preventing and controlling
        chronic diseases [ , ]. However, these strategies are not easily1 2
        widely implemented. Furthermore, due to the increasing cost of
         healthcare and the aging population, there is a developing need

        to monitor patients’ health status in non-clinical environments. It
         thus requires significant efforts to address the challenges to solve

         a series of healthcare problems for an aging population, patients
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         of chronic diseases, patients in a rehabilitation period, and sub-
          healthy people [ ]. To this end, functions such as sustainable phys-3
      iological indicators monitoring, disease management, and remote
         medical services are in great demand [ ]. The specific methods4
  include the following.

        • Medical facility based services. Healthcare systems are de-
        ployed in medical and health institutions or nursing in-
       stitutions, where health indicators for elderly people are
       automatically monitored. This part of workload on doctors

     and nurses could usually be heavy.
          • Personalized health services. It is not enough that a monitor-

         ing systemwork only for diseaseprevention and risk predic-
       tion for patients with chronic diseases. Customized health-
        care services are also very helpful, especially for rehabilita-
          tion care andmedical carewhen users aremobile. Their goal

       is to provide physiological data acquisition, health analysis,
      and continuous consultation anytime and anywhere. This

      healthcare service effectively guides sub-healthy people to
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       change their lifestyle, control risk factors, promote physical
       exercises, and even realizing self healthmanagement nowa-

days.
      • Rehabilitative medical auxiliary. Rehabilitative medical aux-

        iliary can shorten the time patients need for rehabilitation
       and shift traditional rehabilitation from hospitals to house-
       hold rehabilitationmonitoring. Thus, the financial burden of
         patients can be alleviated, and the turnover rate of sickbeds

         in hospitals can be improved. The profit model of hospitals
   can also be upgraded.

         To satisfy such new demands, a variety of system prototypes
          and new products have been introduced in recent years. They all
        aim at providing real-time information about one’s health condi-
        tion [ ]. To collect real-time information, providers are focusing5
        onwearable systems. The wearable systems for health monitoring
         may comprise various types of minimum sensors, most of which
        are wearable or even implantable. These sensors can measure

        detailed physiological indicators such as heart rate, blood pressure,
      body and skin temperature, oxygen saturation, electrocardiogram,
          etc. However, these devices can be tooexpensive or not convenient

          enough; for example, see LiveNet [ ] by The Media Laboratory of6
        MIT. By comparison, with a flexible distributed mobile platform,

      long-term health monitoring applications have been proposed,
        along with real-time data processing and streaming, and context

        classification. Such existing products include MagIC [ ] and Life-7
 Guard [ ].8

       Although these existing products or prototype systems provide
         good solutions to the above mentioned series of health problems,
         many open problems and challenges remain to be addressed. In
           this paper, wepropose to provide smart clothing, based on the new

       wearable computing technology for healthcare [ ]. Some typical9
      applications of smart clothing are described below.

     1.2. Typical applications of smart clothing

      1.2.1. Applications of healthcare for elderly people
         Elderly people often suffer from a variety of chronic diseases,

      such as cardiovascular and cerebrovasculardiseases, hypertension,
         and diabetes. Furthermore, their ability to take care of themselves
         is usually limited. Therefor, a healthcare system for elderly people

         should be comfortable and convenient to use. A healthcare system
         based on smart clothingcan achieve real-time healthcare, and doc-
        tors can then apply appropriate medications for common diseases
    of the elderly when needed.

     1.2.2. Community-based medical and healthcare services
         The shortage of medical and health resources is a worldwide
         challenge. The application of smart clothing in medical and health
        institutions could help to meet this challenge. Traditionally, mea-
         surement of some common vital signs of patients is conducted
          manually by doctors and nurses. This will be transformed to au-
        tomatic measurement based on physical signs collected by smart
          clothing. Thus, the cost of manpower will be greatly reduced. In
       addition, the sustainable monitoring capability of smart clothing

         helps to guide doctors in terms of disease diagnosis, medication
         usage, and rehabilitation planing. It will greatly enhance the level

    of medical service in hospitals.

        1.2.3. Smart fitness and training for athlete and sportsman
         High-speed running and collisions are a severe test for physical

          signal collection. In addition, there is a need to detect parameters
          like sharp turning, sharp stop bouncing, and so on, which require
        smart clothing to be equipped with more sensors. Furthermore,
             players runat a larger scaleon the playing field. It is most necessary

         to transmit real-time data to the cloud platform through wireless

      communications. This kind of real-time detection, transmission,
         and evaluation can strengthen the value of players’ training ses-
         sions. After training, players can recall the training scene and
        analyze their performance. The general effectiveness is far from
        real-time guidance. Therefore further research is needed on long-
       distance and multi-point transmission technology based on low
       power consumption Bluetooth or low power consumptionWiFi.

  1.3. Our contributions

           In this paper, we present a new kind of smart clothing equip-
         ment which is different from traditional wearable devices, and re-
         alize the real-time emotion detection based on the smart clothing.
         Our contributions in this paper can be summarized as follows.

         • Enable real-time collection of human body physical signs by
   the smart clothing equipment.

       • Complete the data transmission and communication of

       smart clothing equipmentwith terminal andcloud platform.
         • Realize the user’s emotional interaction by means of moni-

   toring the ECG signals.

          The reminder of this paper is organized as follows. We review
           relatedwork in Section . In Section , we present the architecture2 3

         for sustainable vital sign collection through smart clothing. In Sec-
         tion , we examine using smart clothing for affective interaction.4
       Thetestbed implementation andexperimental studyare presented
        in Section and Section concludes this paper.5 6

  2. Related work

     2.1. Electronic fabrics for wearable computing

        In recent years, the appearance of textiles, electronic fabrics,
         and wearable electronic products have achieved a high charge of

      integration. The development of wearable medical instruments
         has entered into a new stage. Electronic textile instruments with
         fibrous structures, such as fabric sensors, drivers, circuits and elec-
         trodes, are produced by the use of various conductive materials,

       semiconductors, and insulationmaterials. These items have almost
        the same appearance as ordinary clothing after their integration.
        The flexible electronic fabrics with electrical properties can be

          attached to the bodies of examinees comfortably for a long period
       of time for continuous monitoring. Collection and transmission

          of basic physiological signals of the human body can be achieved
          through conductive fiber or yarn. An electronic fabric sensor is free

            of gel and is thus called a dry sensor. With a signal-to-noise ratio
         comparable to a silver chloride electrode, it can provide accurate

         clinical parameters. It is comfortable towear for long-term electro-
       cardiogram (ECG) monitoring [ ]. Moreover, the electronic fabric10

        can also provide a flexible conductive network which provides
         a fundamental connection platform to enable a wired body area

  network (BAN) [ ].11
       Smart clothing represents a new wearable technology with
       seamless integration of electronic fabric and miniature wearable
        devices. Its technical principle relates to multiple research areas

         such as design of washability, manufacture of textile dry elec-

       trodes, low power wireless communications, body sensor net-
       works, microelectronic technology, and tele-medicine. This is an

       interdisciplinary subject, and the combination of smart clothing,
       cloud computing, big data, and machine learning technologies,
         which all have rapid developments in recent years, can greatly
        facilitate the development of health monitoring systems for long-

      term and real-time monitoring of human health.
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      2.2. Traditional wearable device for health monitoring

     After breakthrough progress of micro-embedded systems,
    micro-electromechanical systems (MEMS), intelligent materials,

      wireless communication technology and micro sensing technol-
        ogy, the health monitoring system based on wearable computing
        has received extensive attention in academic institutions and in-
       dustry. Previouswork focusedon physiological signals’ acquisition,

        transmissionand storage.Recently, emphasishasbeen onadopting
       wearable technology in a long-term, real-time health monitoring
        system through cloud computing, big data and machine learning

technologies.
       Thewearable devices enabling long-termmonitoring of human
          health have a great impact on the improvement of service levels

         of the healthcare industry. For example, as the global population
         aging problem becomesmore serious, many countries in theworld
           will have to deal with one challenge: how to provide high quality

        healthcare service for an aging population. The health monitoring
         system based on wearable technology is an effective solution to

         this problem. Because it can provide long-termmonitoring of each
        physiological indicator of elderly people, it can predict various

          health tendencies of the elderly people and be used for disease
         prevention, diagnosis, and improve the quality of life. For chronic

       illnesses such as cardiovascular disease, hypertension, and dia-
        betes, the healthmonitoring system based onwearable technology

        can be used for healthcare instruction and real-time treatment.
          Although some useful attempts have been made in the field of

         health monitoring, there are many open problems that need to
          be resolved. As shown in , recent wearable health moni-Table 1
        toring devices adopted by communities are mainly wrist watches,
          bracelets, heart rate belts, and fall detectors, but they are deficient

   in the following aspects.

          • Short Service Cycle: The service cycle of these devices are
           mostly 2 to 3 months, which is due to the insufficient data
         accuracy. Taking fall detection of elderly as an example, the

         data acquisition of a fall detector is single point-based and
        frequent false alarms could be triggered. Also the results

        are still not accurate even in combination with heartbeat
        measurements. So the users will lose their confidence about

     such products after a brief period.
        • Insufficient Data Types: Currently available products on the

        market can only collect few kinds of physiological signals
        in relation to healthcare, and have limited applications in

    health monitoring and medical treatment.
        • Data Accuracy Issue: The physiological signals collected by

        existing wearable products have difficulty to reach the hos-
        pital standards. Consider the intelligent bracelet as anexam-
         ple. Heart rate is themost valuable physiological indicator it

         collects, but it has very limited applications in thehealthcare
       industry. In addition, the bracelet cannot collect physiologi-

           cal data that are widely used in the field of healthcare, such
        as ECG signals, while other portable ECG collection devices
      are often complex and cumbersome to use.

          User privacy protection is also an important issue yet to be
      properly addressed. A participant coordination based architecture

          and work flow was first proposed to successfully protect user pri-
      vacy [ , ]. Furthermore, incentive mechanisms can encourage12 13
         people to participate in the data collection process. A comprehen-

          sive survey of the existing research status and future directions can
   be found in [ ].14
        In summary, even though wearable technologies have been ap-
           plied to some extent in the field ofhealthmonitoring, the problems

          mentioned above need to be addressed in order to achieve their
        successful applications in the fields of disease diagnosis, chronic

      disease surveillance, and personalized, value-added health service.

        3. SVSC: sustainable vital sign collection through smart cloth-
ing

   3.1. SVSC system architecture

       We present the proposed sustainable vital sign collection
         through smart clothing (SVSC) technique in this section. The sys-

            tem architecture of SVSC is shown in . shows theFig. 1 Fig. 1
         collection and process of signals. Firstly, the users confirm the
       healthcare application scenario, such as medical monitoring of

        chronic patient. Then, Using smart clothing to collect physiolog-
          ical signals (e.g., ECG signals, heart rate). These signals will be

        transmitted to the healthcare cloud through cellular network or
         WiFi. The healthcare cloud can provide services, such as medical

consultation.
         We describe each key component of SVSC in the following.

   3.2. Healthcare application scenarios

        In the healthcare application scenarios based on smart clothing,
         end users who need health monitoring (such as those suffering
        from chronic disease, driver, autism patient, and empty nester),
          wear smart clothing in their daily lives. The smart clothing will
         collect users’ physiological data. Although a varietyof sensors have
           been integrated into the clothing, users will not be aware of the

         existence of the acquisition equipment woven in the clothes. The
        signal acquisition subsystem collects a number of users’ physio-
        logical signals through micro pluggablemodules of smart clothing.
         These original physiological signals will be preprocessed in a data
        collection terminal (e.g., for signal amplification and signal denois-

         ing) before they are uploaded to the cloud platform [ ].15
         The users’ current health data can be obtained after processing

         and analysis of physiological signals in the cloud platform. The
          disease or health conditions can then be predicted by the analysis

          of mass historical data with big data analytics. According to the
         analysis results, users can be informed of their health conditions.

        Also users will be provided with personalized health services
        through appropriate means. For example, the system will inform
         medical first-aid agencies or users’ family members right after it
          detects a sudden heart attack. If there is a household healthcare
           robot, itwill apply first-aidmedicine to the patient to reduce safety
           risks right away. For users in need ofmental health care, emotional
         comfort (such as voice reminders and soothing music) will be
        provided when negative emotions are detected. If an interactive

           robot is so equipped, it can derive the users’ emotional state and
        follow affective interactive instructions from the cloud platform to
        have more affinitive emotional interaction with the user [ , ].16 17

 3.3. Communications

      The communications of smart clothing include inner-commun-
    ications and beyond-communications. The inner-communication
         refers to the communication model between sensors of the smart
       clothing via wired or wireless connection. The beyond-commun-
         ication transmits the data collected by the smart clothes directly

         to the external environment through the cellular network or WiFi.
       These two communication methods are complementary. When an
       external application requires certain physiological signals, the ap-
         plication should send the instructions to the smart clothes through
        external communications firstly. Then the smart clothes will im-
       plement internal communication tocollect relevant signals accord-

          ing to the instructions. In addition, when the sensors complete the
          collection of signals, these data will be firstly transmitted to the

       smart clothing to be gathered through internal communications,
       then transmitted to the external environment through external

communication.
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 Table 1

    Comparison of wearable health products.

            Production name Comfort index Usability Machine wash Accuracy Sustainability Physiological index Real-time operation

           Smart bracelet (smart band) High Very easy No Low Yes Simple Yes

         Smart watch High Very easy No Low Yes Simple Yes
         ECG monitoring instrument Low Hard No High Yes Simple No
         Heart rate monitor Middle Easy No High No Simple No
         Fall detection device Middle Easy No Low No No Yes

          EPIC smart clothing High Very easy Yes High Yes Complex Yes

       Fig. 1. Sustainable vital sign collection system architecture.

  3.4. Cloud platform

       After collecting data from users, data preprocessing, machine
          learning and deep learning will be used to establish medical de-
         tection system in order to realize real-time detection and analysis

          and providemedical services for users. In order to realize real-time
         detection, analysis and providemedical services for users, first, we

          need collect data from user. Then, after data preprocessing, we use
        machine learning and deep learning to establish medical detection
          system. For example, if we want to make emotion detection for
           empty nest elderly. First, we should analyze the type of data that
           needs to be collected. In this situation, we need to collect the
       heartbeat information, body temperature and ECG signal. Then,

         We use machine learning to identify users’ emotions. Finally, we
           can feedback the results to a user’s family or a hospital. Therefore,
          in this case, in order to realize real-time monitoring, the data

             collected by the user will be analyzed in real time, and it will be
          fed back in time. Furthermore, in order to improve the accuracy
             of the test, the system will also ask the user to offload other data
       which include user location, indoor environment, social network
     data to improve the accuracy [ ].18

     3.5. Integration of end and cloud

       With the development of a specialized cell-phone application
         program, it is convenient to integrate the users’ social network

         data, location information, cellphone call records, and so on. These
          offer emotion-aware data in a physical space for the health cloud

        platform. The specific implementing approach is to store the
          emotion model, which is based on physical data training on the

          cloud platform, to establish a sole sign for the emotion model
            of each user, and then to transmit the user’s ECG signal to the
        cloud platform through the smart clothing with ECG collection
       and transmitting functions. The cloud platform conducts real-time
            analysis and disposal of the receivedECG data, andmakesuse of the
        previously trained model to predict user’s emotion state according

           to the user’s sole sign (other data collected on the cloud platform
         can assist emotion detection). When a detection result shows that
           the user has a negative emotion, the system will call for related

         device and resources for some emotional interactionwith the user.
              For example, if a user is in a sad mode, the system will play a

          relieving music through the cell-phone. It can also send orders to

         the robot at home, which will make emotional interactions with
           the user through a series of actions and its voice, to eventually
   realize effective emotion care.

   3.6. Physiological signal collection

        Smart clothing can collect a number of physiology signals,
       including ECG, body temperature, blood oxygen saturation and

         heart rate. The physiological signals of the collections are different

         according to the scene. For example, when detecting a patient
             with a heart disease, it is necessary to get a ECG signal, heart rate

           information, and so on. Then judging the health of the heart by

       electrocardiogram analysis. However for the detection of hyper-
         tension suchas chronic disease, thedaily detection including blood
          pressure, blood oxygen and so on. Therefore, after user setting the

        application scene, the corresponding type of signal acquisition can
         be set. The introduction of these signals is as follows:

         • ECG Signal: This is an important physiological indicator of
         the human body, which plays an important role in health

      assessment and disease diagnosis. Considering the tradeoff
      between appearance and signal accuracy, smart clothing
       contains textile dry electrodes instead of traditional medi-

        cal electrodes and can integrate 2–3 textile dry electrodes.
       Therefore, electrode LA(left arm) and RA(right arm) belong

         to multiplex electrode and are also used to measure the

 respiratory signal.
        • Blood oxygen saturation: Blood oxygen saturation is col-

        lected by using an optical measurement method. The mea-

          surement is based on the principle that the amount of light
         absorbedby the arterial blood varieswith thearterial pulses.
        Through the reflective blood oxygen sensor, which is inte-

           grated on the inner side of the cuff of smart clothing, the
      acquisition of Blood oxygen signal is accomplished.
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        • Body temperature: The body temperature is measured by
        a temperature sensor based on a negative temperature co-

        efficient (NTC) thermistor. The sensor is integrated in the
    armpit of the smart clothing.

           • Heart rate: The heart rate can be measured from the mea-
  sured ECG signal.

      4. SCAI: smart clothing for affective interaction

         Virtual Reality (VR) was originally applied in the games and
       entertainment industry. However, it has exhibited great potential

       in healthcare, education, military, manufacturing, and other in-
         dustries. Taking the healthcare scene as an example, the calcula-

         tion of real-time processing will be more than complex without
        VR technology. However, the VR technology can provide realistic

         experience for users and real-time feedback. In order to achieve
          emotional interaction, we use smart clothing as a link between VR

           and the user. The details will be described as following. With the
       smart clothing technology, various sensing devices are integrated
        into ordinary clothes. Smart clothingmakes a seamless connection

          between clothing and VR devices, so as to simplify the physi-
         ological and action signal acquisition. It has be recognized that
           smart clothing might bring about thewide application of VR in the
       future healthcare industry. For example, in physical rehabilitation
        training for stroke, fractures, and other diseases, smart clothing

          will transmit all the rehabilitation training data to the VR devices
        (VR glasses/helmets). The VR devices captures the human body
            motion from the data. It can also carry out gait analysis and virtual
        human body motion simulation. Finally, VR devices display the
         user’s actions and physiological changes on a real-time basis. This
         means that the patient can master his/her own training intensity

         and effects, so as to realize self-rehabilitation. Next, the rehabilita-
          tion training data produced by VR are transmitted to the physician
       as an aid in diagnosis and treatment [ ].19

    5. Testbed and experimental study

       5.1. Smart terminal design for body signal collection

          The block diagram of the operation of a smart collection ter-
           minal is shown in . We choose the TP4056 linear lithium-ionFig. 2
          battery as a power supply system and the LM317 voltage regulator
             circuit to adjust the voltage from 3.7 V to 3.3 V. We are also
          equipped with AD8232 sensor for the collection of ECG and other

          bio electricity signals, which can bemeasured fromRA (right arm),
          LA (left arm), RL (right left), respectively. Amplify these signals to
           400 times and use the filter to get the signals between 0.05HZ
      and 125 Hz. STM32L152RBT6 STMicroelectronics ARM microcon-
         troller can be applied to analog-to-digital conversion and it also

         has the virtue of good support for Universal Asynchronous Re-
          ceiver/Transmitter, which is one of the reasons that we choose this

       kind of equipment. HC-05 represents the Master–slave Bluetooth
          serial port module, which is the key module of data transmission
  and communication. [ ]20

        5.2. Measurement of blood oxygen saturation and body temperature

        Blood oxygen saturation is measured with a noninvasive mea-
         surement method. Using a 660 nm wavelength red light and

          940 nm infrared light as incoming light sources, it estimates blood
        oxygen saturation by measuring the light intensity through the
           fabric of clothes. In the experiment, the sensor needs a short period

            of time for stable results, while the sensor is in contact with the
          skin. Therefore the brief transient phase occurs at the beginning, as
          shown in . After the transient phase, the measurement resultFig. 3

       Fig. 2. Schematic of a smart collection terminal.

       Fig. 3. Oxygen saturation data from smart clothing.

             of the sensor becomes stable at a value of 98%, which is the human
     body’s normal blood oxygen saturation value.
         The measurement of body temperature is achieved by the NTC

          Thermistor,which is also the sensor component of amedicaldigital
      thermometer. In the temperature range from 33 ◦   C to 45 ◦  C, the
          temperature is linear with the voltage on the thermistor of the

              sensor. As shown in , the sensor is not in contact with the skinFig. 4
              fromtime 0s to100 s, and therefore the temperature is shownto be

0 ◦          C. Voltage does not have a linear relationship with temperature
            at this range. From 100 s to 300 s, the thermistor and temperature

        exhibit a negative linear relationship. With a rising temperature,
         the voltage decreases. In order to observe the relationship between
         body temperature and voltage in a more convenient way, the
          range of the temperature change is enlarged so that the body

            temperature is rising as shown in the figure. After 300 s, the sensor
         is separate from the skin. Therefore, the temperature returns to
zero.

         5.3. Effect of number of electrodes on ECG signal collection

        5.3.1. Impact of body gestures on ECG signal measurement
         We tested and verified the ECG monitoring with different lead
          numbers, as well as the effect and reliability of ECG monitoring

        under different postures, which involve different poses and deep
         breathing. In the tests, 2-lead and 3-lead are used, respectively.

        In regards of postures, three situations, including sitting, standing,
            andmarching on the spot, are tested separately, as shown in .Fig. 5
            The captured ECG signals arepresented in and . ECG signalsFigs. 6 7

           presented by the postures in the case of deep breathing are tested
 as well.
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       Fig. 4. Body temperature data from smart clothing.

             Fig. 5. Three postures for collecting ECG signal: (a) standing, (b) sitting, (c) march
  on the spot.

            First, one can observe by comparing and that the ECGFigs. 6 7
          waveform captured in the 2-lead case has more blurs and larger

          noises, while the waveform captured in the 3-lead case barely has
         any obvious noise. The high-frequency noises in the 2-lead ECG

          waveform can be filtered with some digital method, but it will
             cause lose of a part of the energy of the effective signal. As shown

             in , the left column of three figures present the data of ECGFig. 7
       monitoring in situations including sitting, standing, and marching

           on the spot. And the three figures on the right column correspond
            to the different postures in the case of deep breathing. It can be

          observed that the ECGmoves sharply (i.e., with Baseline Drift) due
          to deep breathing. This is caused by interfering factors such as
           skin EMG and so forth. To reduce the impact of deep breathing,
           the right figures can be preprocessed with a series of digital signal

         processing techniques. Confirmed by our tests, the system can be
          used for long-term ECGmonitoring, and the 3-lead approach has a
          better effect and ismore amenable to the later processing analysis.

     5.4. Smart clothing based ECG monitoring

         In our implementation of the ECGmonitoring demo, we choose
         smart clothing using two fixed electrodes and one optional elec-
          trode to reduce cost and complexity. First, we integrate the high
        comfort textile dry electrodes into close-fitting clothes, and the
       flexible conductors connecting to two electrodes, respectively, to

          Fig. 6. Waveform of a 2-lead ECG signal from smart clothing.

          Fig. 7. Waveform of a 3-lead ECG signal from smart clothing.

        a snap fastener. The ECG acquisition module and transmission
          modulewill collect ECG signals from the snap fastener. Finally, the

        ECG transmission module will transmit the collected ECG signals
          to mobile phones, personal computers, or the cloud via a wireless
connection.

          Since the ECG signal strength of the human body is relatively
         weak, and it is particularly susceptible to interference from the

        surrounding environment and the body itself (for example, inter-
        ference caused by body movements), many kinds of interference
           noises exist in the original ECG signal. Such noises have a large
         impact on the medical application and sentiment analysis of the
         collected ECG signals. In addition, because the collected ECG signal

         issimilar toa continuous-timesignal, theuser’s ECGcharacteristics
         information cannot be obtained from the original ECG data. But

         the characteristics of these ECG data are essential to sentiment
        analysis. Therefore, firstly we must pre-process the original ECG

        signal and eliminate interfering signals. The proposed ECG signal
           processing procedure is shown in , and will be discussed inFig. 8

   detail in the following.

   5.4.1. ECG signal preprocessing
         Noise from ECG signal is composed of power frequency in-
     terference, electromyographical interference, baseline drift, elec-
          tromagnetic noise, and so on. The ECG signal frequency range is
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     Fig. 8. ECG signal processing flow.

             between 0 01 Hz 100 Hz, and more than 90% of the energy in. ∼

            the ECG signal is concentrated in the frequency range of 0 25 Hz. ∼

          35 Hz. The original ECG signal is a continuous-time signal. Fourier
        transform and wavelet transform are two commonly used tools

       for time-domain signal processing. Fourier transform only retains
       the frequency domain information instead of the time-domain

      information, while wavelet transform retains frequency domain
        information and time-domain information at the same time. In

       addition, wavelet transform offers superior temporal resolution for
        the high frequency components and higher resolution in frequency
         for the low frequency components, which conforms to the reso-
          lution requirements of ECG signal analysis in both high and low
         frequency ranges.We can exploit the above characteristics for ECG

 signal pre-processing.
         The preprocessing of ECG signal is divided into two processes:

            (i) removal of ECG baseline drift and (ii) removal of noise (as shown
              in Steps 1 and 2 in ). The removal of the ECG baseline driftFig. 8
         can be achieved by setting the approximate parameters of the

         transformed wavelet as the mean value of the parameters. High
           frequency noise can be removed by deleting the details of the first

          and the second layers of the transformed wavelet. This is because
       the D1(first diagonal) and D2(second diagonal) frequencies are
           mainly distributed in 60 Hz 180 Hz, but the effective ECG∼

            waveform is not in this range. Thus, the two kinds of details can
  be directly removed.

          5.4.2. QRS (the combinationof threeof thegraphical deflections) wave
 group detection
        After preprocessing the ECG signal, further feature detection is
          applied for recognizing the QRS wave group. The QRS wave group
         includes several major components, such as the QRS wave crest,

      the Q wave, and the R wave.
          The QRS wave group reflects the electrical excitation of the left

        and right ventricles during the depolarization process. The first
          downward (negative)wave coming after thePwave at thebaseline

            is called the Q wave, the first upward (positive) wave is the R
             wave, and the downward wave after the R wave is the S wave. The
            width of the QRS wave group indicates the time limit of the QRS

         wave, which represents the time required for all the ventricular

          excitation. The maximum duration for a normal person is no more
  than 0.11 s.

            The detection of the QRS wave group is the basis of ECG band

            signal detection, and the detection of the R wave crest is the basis

           of QRS wave group detection. To begin with, we calculate the first
         order differential of the ECG signal after pretreatment. Then we

          set a first-order difference threshold: if the value of the first-order

           difference is larger than the threshold, the point may exist in the
           rising part of the R wave. According to this characteristics, we can

            identify the R wave crest. However the R wave crest we find may

            be an incorrect choice, which will need to be removed. The R wave

            could not appear twice in 0.25 s; hence, it is necessary to select
            from the two peaks that appear within 0.25 s.We compare the am-

           plitudesof the twowaves. Thewavewitha larger amplitude should

             be the actual Rwave crest, and that with a smaller amplitude is not
             the true selection of the R wave crest. Next, we use the selected R

              wave crest to identify the Q and S wave crests. To do that, we must

             search for the extremes on both sides of the R wave crest, and the
       minimum point is the Q or S point.

   5.4.3. PT wave detection

           The P wave reflects the electrical excitation of the left and right
         heart atrium during the depolarization process. The first half is

           mainly generated by the right atrium, and the secondhalf is mainly

             generatedby the left atrium. Thewidth of a normalPwavedoes not

             exceed 0.11 s, and themaximum rate is no more than 0.25mv. The
         Twave reflects a potential change of the ventricular repolarization

            process. In an ECG mainly composed of an R wave, the T wave

          amplitude should not be less than 1/10 of the R wave.
          PT wave detection relies on the detection of the QRS wave

           group. This method still tries to find the first-order difference on a

           smooth curve, according to the zerocrossing point of the first order

         difference to identify the crest; then depending on the information
          on the position and amplitude, we can confirm the position and

               crest of the PT wave. This is shown in Steps 7 10 of .∼ Fig. 8

          Thedetailed processof PTwavedetection isprovided as follows.

          • Remove the detected QRS wave group signal from the origi-

           nal ECG signal. At this time the original ECG signal is divided
          into several segments on the PT wave by the appearance of

   the QRS wave group.

              • There is a Pwave and a T wave in every segment. After noise
         reduction, there are still a lot of small high-frequency noises

         in each segment. This will make the zero-crossing point of

        the first order difference unavailable. Therefore, we use the

        minimum square fitting for each segment for curve fitting,
         which will make the line segment smooth and reflect the

       changes of the curve at the same time.

           • After theminimumsquare fitting, we can feed the first order
        difference to the fitting function and take the zero-crossing

           point of the first order differenceas a possible PTwave crest.

            • Then both sides of the vertex are sought to find the mini-
          mum value of the fitting curve, while taking the vertex as

         the center and using a certain coefficient of contraction to

      determine the boundaries of the PT wave.

            • The next step is to determine the true PT wave according to
          the amplitude and position of the wave. (i) The amplitude of

             the PT wave should be larger. (ii) The P wave is on the right

             side, and the T wave is on the left side. The most effective PT
        wave can be selected from the possible PT waves.
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 Table 2

             Comparison test between data collection of smart clothing and that of an ECG simulator.

No
   Simulator A Simulator B

       Smart clothing Simulator Error% Smart clothing Simulator Error%

      1 60 60 0.00% 60 60 0.00%
      2 75 75 0.00% 75 75 0.00%
      3 100 100 0.00% 100 100 0.00%
      4 120 120 0.00% 119 120 0.83%−

      5 150 150 0.00% 150 150 0.00%
      6 200 200 0.00% 200 200 0.00%

      AVG 705 705 0.00% 704 705 0.14%−

  5.4.4. Accuracy verification
         In order to verify the accuracy of physiological signals collected

         by smart clothing, the following two methods can be applied.

          • A comparative test based on the ECG simulator: connect the
          ECG electrodes of the smart clothing to the ECG simulator to

        compare the difference between the data of the simulator
          and that from smart clothing, in the form of difference in

        measured heartbeats. We have selected 2 ECG simulators to
  do this test.

          • A comparative test based on the real tests with volunteers
         (with half menand half women).We collect theirheartbeats

       information before, during, and after the experiments. At
         the same time, we make a comparison to the heartbeats

    measured by the ECG signals.

         The above experimental results show that the heart rate ob-
         tained through smart clothingmatches the resultsmeasured by the
        simulator or the electrocardiograph. lists the comparisonTable 2

           results of smart clothing and the two kinds of ECG simulators. It
             can be seen the inmost cases the error is 0%, and in several few
       cases the errors are non-zero but still negligible.

  5.5. Emotion detection

          The ECG signal is strongly linked to human emotion, so we
          can use the signal to analyze human’s feelings [ ]. Extracted ECG21

          features can be used for emotion detection, and then for sentiment
detection.

          We invited four students to take part in the data acquisition
          experiment. The results are as follows. All the waveform graphs of

          ECG signals are generated from the ECG data collected by smart
          clothing they ware. In particular, the scenario that a student is
           reading in a calm state, while we also compare the ECG signals
        generated when the students are walking rapidly. Through the
          emotion analysis of the ECG data after the experiment, we find

         that the ECG graphic corresponding to each emotion is different.
         The emotional data of the students are also collected accordingly.
         The signal wave exhibits a relatively larger fluctuation when the
          user feels angry. The fluctuation is relatively smaller since the user

             is happy. When the user is in a depressed mood, the value of the
         waveform valley is quite small. Finally, we illustrate the signal
       waveformwhen the user is relaxed and calm.

    5.5.1. ECG signal feature extraction
          By labeling the P-QRS-T wave and other feature points in the
           ECG signal, we can extract features that can be used for training
       the machine learning classification algorithm. The application of

        emotion recognition needs to extract the features including the
         intervals and amplitudes of the P-QRS-T waves. The procedure is
 described below.

          • PR interval: This is the time interval between the starting
            point of the P wave and the starting point of the QRS wave
         group, which is indicative to the time from the beginning

 Table 3
   ECG sample data statistics.

 Volunteer No.
      Number of samples (Under different emotional states)

    Normal Happy Angry Fear Sad

     User_1 92 69 34 26 18
     User_2 93 48 33 35 27

     User_3 83 41 30 44 31
     User_4 85 79 31 33 30
     User_5 89 62 12 43 32
     User_6 78 37 11 20 12

     User_7 99 71 27 31 23
     User_8 94 49 18 40 19
     User_9 96 39 15 37 16
     User_10 89 52 32 19 24

         when the heart is in atrium excitation to the beginning
          whenthe heart is in ventricle excitation. This is an important
        indicator of the relationship between the atrium and the

ventricle.
            • QT interval: This is the time between the beginning of the Q

           wave and the end of the T wave, representing the time of
   ventricular depolarization and repolarization.

            • ST segment: This is the segment from the end of the QRS
           wave group to the beginning of the T wave, referring to the
     slow phase of the ventricular repolarization.

             • PR segment: This is the segment from the end of the P wave
         to the beginning of QRS wave group, primarily reflecting the

       conduction of the excitation in the atrioventricular node.
           • QRS wave group: The time limit of the QRS wave group,

          i.e., the width of the QRS wave group, which represents the
       time required for the whole ventricular muscle excitation

process.

         When people are in different emotional states (or when the
           emotional state changes), the valueof theabove featuresof theECG

          signal are not the same (or will be obviously changed). Therefore,
           based on the feature data extracted from the ECG signal, the ma-
         chine learning classification algorithm can be used to realize the
   detection of emotional states.

   5.5.2. Sample data collection

          In order to test the performance of the proposed system, 10
          volunteers (including four men and six women, aged from 23 to

            30 and with an average age of 25.2) were recruited so that we
         could test their ECG signals using smart clothing. The collected
          ECG signals are taggedwithemotional states (based on the original
          emotion proposed by Krech et al. [ ]). The detailed statistics from22

      the samples are presented in .Table 3

   5.5.3. Emotion detection evaluation
          We separate the collected ECG sample data of each volunteer to

           the training set (70%) and testing set (30%).We extract the features
          separately, and then use support vector machine [ ] to train the23

         training set and generate the classificationmodel. Finally, weapply
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      (a) Affective detection accuracy based on user.

    (b) Average affective detection accuracy.

     Fig. 9. User-based emotion detection accuracy.

          the testing set to the trained classification model to perform the
  classification test [ – ].24 26

          The accuracy of emotion prediction for these 10 users is pre-
             sented in (a). [ ]Wecan see that the accuraciesof User_2andFig. 9 27
         User_7 are relatively low (i.e., 31.5% and 32.2%, respectively), and

          theaverage valueof theaccuracyof theuser’s emotionspredictions
          is 38.1%. The average accuracy of emotion detection based on the

           emotional state is shown in (b). Therearedifferent numbersofFig. 9
         samples for different emotions in the collected sample data, which

          may affect the accuracy of the model outputs during the training,
         and may lead to different accuracies of emotion recognition. The

         accuracy of emotion detection rates for normal, happy, and angry
          are higher than 40% (48%, 41.5%, and 43.9%, respectively), and the

          accuracy for fear and sad are27.9% and 29.3%, respectively [ – ].28 32

 6. Conclusion

           In this paper, what we do is to compare smart clothing with
       traditional wearable devices and analysis various advantages of

        smart clothing. We summarize the design architecture, the appli-
        cable scenarios and the implementation methods of smart cloth-
           ing. Smart clothing can collect a variety of body signs data such

         as temperature, blood oxygen, ECG signals, and analysis the user’s
         physical state using these data. Smart clothing collects the ECG
           signals and get precise ECG signals by steps of ECG signals prepro-
        cessing, QRS waveform group detection and PT waveform detec-

          tion. We realized the emotion detection, in which the accuracy of
         result of happy emotion, angry emotion, fear emotion and sadness
       emotion are 48%, 41.5%, 27% and 29.3% respectively.
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