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Abstract—At present, computed tomography (CT) is widely used to assist disease diagnosis. Especially, computer
aided diagnosis (CAD) based on artificial intelligence (AI) recently exhibits its importance in intelligent healthcare.
However, it is a great challenge to establish an adequate labeled dataset for CT analysis assistance, due to the privacy
and security issues. Therefore, this paper proposes a convolutional autoencoder deep learning framework to support
unsupervised image features learning for lung nodule through unlabeled data, which only needs a small amount of
labeled data for efficient feature learning. Through comprehensive experiments, it shows that the proposed scheme is
superior to other approaches, which effectively solves the intrinsic labor-intensive problem during artificial image
labeling. Moreover, it verifies that the proposed convolutional autoencoder approach can be extended for similarity
measurement of lung nodules images. Especially, the features extracted through unsupervised learning are also
applicable in other related scenarios.

Index Terms—Convolutional autoencoder neural network, Lung nodule, Feature learning, Hand-craft feature,
Unsupervised learning
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1 INTRODUCTION
Computed tomography (CT) is an effective approach
to diagnose disease, by which the doctor can intu-
itively examine a patient’s body structure and effi-
ciently analyze the possibility of illness. However,
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each patient often includes hundreds of medical
images, so it is a great challenge to process and
analyze the massive amount of medical image da-
ta. Therefore, intelligent healthcare is an important
research direction to assist doctors in harnessing
medical big data [1] [2].

Especially, it is difficult to identify the images
containing nodules, which should be analyzed for
assisting early lung cancer diagnosis, from a large
number of pulmonary CT images. At present, the
image analysis methods for assisting radiologists to
identify pulmonary nodules consist of four steps:
i) region of interest (ROI) definition, ii) segmenta-
tion [3], iii) hand-crafted feature [4] and iv) catego-
rization. In particular, radiologist has to spend a lot
time on checking each image for accurately marking
the nodule, which is critical for diagnosis and is a
research hotspot in intelligent healthcare.

For example, it is proposed to extract texture
features for nodules analysis, but it is hard to
find effective texture feature parameters [5]. In [6],
nodules were analyzed by morphological method



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2717439, IEEE
Transactions on Big Data

2

through shape, size and boundary, etc. However, this
analytical approach is difficult to provide accurate
descriptive information. It is because even an expe-
rienced radiologist usually give a vague description
based on personal experience and understanding.
Therefore, it is a challenging issue to effectively
extract features for representing the nodules. In [7]
[8], convolutional neural network (CNN) is proposed
to extract nodule features for avoiding the problems
caused by hand-crafted feature extraction, but this
approach requires a large number of labeled data for
effectively training features.

To address these challenges, we propose a deep
learning architecture based on convolutional autoen-
coder neural network (CANN) for the classification
of pulmonary nodules. As shown in Fig.1, the pro-
posed method firstly utilizes the original image patch
for unsupervised feature learning, with the use of a
small amount of labeled data for supervised fine-
tuning parameters. Then, the feature representation
can be extracted from the input image. For the
recognition and classification of lung nodules, the
CT images are imported and the patch images are
extracted according to the proposed CANN method.
Each patch obtains a corresponding verification re-
sult set for classification after extracting feature
through the network structure. The experimental
results shows that the proposed method is effective
to extract the image features via data-driven ap-
proach, and achieves faster labeling for medical data.
Specifically, the main contributions of this paper are
as follows.

• From the original CT images, the patches are
automatically selected for analyzing the ex-
istence of nodules, which efficiently reduces
the doctor’s workload for image viewing and
ROI labeling. Due to the small proportion
of the pulmonary nodules in the original im-
age, sub-regional learning approach is imple-
mented to accurately extract the pulmonary
nodule features.

• CANN is proposed for features learning
from large amounts of data, avoiding the
uncertainty of hand-crafted features. By the
use of the advantages of both unsupervised
learning and unlabeled data learning, CANN
efficiently addresses the issue of the insuffi-
ciency of training data caused by difficulty

of obtaining labeled medical images.
• Image features are available to be directly

extracted from the raw image. Such an end-
to-end approach doesn’t use image segmen-
tation method to find the nodules, avoiding
the loss of important information which may
affect the classification results.

• The unsupervised data driven approach is
able to extend to implement in other data sets
and related applications.

The remainder of this article is organized as fol-
lows. Section 2 briefly introduces the related work.
In Section 3, the proposed approach and relational
algorithm are presented. Section 4 describes dataset,
experimental environments and the produced results.
Finally, Section 5 concludes this paper and future
work.

2 RELATION WORK
Feature selection is an essential procedure to obtain
extracted features for raw data representation. In
recent year, it is a hot research topic in the field of
machine learning. Compared with the conventional
methods by heuristic approach or manual approach
with human-intervention, data-driven feature learn-
ing through deep learning exhibits its much higher
performance. In [9], Bengio et al. introduce the
advantages of deep learning for feature learning,
which is a layered architecture like human brain.
Through deep learning, the simple features are ex-
tracted from the raw data, and then more complex
features are learned through multiple layers [10].
Finally, considerable features are generated through
multi-iteration learning, in which the parameters,
i.e., forward propagation and backward propaga-
tion are continuously optimized. Specifically, feature
learning is often classified into two categories, i.e.,
supervised learning and unsupervised learning.

Through supervised learning, the sample data is
forwarded from input to the top layer for predic-
tion. By minimizing the value of the cost function
between the target value and the predicted value,
backward propagation is used to optimizes the con-
nection parameters between each pair of layers. In
particular, CNN [11] is a transformation based on
neural network, which is used to represent features
via supervised learning. CNN is often implement-
ed in image analysis, speech recognition [12] and
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Fig. 1: Illustration of medical image analysis with CANN
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Fig. 2: Convolutional Autoencoder Neural Network for Medical Image Analysis

text analysis, etc.. Especially in the field of image
analysis, CNN has been a great success, such as
face recognition [13], scene parsing [14] , cell seg-
mentation [15], neural circuit segmentation [16] ,
analysis of images the breast [17] [18] and brain
lesion segmentation [19] [20]. For example, a novel
3D-CNN is proposed to categorize in polyp can-
didates on circulating tumor cell (CTC) [21]. In
[7] [22] [23], and evolved convolution networks
are proposed to classify the lung nodules through
supervised feature learning from medical images.
Gao et al. [24] and Schlegl et al. [25] CNN-based
methods for classifying the lung tissue according
based on lung CT images.

In unsupervised learning approaches, unlabeled
data are used to learn features, while a small amount

of labeled data are used to fine-tuning the parameter-
s, such as restricted boltzmann machine (RBM) [26],
deep belief network [27], autoencoders [28] and
stacked autoencoders [29]. Devinder Kumar et al.
propose an autoencoder approach for unsupervised
feature learning and classification of pulmonary n-
odules [30]. Kalleberg et al. propose a convolutional
autoencoder approach to analyze breast images [31],
and Li et al. design a RBM-based approach for lung
tissue classification in [32], Tulder et al. analyze
lung CT with convolutional restricted boltzmann
machines in [33].

In this paper, we propose a convolution autoen-
coder unsupervised learning algorithm for lung CT
features learning and pulmonary nodules classifi-
cation. Compared with the conventional CNN [7],
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[22], the proposed scheme is significantly improved
that the unsupervised autoencoder and CNN are
collaborative to extract the features from the image.
Due to the scarcity of medical image labeling, we
use a large amount of unlabeled data for training the
feature learning network, while only a small amount
of labeled data are used to fine-tuning the network.
Moreover, because the workload for labeling ROI
is high and the pulmonary nodules are difficult to
be recognized, the raw CT images are divided into
small patch areas for training the network.

3 THE PROPOSED CONVOLUTIONAL
AUTOENCODER NEURAL NETWORK

The patch divided from the raw CT image is input
to CANN for the purpose of learning the feature
representation, which is used for classification. The
parameters of convolution layers in CNN are deter-
mined by autoencoder unsupervised learning, and a
small amount of labeled data are used for fine tuning
the parameters of CANN and training the classifier.
This section describes the proposed CANN struc-
ture, parameter settings and training methods, etc.

Specifically, the patch divided from the original
CT image can be represented as x∈X , X⊂Rm×d×d,
where m represents the number of input channel,
and d×d represents the input image size. The labeled
data are represented as y∈Y , Y⊂Rn, where n rep-
resents the number of output classification. Through
the proposed model, it is expected to deduce the hy-
pothesis function from the training, i.e., f : X 7→ Y
and the set of parameters θ .

In the proposed model, the hypothesis function
f based on deep learning architecture consists of
multiple layers, which is not a direct mapping from
X to Y . Specifically, the first layer L1 receives
the input image x, and the last layer LN is the
output layer. Middle layers include three convolution
layers, three pooling layers and one fully connected
layer. The structure of the proposed CANN is shown
in Fig.2.

In this paper, the training data include two
datasets, i.e., the unlabeled dataset UD={x|x∈X}
and the labeled dataset D={x, y|x∈X, y∈Y }. In
particular, UD is used for unsupervised training,
while D is used for supervised fine tuning and
classifier training.

3.1 Standard Autoencoder
Supervised approach is available for data-driven
features learning, in which the connection weights
are updated through forward and backward prop-
agation algorithms. Compared with supervised ap-
proach, unsupervised approach can directly receive
unlabeled input data, which effectively reduce the
workload for labeling data.

In this paper, we propose an autoencoder method
for unsupervised learning. Autoencoder extract out-
put data to reconstruct input data and compare it
with original input data. After numerous times of
iterations, the value of cost function reaches its
optimality, which means that the reconstructed input
data is able to approximate the original input data to
a maximum extent.

The input data I represents m-dimension vector
I∈Rm. The output data code is a n-dimension vector
code∈Rn. Standard autoencoder includes three main
steps:

1) Encode: Convert input data I into code of
the hidden layer by code=f(I)=σ(w · I +
b), where w ∈ Rm×n and b ∈ Rn. σ is an
activate function, the sigmod or hyperbolic
tangent function can be used.

2) Decode: Based on the above code,
reconstruct input value O′ by equa-
tion O′=f ′(code)=ϕ(ŵ·code+b̂), where
ŵ∈Rn×m and b̂∈Rm. The activate function
ϕ is the same as σ.

3) Calculate square error
Lrecon(I, O

′)=∥I −O′∥2, which is the
error cost function. Error minimization is
achieved by optimizing the cost function:

J(θ)=
∑
I∈D

L(I, f ′(f(I)) θ={w, ŵ, b, b̂} (1)

Fig. 3(a) shows the unsupervised feature learning
with autoencoder.

3.2 Convolution Autoencoder
Convolution autoencoder combines the local con-
volution connection with the autoencoder, which
is a simple operation to add a reconstruction in-
put for the convolution operation. The procedure
of the convolutional conversion from feature map-
s input to output is called convolutional decoder.
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Then, the output values are reconstructed through
the inverse convolutional operation, which is called
convolutional encoder. Moreover, through the stan-
dard autoencoder unsupervised greedy training, the
parameters of the encode and decode operation can
be calculated.

The operation in the convolutional autoencoder
lay is illustrated in Fig. 3(b), where f(.) represents
the convolutional encode operation and f ′(.) rep-
resents the convolutional decode operation. Input
feature maps x∈Rn×l×l, which are obtained from the
input layer or the previous layer. It contains n feature
maps, and the size of each feature map is l× l pixels.
The convolutional autoencoder operation includes m
convolutional kernels, and the output layer output m
feature maps. When the input feature maps produced
from the input layer, n represents the number of
input channels. When the input feature maps from
the previous layer, n represents the number of output
feature maps from the previous layer. The size of
convolutional kernel is d× d, where d 6 l.

θ={W, Ŵ , b, b̂} represents the parameters of
convolutional autoencoder layer need to be learned,
while b∈Rm and W={wj, j=1, 2, · · · ,m} represen-
t the parameters of convolutional encoder, where
wj∈Rn×l×l is defined as a vector wj∈Rnl2 . And
Ŵ={ŵj, j=1, 2, · · · ,m} and b̂ represent the pa-
rameters of convolutional decode, where b̂∈Rnl2 ,
ŵj∈R1×nl2 .

First, the input image is encoded that each time
a d × d pixels patch xi, i=1, 2, · · · , p, is selected

from the input image, and then the weight wj of the
convolution kernel j is used for convolutional calcu-
lation. Finally, the neuron value oij, j=1, 2, · · · ,m
is calculated from the output layer.

oij=f (xi)=σ (wj · xi + b) (2)

In Eq.(2), σ is a non-linear activation function,
often including three fuctions, i.e., the sigmod func-
tion, the hyperbolic tangent function, and the recti-
fied linear function (Relu). And Relu is implemented
in this paper.

Relu (x)=

{
x x > 0

0 x < 0
(3)

Then oij output from the convolutional decode is
encoded that xi is reconstructed via oij for generated
x̂i.

x̂i=f ′(oij)=ϕ(ŵi · oij + b̂) (4)

x̂i is generated after each convolutional encode
and decode. We get P patch obtained from the
reconstruction operation with d × d. We use the
mean square error between the original patch of
input image xi, (i=1, 2, · · · p) and the reconstructed
patch of image x̂i, (i=1, 2, · · · p) as the cost function.
Furthermore, the cost function is described in Eq. 5,
and the reconstruction error is described in Eq. 6.

JCAE(θ)=
1

p

p∑
i=1

L [xi, x̂i] (5)



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2717439, IEEE
Transactions on Big Data

6

LCAE [xi, x̂i] =∥xi − x̂i∥2=∥xi−ϕ(σ(xi))∥2 (6)

Through stochastic gradient descent (SGD), the
weight and error are minimized, and the convolu-
tional autoencoder layer is optimized. Finally, the
trained parameters are used to output the feature
maps which are transmitted to the next layer.

3.3 Pooling
The proposed CANN is similar to the common
CNN, where the convolutional layer is connected
to the pooling layer. Especially, in CANN after the
convolutional autoencoder layer is the max pooling
layer, as shown in Eq. 7.

oij=max
(
xi
j

)
(7)

Each input feature map is divided into n no-
overlapping regions according to the size of the
pooling region, where xi

j represents the ith region of
the jth feature map, and oij represents the ith neuron
of the jth output feature map. The number of input
feature maps is equal to the number of output feature
maps in the pooling layer. Neurons in the feature
map can be reduced after the pooling operation, thus
the computational complexity is also reduced.

3.4 Cost Function
As shown in Fig.2, softmax classification layer,
which is used for classification according to the
features, is after multiple convolutional autoencoder
layers, max pooling layer and full connected layer.
In this paper, the lung CT images are divided into
two categories. Specifically, ŷi from the classifier
represents the probability of nodules and no nodules.

ŷi=
e(oi)∑2
k=1 e

(ok)
, i = 0, 1 (8)

oi=σ(
∑T

t=1 x
f · wf + bf ) represents the T out-

put features xf generated through the full connected
layer, where wf and bf represent the weight and er-
ror respectively, σ represents the nonlinear function
sigmoid.

Furthermore, in the supervised training network,
the cost function is cross entropy L, as shown in
Eq. 9, and SGD is implemented for minimizing L.
Where y is the label of sample data. Specifically, 0

and 1 represents no nodules and nodules respective-
ly.

L=− (y log ŷ0 + (1− y) log ŷ1) (9)

3.5 Training Parameters

3.5.1 Convolution Autoencoder
N=50000 unlabeled samples are used to train
the autoencoder through unsupervised learning at
the convolutional layer, the gradient is calculated
through the cost function Eq. 5, and the parameters
are optimized through SGD. Specifically, every 100
samples are included in a mini batch, and the number
of iterations for each batch is 50, so the number of
iterations per layer is 50 × N/100. Moreover, the
number of channels must be set in the convolutional
encoder Eq. 2 and convolutional decode Eq. 4 re-
spectively.

3.5.2 Full Connected Layer and Classifier
The input of the full connected layer is from the last
pooling layer. In particular, the features are repre-
sented through 500 neurons, which are connected to
the softmax classifier. The parameters are supervised
trained at full connected layer and softmax classifier.
There are 1800 labeled data for classification train-
ing, and each mini batch including 50 samples are
used for parameter optimization via 500 SGD-based
iteration.

3.5.3 Algorithm of Training CANN
The training in CANN is based on the work in
[35] and [28], including unsupervised training and
supervised fine-tunning, which are described in Al-
gorithm 1 and Algorithm 2.

4 EXPERIMENT AND RESULTS

4.1 Dataset

The experimental data are collected from a second-
class hospital in China, including about 4500 pa-
tients’ lung CT images from 2012 to 2015.

Doctors identify the ROI for each nodule (the
total number of nodules is around 1800) by some
mark, based on which a centering the marked area,
64× 64 region is segmented as the patch of nodule.
Specifically, the data are divided into three datasets:
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Fig. 4: S-CANN for estimating image similarity

Algorithm 1 unsupervised training CANN
1: UD: given unlabeled dataset;
2: desired number of convolution layer and pooling layer;
3: Initialize all weight matrices and bias vectors randomly convo-

lution layer and pooling layer;
4: i← 1;
5: if i == 1 then
6: The input of Ci is UD;
7: else
8: The input of Ci is the output of Pi;
9: end if

10: Greedy layer-wise training Ci;
11: Find parameters for Ci by cost function;
12: Use the output of Ci as the input of the Pi;
13: Max pooling operator;
14: if i < N then
15: goto line 5;

16: end if

Algorithm 2 supervised fine-tunning CANN
1: Initialize all weight matrices and bias vectors randomly of fully

connect layer;
2: Given labeled dataset D as the input of network;

3: Use BP algorithm with SGD parameter optimization method

tune the network’s parameters in top-down direction;

• D1: unlabeled data for unsupervised training,
which contains 50000 64×64 patches. These
small patches are randomly captured from all
the patients’ lung CT slides in this hospital.

• D2: labeled data for classification, which
include 3662 64 × 64 patches. They are la-
beled by two professional radiologists. In the
labeled data, 1754 patches contain nodules,

while the other 1908 patches are normal
ones.

• D3: labeled data for similarity judgement
contain 500 pairs of labeled patches. The
images are marked by two doctors, and the
similarity is generated according to the inter-
section of the labeled results. The range of
similarity is from 1 to 3, where 3 represents
the highest level of similarity and 1 means
the lowest similarity. We deleted 61 samples
with similarity of 2 , i.e., those with the mid-
dle level of similarity are deleted.. Finally,
214 samples with similarity of 1 are labeled
as ”0” (i.e., they are not similar), while 225
samples with similarity of 3 are labeled as
”1” (i.e., they are similar).

4.2 Convolutional Architecture

In this paper, we propose two kinds of CANN, i.e.,
C-CANN for classifying as shown in Fig.2, S-
CANN for similarity check in Fig.4. In particular,
S-CANNs can be regarded as two parallel C-CANNs
with the same structures and parameters.

The C-CANN consists of 3 groups of connec-
tions between convolutional layer and pooling layer,
followed by a full connected layer and a classifier,
i.e., 8 layers in the structure. The network parameters
are list as follows:

• Input: 64×64 patch captured from CT image.
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• C1: convolution kernel is 5 × 5, the step 1,
the number of convolution kernel is 50, non-
linear function is Relu.

• P1: max pooling is used, the size of pooling
area is 2× 2.

• C2: convolution kernel is 3×3, the step 1, the
number of convolution kernel 50, non-linear
function is Relu.

• P2: max pooling is used, the size of pooling
area 2× 2.

• C3: convolution kernel is 3×3, the step 1, the
number of convolution kernel 50, non-linear
function: Relu.

• P3: max pooling with 2 × 2 size of pooling
area .

• Full: fully connected layer, 500 neurons.
• Output: softmax classifier, 2 classes.

S-CANN also includes 8 layers which are the
same as those in C-CANN. Through S-CANN, the
features are extracted from a pair of images to be
compared for the calculation of similarity by two
identical C-CANNs respectively.

4.3 Classification

4.3.1 Impact of sample number
Table 5 illustrates the impact of the number of train-
ing sample on the classification accuracy of CANN
and MCNN. The results shows that the performance
is optimal when the number reaches 2900 for both
CANN and MCCNN methods. When the number
is around 700 or 800, CANN starts to ourperform
MCCNN. With the increase of the number to 1500
or 1600, CANN exhibits a tendency.

4.3.2 Performance Comparison of Classifica-
tion
Convolutional neural network for learning the lung
nodule image feature is similar to common image
feature learning. Both CNN and conventional learn-
ing use labeled dataset, and learn the network pa-
rameters between each layer from the input layer to
the output layer by the use of forward and backward
propagation methods. MCNN is a variant of CNN.
Its difference from CNN is that the pooling operation
adopts multiple methods with different pooling area
and fuses multi-scale pooling results as the output of
pooling layer.
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Fig. 5: The impact of training sample number on
classification accuracy of CANN and MCNN

We compare the classification performance of
(CANN), autoencoder (AE) [30], convolutional neu-
ral network (CNN) and MCCNN [22] with dataset
D2, the results are shown in Table 1 and the Rate of
Change (ROC) is shown in Fig.6.

The CNN and MCCNN methods use the same
convolutional architecture as CANN. The accuracy,
precision, recall, F1 and AUC of proposed method
are 92%, 91%, 91%, 91% and 0.97 respectively.
For AE method, we use the same unlabeled training
database and test it on the same database, and full
connected layer has 1024 neurous. The accuracy,
precision, recall, F1 and AUC of AE are 77%, 76%,
77%, 77% and 0.83 respectively. Because unsuper-
vised method can not learning optimal feature, its
performance is lower than CANN. The five evalu-
ation index of CNN method are 89%, 88%, 90%,
89%, 0.95 respectively. The performance index of
MCNN method are 91%, 91% , 90%, 91% and
0.97 respectively. The classification performance of
both CNN and MCCNN method are lower than the
proposed method. The evaluation verifies that the
combination of unsupervised feature learning and
supervised fine-tunning can significantly improve
performance.

4.4 Similarity Check
Image similarity judgment is used to retrieve the
similar nodules for providing reference to doctors.
Similarity judgment and nodules classification have
to consider several features, such as nodule’s mor-
phology, density, size, edge, etc. The full connected
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TABLE 1: Comparison of different method’s classi-
fication performance on D2

Method accuracy precision recall F1 AUC
CANN 95.00% 95.00% 95.00% 95.00% 0.98
AE [30] 77.00% 76.00% 77.00% 77.00% 0.83
CNN 89.00% 88.00% 90.00% 89.00% 0.95
MCCNN [22] 91.00% 91.00% 90.00% 91.00% 0.97
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Fig. 6: ROC of classification on D2

layer network and similarity judgment layer are
trained through unsupervised approach, while 5-fold
cross validation are trained by using dataset D4
with supervised approach. CANN performance for
image similarity and classification, such as accuracy,
precision, recall, F1 and etc., are shown in Fig.7. The
evaluation verifies that unsupervised feature learning
and supervised fine-tunning with a small training set
can obtain better performance.

5 CONCLUSION
In this paper, we investigate two representative ap-
proaches to assist CT image analysis. The approach
based on segmentation and hand-craft-features is
time consuming and labor-intensive, while the data-
driven approach is available to avoid the loss of
important information in nodule segmentation. How-
ever, due to the scarcity of labeled medical data,
these two approaches are not practicable. Hence,
this paper proposes a CANN-based approach for
data-driven feature learning, in which the network
is unsupervised trained with a large amount of un-
labeled patch and a small amount of labeled data
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Fig. 7: The Image Similarity performance with D4

is used for fine-tuning the network structure. The
proposed approach is applied for lung nodule recog-
nition, classification and similarity check, which
significantly solves the issues of time consuming for
ROI labeling and inadequate labeled data. Compared
with other data-driven approaches, it verifies that the
proposed method is superior through comprehensive
experiments. Moreover, it proves that the system
performance and feasiblity may be affected by the
quality of data, because the role of expert is ignored.
Therefore, we will combine domain knowledge and
data-driven feature learning in our future work.
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