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Abstract—For the processing of scientific applications in cloud
computing, the important challenge is to find an optimized
resource scheduling method that guarantees cloud service users’
service-level agreement while minimizing the resource manage-
ment cost. To overcome this problem, in contrast to previous
solutions that focus on a few specific applications, we design and
implement a unified scientific cloud framework called science gate-
way cloud, which is a broker between users and providers and
is able to process various scientific applications efficiently upon
heterogeneous cloud resources. In particular, we design a cost-
adaptive resource management scheme that reduces the resource
management cost significantly without any degradation of perfor-
mance based on the long-term payment plans of cloud resource
providers. Furthermore, this system allows us to parallelize divis-
ible scientific applications to improve the processing performance.
Through the division policy for workflow scheduling, we show that
both deadline assurance and cost minimization can be satisfied
concurrently. Finally, we demonstrate that our proposed sys-
tem significantly outperforms conventional cloud systems through
various experimental and simulation results.

Index Terms—Cost-adaptive policy, resource management,
science gateway, service-level agreement (SLA), workflow
scheduling.

I. INTRODUCTION

ANY computational science fields (i.e., computational
physics, computational chemistry, bioinformatics, etc.)
related to the big-data computing [1], [2] require massive
computation resources to solve various problems with meth-
ods of simulation, modeling, and numerical analysis. While
generating massive streams of data continuously, enormous
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parallel or distributed supercomputing could be required in
proportion to their computational complexity [3], [4].

As a substitute for traditional expensive supercomputing,
cloud computing can deliver cost-efficient and scalable com-
puting services, which are provided to cloud users in on-
demand fashion; this is becoming an alternative computing
paradigm for scientific application processing. Cloud users
are able to share computing resources, such as computing
components (i.e., CPU, memory, and network), software util-
ities, databases, and so on, for scientific application processing
cost-effectively by leasing virtual machine (VM) instances on
a pay as you go basis. However, despite its many advan-
tages, there are several obstacles that prevent cloud computing
from achieving successful deployment for scientific application
processing.

Advanced scientific applications generally have diverse com-
puting requirements, such as CPU intensive, memory intensive,
network intensive computation, and so on [5], [6]. Therefore,
it is difficult to derive a resource scheduling scheme which is
a panacea for all kind of scientific applications. Moreover, we
may observe that there are conflicts among scheduling objec-
tives, such as application completion time and resource cost [7],
[8]. The improvement of one objective might bring down the
performance of other objectives. In addition, the professionals
engaged in computational science might suffer from the com-
plexity of distributed computing system (e.g., heterogeneous
resource management, pipeline flow control, service deploy-
ment, and intermediate data control) in the cloud for solving
their problems. To overcome the above issues to achieve the
optimal performance and cost-efficient resource scheduling for
scientific application processing on the cloud, the concept of
the science gateway is proposed.

A science gateway is an automatic execution environment
that can be generally applied for different types of science
applications in a common interface to do task scheduling, task
execution, and visualization, building a highly tuned compu-
tation farm over geographically distributed resources [9]. The
important issue of the science gateway is to orchestrate tasks
over a distributed set of resources with minimized costs while
guaranteeing service level agreements (SLAs), which are the
contracts regarding quality-of-service (QoS) constraints with
users. However, several previous studies on the science gateway
have not considered this issue or could not resolve this issue
sufficiently. In addition, they focused on a specific scientific
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application, so they are not suitable for various scientific appli-
cations generally.

Yao et al. [10] proposed a science gateway supporting mobile
device to compose and execute scientific applications of bioin-
formatics in the cloud environment. This system supports the
collaboration of researchers on an experiment on genome bioin-
formatics through mobile devices. However, only the basic
functions, such as service repository, service composition, ser-
vice execution, and user interface, were considered to execute
the scientific application. An SLA required by a user with
dynamic resource scheduling and provisioning on scientific
applications was not considered for executing the scientific
application.

CloudBLAST [11] provides BLAST service, which is a
bioinformatics tool to find regions of local similarity between
nucleotide or protein sequences with a parallelization process
in Apache Hadoop in the cloud environment to control the total
execution time. This gateway only shows the concept of con-
trolling the QoS through process parallelization for genome
bioinformatics. This system does not provide a direct algorithm
to guarantee the user SLA or minimize the cost of executing the
scientific application.

To address these issues, we have designed a universal sci-
entific cloud framework called science gateway cloud (SGC),
which is described in detailed in Section II. The proposed
SGC is able to process various scientific applications efficiently
upon heterogeneous cloud resources. In our designed system,
both deadline and resource management costs are considered
concurrently by using our proposed scheme’s cost-adaptive
resource management scheme and the workflow scheduling
scheme with the division policy. To reduce the resource man-
agement cost significantly without any performance degrada-
tion of scientific application processing, we designed a VM
provisioning scheme with the pool management. Through a
long-term payment plan [13] of cloud resource providers, the
SGC is able to overcome the problem of cost minimization with
a strategy of maximizing its profit. By determining the appro-
priate amount of resource provisioning over the distribution of
arrival requests, it is possible to reduce the cost significantly
with an acceptable completion time. We will show this scheme
in Section III. Moreover, we propose a workflow scheduling
scheme with a division policy that enables the parallelization
of scientific applications to satisfy both deadline assurance and
cost minimization in Section IV. By using the simplified and
efficient integration of cost function model and managing the
task affinity over the heterogeneous cloud services, we achieve
the significant performance improvement of scientific appli-
cations. In particular, through workflow scheduling with the
division policy, we show that our proposed scheme works well
for scientific applications in practice.

Our contributions to the parallel and distribution computing
system field are as follows.

1) We defined an SGC model that supports the general-
ized common interface for the diverse requested scientific
application. Even cloud users who are not familiar with
the traditional cloud scientific systems can optimize the
processing performance without in-depth understandings
of system operation.
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2) We adjusted a cloud broker model to the SGC, which can
be retained as a third party by economic logic over the
cloud echo system. Also, we proposed a cost-adaptive
resource management scheme with a VM pool (VMP)
management policy, which determine the amount of cloud
resources with long-term payment plan to save expenses
on resource allocation over the distribution on resource
requests.

3) To address the multicriteria optimization problem in the
scientific application, we proposed a workflow scheduling
scheme with a division policy that compromise the trade-
off between objectives by combining the objectives into
one performance metric, while maximizing task affin-
ity over the heterogeneous cloud platform. Furthermore,
with the task parallelization policy, the SGC is more tol-
erable over the unexpected failure and excessive service
requirements.

4) We implemented key features for the SGC and evaluated
performance through the experiments. The SGC with a
cost-adaptive resource management scheme and a work-
flow scheduling scheme with a task division policy shows
good performance characteristics in cost minimization
while guaranteeing the processing performance. In addi-
tion, we discussed the feasibility and characteristics of
each scheme in detail.

II. MODEL DESCRIPTION OF THE SGC

For scientific applications, there are various programming
models, such as the thread model, the MapReduce model, the
MPI model, and workflow [7], [8]. In this paper, we adopt the
workflow as the programming model to execute scientific appli-
cations, so we assume that each of these scientific applications
is represented as a workflow, which is a directed acyclic graph
(DAG) composed of a set of nodes and a set of edges (called a
scientific workflow).

To execute these scientific workflows in the cloud envi-
ronment, as mentioned in the introduction, and overcome the
problems of existing science gateway systems, we propose the
new science gateway which has the following features shown in
Table 1.

In the next section, we discuss the proposed science gate-
way; we present its architecture and functional description,
including these requirements. Furthermore, we describe the
cost-adaptiveness of our science gateway with a resource pro-
visioning scheme and workflow scheduling scheme with the
division policy.

A. Architecture and Functional Description

The architecture and procedure of the proposed science
gateway are shown in Figs. 1 and 2, respectively.

1) Workflow Scheduling Manager: The workflow schedul-
ing manager is mainly responsible for managing and executing
the scientific workflow. It provides a graphic user interface
(GUI) for scientific application services for users. The appli-
cations are deployed by an administrator with additional QoS-
related information such as the average execution time of each
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TABLE I
REQUIREMENTS FOR OUR PROPOSED SYSTEM [3]-[6]

Requirement Description

A dynamic workflow scheduling mechanism with
parallelization is needed to guarantee the SLA
required by users with the minimum resource and

cope with the dynamic characteristic of cloud

SLA-based dynamic
workflow scheduling

with parallelization
resource such as temporary performance
degradation
An integrated interface to access the
Integrated cloud heterogeneous multiclouds in the programmatic

access management | way is needed to lease or release virtual machine

in each cloud

A cloud resource provisioning to lease VMs of
long-term payment plan with resource demand
prediction in advanced is needed to reduce the
VM leasing cost

Cloud resource
provisioning

Scientific 1
applications

Scientific gateway

Workflow scheduling manager
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Fig. 1. Architecture of the proposed SGC with cost-adaptive resource manage-
ment scheme.
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Fig. 2. Procedure of the proposed SGC to solve complicated scientific applica-
tions in the heterogeneous cloud platform.
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task in the application. Using the GUI interface, a user can
compose the workflow requests with a set of available tasks
including their dependency and SLA requirement such as dead-
line. After parsing the user’s submitted workflow request, the
workflow scheduling manager partitions the entire workflow
as simple tasks with its dependency and maps each task on
a VM instance based on the division policy-based scheduling
scheme. It executes the scheduled workflow dynamically using
VM instances provided by VM provisioning manager. Finally,
the result of the workflow execution is shown by GUI Interface.

2) VM Provisioning Manager: The VM provisioning man-
ager operates a VMP and allocates a VM for a VM request.
The VMP is defined as a logical VM container that stores a
set of various types of VMs. It composes the reserved VMs
(RVMs) of long-term payment plan on the VMP with resource
demand prediction in advanced based on the resource provi-
sioning scheme. Thus, the VM provisioning manager allocates
the RVMs of VMP for a VM request. If there are no available
RVMs in VMP, it allocates an on-demand VM (OVM).

3) Integrated Cloud Access Proxy: The integrated cloud
access proxy provides the integrated interface to access the
heterogeneous multiclouds and lease or release VM of dif-
ferent policies (i.e., OVM and RVM) on each cloud in the
programmatic way.

Based on these functions, we propose and develop a resource
provisioning scheme and a workflow scheduling scheme with
a division policy in the workflow scheduling manager and
the VM provisioning manager, respectively, in order to imple-
ment the cost-adaptive SGC. The resource provisioning scheme
in the VM resource provisioning manager reduces the VM
leasing cost, determining the amount of RVM which will be
provisioned in VMP based on the demand of VM instance.
Eventually, this organized VMP is used by the workflow
scheduling manager to execute the scientific workflow. This
scheme will be described in detail in Section III.

The workflow scheduling scheme with a division policy in
the workflow scheduling manager decreases the cloud resource
usage cost to execute the scientific workflow while guaran-
teeing the SLA (i.e., deadline) required by the user with the
parallelization of the divisible task. Two examples of scientific
workflows that include divisible tasks are presented in [14]-
[17] as depicted in Fig. 3. The first example is the computational
chemistry solution including quantitative structure—activity
relationship (QSAR) analysis which calculates the toxicity and
properties of chemical compounds using the similarity of chem-
ical structure [14]. The second example is the bio-computing
solution of next-generation sequencing (NGS) for genome anal-
ysis which aligns or maps low-divergent sequences against a
large reference genome, such as the human genome [15]-[17].
In these cases, reducing the execution time of the divisible task
through parallelization on several VMs, the science gateway
can admit scientific workflow requests including high perfor-
mance requirements. Also, scientific workflow processing can
be more reliable on guaranteeing the performance requirement
because the performance degradation caused by the dynamic
characteristics of cloud performance can be compensated by
parallelization. However, this parallelization increases the cloud
resource usage cost to execute the scientific workflow, so a
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Fig. 3. Procedure of the scientific applications in topological expression (work-
flow) with diverse computing requirements. (a) Workflow topology of the
computational chemistry solution with parallelized QSAR model analysis [14].
(b) Workflow topology of the NGS solution for genome sequencing analysis
with high-throughput alignment method, BWA software package [15]-[17].

sophisticated technique to control parallelization considering
the tradeoff between performance and cost is needed. This
scheme resolves this problem. Furthermore, it considers the
penalty cost which is the cost being proportional to the violated
duration from the deadline. Through various penalty cost func-
tions, it provides various levels of QoS. Section IV will explain
this scheme in detail.

III. A PROPOSAL FOR COST-ADAPTIVE RESOURCE
MANAGEMENT IN SGC

For scientific application processing, it is important to reduce
the resource leasing cost while guaranteeing the SLA of a
user’s request. From the perspective of the science gateway,
an efficient way to reduce the resource leasing cost (i.e.,
maximizing profit) is to consider the payment plans of cloud
resource providers: RVM and OVM plans. To do this, we pro-
pose the cost-adaptive SGC in this section. First, we introduce
the pricing model and the cost-adaptive resource allocation
of the science gateway for profit maximization. Second, the
division-based scheduling algorithm of workflow, which is the
representative scientific application by the science gateway, is
described in detail.

A. Pricing Model for Scientific Computing

In our proposed framework, there are three entities: the SGC,
cloud service users, and cloud resource providers. Users submit
their scientific applications and data to the science gateway, the
science gateway buys or releases cloud resources from/to the
cloud resource provider as needed, and then the science gate-
way picks an appropriate VM instance from its own VMP to
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TABLE II
VARIABLES FOR SGC
Notation Description
t; A i task of scientific application S
i €{1,2,..,N},N = number of tasks in S
VT; i'" VM instance type VT € {1,2,...,K}.
R;(7) The number of i-type available RVM instances in VM
pool at time T
A;(T) The number of i-type allocated RVM instances in VM
pool at time T
N;(7) The number of i-type leased RVM instances in VM pool
from cloud resource provider at time ¢t
R;; The j™ RVM instance of i-type, 31; R;;(t) = Ny(1)
™ The maximum price of i-type VMs to users
crn The minimum price of i-type VMs to users
I (Ri,j(T)) The current price of the j™ RVM instance of i-type at
time 7

execute each task of the scientific applications. Cloud service
users pay the SGC for their application processing requests.
The SGC makes a profit while satisfying users’ requirements
as a wholesaler between cloud service users and cloud resource
providers. Generally, scientific applications have precedence
constraints. Therefore, each task is allocated to their suitable
VM instances and executed in order of their starting time based
on precedence constraints. Obviously, each task shows differ-
ent performance in relation to different types of VM instances.
Scientific applications may have different levels of importance
and urgency. Therefore, users can specify different deadlines
for their applications. Since the profit of the science gateway
is largely dependent on the arrival density and the structure of
scientific application requests, the adaptive pricing model for
requests is important to maximize the profit. Variables for SGC
are defined in Table II.

Definition 1: (SLA-constrained scientific application) From
the users’ perspective, they hope the scientific application they
submitted can be finished within some specified deadline or
budget. For example, if a user specifies deadline constraint D,
that is to say, the user wants to run his or her scientific appli-
cation no later than a specified deadline. Meanwhile, the user
hopes that the scientific application should be finished with the
least possible cost. In such a case, the scientific application can
be described as a tuple S (T, @, D), where T is the finite set of
tasks ¢; (i € {1,2,...,N}) and @ is the set of directed edges
of the form (¢; ¢;).

For an arbitrary precedence constrained scientific application
S(Y,®, D), we assume that we are able to know the estimated
completion time of each task of S, then we can obtain the opti-
mized resource management policy of the science gateway for
scientific application processing which satisfies the following
objective function:

Maximize P [p] = Z Csal (p) - (7 (S; (Y, @,D)) —9)

iel
— Cexp ZT (Si(T,9,D))
icl
Subject to ECT [S;] < D; Vi
where
ECT [S;] = maxy, ;es, {ft [ti ]} Vi. ()
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The objective P [p] is a profit function of the science gate-
way with input parameter p, which is a policy for determining
a price of service sales to user, cq;. Here, Ceup (Csat > Ceap)
is the expenditure for processing a scientific application, § is
a coefficient, and c4; - § means a preference degradation level
of service purchasing from the science gateway. Also, 7 is an
expected resource requirement in view of a cloud service user
for scientific application request S; (Y, @, D), and r is an actual
resource requirement in view of the SGC based on its VMP.
Here, EC'T is the estimated completion time of a scientific
application, and ft is the estimated finishing time of an individ-
ual task, while ¢, ; is the jth task of application S;. The equality
constraint of (1) means that the finishing time of the last task is
the completion time of the application.

The cloud resources are categorized into several types, such
as small, medium, large, and xlarge with the different amount
of computational resources. The various types of VM instances
offer different processing capacities, and they are charged for
usage in billing time units (BTUs) in proportion to their capac-
ities. Partial-BTU consumption is rounded up to one BTU.

Definition 2. (Cloud VM resource type) A VM type VT;
can be modeled with four parameters, which are time-invariant
and continuously capable of being guaranteed by cloud ser-
vice providers: number of compute units (can be transferred
into MIPS) VT.., CPU clock rate (Hz) V'T},.,, memory size
(GBs) VT,,,, storage space (GBs) VT,, and bandwidth (bit
rate, bit/sec) V'T,,,. The tuple represents a VM instance : V'1; =
{VTe,, VTho,, VT, ,VTs,, VT, }.

In general, cloud providers have two VM instance payment
plans, namely RVM and OVM plans [12], [13]. For an RVM
plan, a VM instance is leased for a long BTU (e.g., monthly
or yearly) with a low price per allocation time unit. On the
contrary, for an OVM plan, a VM instance is allocated for a
short BTU (e.g., hourly or daily) with a high price per alloca-
tion time unit. The science gateway maintains a certain number
of RVMs in its own VMP and adjusts the number of them when
the amount of requests drastically changes. Obviously, it is rea-
sonable to prefer an RVM to allocate a task when we can find
available RVMs in the VMP since OVM is more expensive than
RVM. Because the resources are managed in two contradict
payment plans, the SGC should determine the cost within two
distinct levels: the lower cost on RVM and the higher cost on
OVM. In order to decide the proper cost of service sales cgq;
in (1) for maximizing the profit of the science gateway, vari-
ous cost model to select sales cost between C™#* and C'™i®
over resource availability can be adjusted to the SGC. The var-
ious cost functions might show different characteristics with
respect to fairness among the users and profit of the SGC. Any
cost function can be chosen by the system administrator and
is agreed by the service users. Because we only consider to
measure the minimization of expenditure cost that come from
the cost-adaptive resource management scheme represented in
Section III-B and do not consider the fairness and maximiza-
tion of sales cost in (1), we adjust simple cost function in the
experiments as follows:

cmins Ri(1) >0
C(RZ (T))simple = (2)

¢, otherwise.

Algorithm 1. VMPM resource provisioning policy

INPUT : historical data including S = {Vti, j} and VVT(ti, j)
during previous time interval T'

OUTPUT : N; during current time interval T

01: For VT =1to K

02: ForVvtesS

03:  Clsyr =Clsyy U<t € SifVT(t) =VT

04: End for

05: End for

06: n=0

07: For VClsyr

08: sort tasks in Clsyr in order of their starting time

09: While available tasks exists in Clsy,; do

10:  For Vt' € Clsyr

11:  gn = gn Ve t' € Clsyrif st(t') = ft(t"),

12:  t' = first task in Clsyp, t" = last task in g,

13:  End For

14: remove tasks in g,, from Clsy

15: n=n+1

16: End while

17: End for

18: For Vg,

19: get(gn) = ft(gn) — st(gn)

20: VT =VT(g,)

21 1 C(RVM VT(gn),gct(gn))
Tviegy et®)-C(OVMyr(r))

22: lease RVMyr(g,),gct(g,) from cloud resource provider

23: End if

24: End for

< 1 then

Fig. 4. Algorithm of VMP management with a VM provisioning scheme.

B. Cost-Adaptive Resource Provisioning in SGC

We describe the VMP manager (VMPM) and its policies
in terms of reducing the resource leasing cost. In particular,
the VMPM determines the proper number of leasing RVMs
from the cloud resource provider to optimize the cost efficiency.
The number amount of running RVMs is dependent on the
arrival request density of scientific applications and each usage
duration.

Algorithm 1 shows the VMPM resource allocation policy
to reduce the cost by using RVM leasing. The historical data
including all the executed tasks and their allocated VM instance
types during the previous time interval T” are the input data for
Algorithm 1. We assume that the request pattern in the current
time interval 7' will be the same as that one of historical data in
T'. By using Algorithm 1, we can derive the proper amount of
RVM, N; for T.

From lines 01 to 05 in Algorithm 1, we first cluster the
tasks in .S according to their allocated VM instance type VT
Consequently, all the tasks in S are classified into several
clusters Clsy according to V1. From lines 06 to 18, we
make groups that have batches of nonoverlapped tasks. That
is, from the arbitrary Clsyr, the first task is picked if its
start time st is later than the finish time ft of the last task
in the group ¢,, and then it is inserted into g,. This pro-
cedure is repeated until we cannot find the available ¢ in
Clsyr more. From lines 19 to 24 in Algorithm 1 by using
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the group completion time of g,, gct (g,) and allocated VM
instance type of g, VT (g,), we make an RVM description
RV Myr(4,),gct(g,)having the BTU which has the unit size
closest to the gct (g,,). We check the following condition to
choose whether to lease RV My 14, get(qg,) from the cloud
resource provider or not:

¢ (RVMVT(gn),gct(gn))
>vieg, €t () - C (OVMyr)

The denominator of (3) represents the total cost of execu-
tion time et for the tasks in g, on OVMs. The numerator of (3)
represents the cost of RVM for g,,. If (3) is satisfied, it means
that the leasing of RVM is more cost efficient than the leasing
of OVMs for g,,. As the equation value in (3) is decreased, the
cost efficiency by using RVM is increased.

<1 3)

IV. A WORKFLOW SCHEDULING SCHEME WITH A TASK
DivISION PoLICY

An SLA-constrained scientific application to be executed
within user-specified deadline D is defined as a work-
flow scheduling problem with a deadline constraint. That
is, deciding the assigned computing resources-to-be set R =
{R1,Rs,...,R,} and assigned time set 7 = {71, 72,...,Tn}
according to Petrinet model with intertask dependencies is
defined as the problem.

It is hard to find a schedule to satisfy a user-specified tight
deadline due to the finite set of resource types in cloud comput-
ing. Unlike workflow scheduling with CPU time competition on
cluster computing, on-demand resource provisioning is oper-
ated on cloud workflow scheduling. Therefore, coarse-grained
resource allocation with a finite set of resource types makes
scheduling schemes more sophisticated for better resource
utilization. Also, when a deadline is shorter than the earliest
possible execution time of a workflow instance or unexpected
processing delays occur above a certain level, we cannot guar-
antee the deadline to the limitation of an expressible quantity
measure.

To overcome the problems in the simple management
scheme, we utilize two methods: load-rate-based dynamic
workflow scheduling with a token control scheme in Petrinet
[18] and a task division policy with a profit-cost model
[19], [20].

An SLA-constrained scientific application is given in def-
inition 1. Here, S (Y, ®, D) is transformed with the Petrinet
workflow model S (W (P, T, A), D), where P is place, T is
transition, and A is arc [18], for better status expression and
execution control with mathematical tools.

In addition, we define divisible task using the concept of
task parallelization. A task ¢; in a scientific application, which
can be partitioned, as they do not have any precedence rela-
tions and all subtasks are identical, is defined as a divisible task
[19]. The divisible degree (dd) of a divisible task is defined as
the maximum number of possible subtasks. Then, the subtasks
of divisible task ¢; can be expressed as set {¢; 1,%;.2,...,tin}
From the task parallelization, we can reduce the processing time
by allocating distributed resources to the subtasks. Although
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the task division strategy reduces the time required for work-
flow scheduling, the division is not always carried out as it is
not always appropriate to processing time, which can result
in increase in the cost. Therefore, we should determine when
we have to carry out division based on processing time and
required cost. We only consider half-load division to lessen
the complexity of scheduling and the management of profiling
data. In addition, it is assumed that the load of each subtask
is identical. The composition of partial subtasks on task type
tte with amount r is defined as subtask type tty, (.}, whose
dd (tth{r}) = r. Additional application profiling for all kinds
of task bunches is required to measure the execution time of
each subtask type tt, 1, on a different resource type V'T;.

When a token forward and backward matrix is already
extracted by analysis of workflow topology, an SLA-
constrained scientific application in the Petrinet scheme
S(W (P, T,A),D) can be controlled by moving the token
with the multiplication of the token status vector and the token
forward/backward matrix.

1) [Phase I] Calculate the Load Rate r(p) for Each
Placement: We set the initial marking of the token vector for
the first phase as m = [0.. . 01]. Then, the token moves through
the backward matrix along the Petrinet topology path reversely
while investigating each task’s load rate. The load rate  (p) on
a place p is the rate of the following transition’s relative load
compared to the relative load of its critical path

_ rl(p)
rip)= epl (p)

Also, the relative load is defined as the average execution
time for a task over entire VM types

il (p) = avr; (T‘t/y:,z:;(p*)) _ i . ZT‘t/yjljje(p‘) (3)

J

“

In addition, the critical path on a task is defined as the set of
following tasks, which is composed of the biggest relative load
[19]. Then, we can figure out the critical path load

{ max cpl (p™) +rl(p), ifp"” exist
=<

epl (p) = f (z) ()

otherwise.
(6)

2) [Phase I1] Allocate the Most Cost Efficient Resource With
Properly Assigned Sub-Deadline: We set the initial marking
of a token vector for the second phase as m = [10...0]. Then,
the token moves through the forward matrix along the Petrinet
topology path while allocating the cheapest VM that can guar-
antee the estimated sub-deadline (sd). To achieve successful
scheduling with guarantee of the entire deadline, a properly
assigned sd for each task should be observed. Therefore, we
allocate an sd rationally, based on the remaining time and the
load rate when 7 (M) is the execution timestamp with token
status m

sd (pv) =rl(p) - (D—1(m)). @)

When the leasing cost per unit time for arbitrary VM
type V1; is denoted as Cyr, and there are known esti-
mated times for task execution times on each VM type
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Algorithm 2. Task Division Policy

Input: workflow topology tp, workflow topology with half
division tp', current execution token matrix m,
current execution time T, (m), workflow deadline D,
budget B, token forward matrix F

Output: Decision of division

Copy execution token set m onto SV estimation token set

m, and copy current execution time 7(m) onto temporal

current execution time 7,(m,).

01: For workflow topology {p, tp'}

02: While m, isnotequalto[0 ... 0 1] do

03:  Let P={py,py, ..., Pn} be places which has SV
estimation tokens at current stage i and estimation
token set at stage i as m},

04: For p = each element in P
05: sd(p*) = ri(p) - T.(D — my)
06:

p*' temPOTal_vm =
VT . *
{J’ |r1t/}11|51);(1’ )<sd(p*),min(cw.j.ftvﬁfj(p ))}

07: Let Tr = {t;, ty, .., tx} =" p
; . type(t;)
08: Tee(mf) = 1, (M) + max; (Tt,-.tem;;oraz,vm)
09: End for
10: mitt = F - m! //token forwarding

11: End while

12: IfT,.(m,) — D > 0 then

13: ¢ =a+pL-SV=a+p-(t,(m,)—D)
14: Else

15 o =0

16: End if

. _ type(t;)
17: ¢, =% Cti.temporal_vm X Tt .temporal_vm

18: Pf=B-—c¢c,—

19: End for

20: Return Pf < Pf' //If Pf < Pf' ,return value is true.
Otherwise return value is false

CSV

Fig. 5. Algorithm of a task division policy in workflow scheduler.
T\%[’f(p "), we can allocate the most efficient resource guaran-
teeing the sd for the jth task from leasing VM with the type of
VT{HT\t,‘z{vﬁc(p*><sd(p*),min(chi 'T\t,’;/f;c(p*)) }

If there is no available resource type to guarantee the sd,
this may cause deadline violation for the entire workflow.
Therefore, we apply a task division strategy based on profit
calculation in phase III.

3) [Phase IlI] Task Division With Profit Calculation: As
mentioned before, we should determine when we have to pro-
ceed with division based on processing time and required cost
to avoid over-provisioning and burdensome management cost.

To comparatively evaluate solutions of the constraint prob-
lem only in the objective domain, we consider the service-level
violation penalty on SLA constraint. We define the profit-cost
model to maximize profit while proceeding with task division

Pf=DB—c,— cs. ®)

In the formula above, Pf indicates profit, Bis the budget
supplied by the user, (] is the total cost of leasing VM from

the cloud service providers, ¢, = > ¢, - 7%.Penalty cost cg,,

2
which is caused by service-level violation SV, is represented as
follows:

[a+B-8V, ifSV >0
Cov = { 0, otherwise ©)
ECT —-D, itECT—-D >0
SV = { 0, otherwise. (10)

In (9) and (10), variable SV indicates the degree of SLA vio-
lation. There are many models of violation penalty cost, but in
this paper, we use the linear violation penalty model in (9) [20].
As shown in (10), SV can be described as subtraction deadline
D from the estimated completion time ECT.

By estimating the SLA violation SV over the nondivision
case and the SV’ overdivision case in a deterministic way,
we can compare the profit for making a decision of divi-
sion. We define the SV estimation token M, that is a clone
of the current token status m, to calculate the penalty cost.
Initially, the location of m, is replicated from the current exe-
cution token m. Also, each token saves a temporal execution
timestamp 7+ (m.) , which is replicated from the current execu-
tion time 7 (m). By forwarding the SV estimation token with
the allocation of the temporal VM over the estimated sd, we
can cumulate the 7; (m,) for each transition with the scheme
described in phase II until the token reaches the final desti-
nation. Then, we can get the estimated execution time ECT
from timestamp 7; (1. ) in a heuristic way. With the comparison
of profit between the nondivision case and division case (half
division), we can make a cost-efficient decision. Therefore, we
should calculate profit P for a nondivision case and profit P’ for
a division case based on the knowledge of SV and SV’, which
are, respectively, acquired from SV estimation tokens.

If Pf< Pf’, half division is applied and phase II is
repeated. If a division case does not yet guarantee the dead-
line, division can be carried out recursively until the tasks are
not further divisible (dd equals 1). Otherwise, the biggest VM
is allocated to transition and return to phase II to forward the
token to the next place P**.

V. PERFORMANCE EVALUATION AND DISCUSSION
A. Test Environments for Performance Evaluation

In this section, to evaluate the performance of the pro-
posed resource management scheme and workflow scheduling
scheme which provide efficient resource operation in the SGC,
we implemented the SGC with heterogeneous cloud platforms
as shown in Fig. 6. The SGC is a broker between users and
providers and is able to process enormous scientific applica-
tions efficiently upon heterogeneous cloud resources. When a
user coordinates the procedure of their scientific application as
workflow instance, the user can make contract of workflow exe-
cution with the SGC through a negotiation interface. With the
agreed service level including the deadline constraint and the
cost policy on the contract, the workflow is analyzed in a set of
tasks.

As for the cost-adaptive resource management policy pro-
posed in Section III, the SGC can significantly reduce the
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Fig. 6. Test environments for the proposed science gateway system to evaluate
cost-adaptive VM management schemes, such as the VM Provisioning scheme
and the workflow scheduling scheme with the task division policy.

resource allocation cost without performance degradation in
scientific application processing under various VM billing
policies among the cloud service providers. In addition, by
the scheduling scheme of workflow with task parallelization
proposed in Section IV, the SGC allows us to improve the
processing performance, and also to guarantee both of deadline
assurance and cost minimization.

As described in Table III, we considered specific experi-
ments’ set for the evaluation. We designed the experiment 1
composed of tests 1, 2, and 3, respectively. We adjust various
input parameters including workflow service level (e.g., dead-
line), penalty function parameters, and arbitrary delay factors,
which impose excessive penalty burden for resource manage-
ment. Although the Petrinet-based phased workflow scheduling
scheme works appropriately with the profit function-based
resource allocation, systematic counter-measure to the radical
circumstance is examined for the implementation feasibility.
Also, we designed the experiment 2 with test 4 to compare
the VM allocation cost efficiency between the static RVM man-
agement scheme and dynamic RVM management scheme with
log-based analysis of historical data over distinct workload and
with combination of system operation policies.

1) Workload Parameter, A\:  When the scientific application
is composed of the finite set of tasks ¢; (i € {1,2,...,N}) and
the set of directed edges of the form (¢; t;) defined in definition
1, we assumed that the workload of the scientific applications
is requested to the SGC in Poisson distribution Pois(\) with
certain expectation on the number of events’ occurrence within
a fixed interval, \.

2) Mean of Service Level, p: The input parameter “ser-
vice level” denotes certain requirements given to individual
scientific application, especially deadline. The “service level”
functions as a constraint to scheduling problem and may ask
compensation cost for a contract between the user and the bro-
ker when service-level violation occurs. The service level in
each scientific application is given to distribution of Normal
distribution N (1, 02) with expectation value 11, to reflect vari-
ous service users’ requirement.

3) Penalty Function Parameters, «,: The penalty
function is adjusted for billing compensation cost when
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TABLE IIT
PARAMETER SETS AND PERFORMANCE METRICS FOR THE EXPERIMENTS

Py Experiment 1 Experiment 2
Test 1 Test 2 Test 3 Test 4
Workload
parameter, A | (18,12,...,4)| (18,12,...,4)| (18,12,....4) (36’24)’""7'2
(tasks/hour)
Mean of service
level, p éf,?)oﬁ?,?;) 800 800 700
[deadline, (s)] ’
Penalty function e B=(1,3,5,7), e e
parameters, o, B b= 670 =0 o0 PeSsi=0
Degree of failure, (1.0,1.2,
Y 1.0 1.0 1.4.1.6) 1.0
Amount of
operational RVM 9 0 u 0

Performance metric

VM allocation cost

- 2 i L gi ; .
. CTJ - C’ll'li TT + anm Curvm Ttatal
(relative-cost) -

. L - j
Service level violation Csv = Z , . (eusy (tl=T) +a)

(penalty) cost Il F>0 )

(relative-cost) = (B-th+a)

i1
Jjlts,>0

Operation Cost

(relative-cost) €t = Cp + Csp

Average service level
violation (s)

avr(tl,), where T/,>0

service-level violation occurs for failure to keep contract
condition. In this experiment, we applied linear function as
penalty function defined in (9). When the slope value “8” and
the constant value “«” are excessive compared to VM alloca-
tion cost, the system should aggressively avoid service-level
violation.

4) Degree of System Failure, v: The degree of system fail-
ure vy is designed for generating arbitrary failures on a system
with the generation of arbitrary delay on task execution time by
multiplying v on actual execution time of the task. The failure
is defined as miss-prediction of task execution time with task
profiling data, caused by temporal resource unavailability or
unexpected errors on a system. Because of frequent occurrence
of the failures in distributed computing environment, it should
be appropriately controlled within the scheduling scheme.

5) Amount of Operational RVM: Lastly, the parameter
stands for the number of initially managed RVMs for static
resource pool management scheme literally. However, in case
of dynamic resource managed scheduling, the number of man-
aged RVMs might be controlled with regard to the workload.

To evaluate the cost efficiency on proposing scheme, we
define relative cost that does not have monetary meaning in
reality, but shows relative performance index for comparison
between algorithms or models (11). The unit time cost is
amount of payment on specific time period for imposing price
on service that is agreed on the contract. Then, the definition of
relative cost in the sth contract is described as multiplying unit
time cost on the ith contract ¢’ by unit time consumption on
the 7th contract Tfl and addition of constant value a, where i is
the sequence number of resource contract for the execution of
specific workflow

RC' = ¢ . (11)
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TABLE IV TABLE V
SPECIFIC CONFIGURATIONS ON CLOUD TESTBED ENVIRONMENT MACHINE AND TASK HETEROGENEITY ON TESTBED [24], [25]
OpenStack platform CloudStack platform Machine Task
1 Xeon E5620 2.40 GHz,Core 16,| Intel C 7-3770 CPU 3.40 GH Bt L

H/W Intel Xeon E z,Core 16,| Intel Core i7- . Z,
specification | MEM 16G, HDD 1T, 5 node __|Core 8, MEM 16G, HDD 1T, 4 node] (?PENSSTACK ;‘5‘(3)‘2“2‘-‘2‘53(3); NGS 45510.10043

S/W OS: Ubuntu 14.04, Hypervisor: . - LOUDSTACK 2 .
specification KVM OS: CentOS 6.0, Hypervisor: XEN TOTAL 23949.1633

Srmall Spec: 1 VCPU, 2 GB MEM, 80GB disk
Unit time cost: 2 RC per second
Medium Spec: 2 VCPU, 4 GB MEM, 80GB disk each platform is constructed with nodes of different hardware

Unit time cost: 4 RC per second
VM Spec: 4 VCPU, 8 GB MEM, 80GB disk
types e Unit time cost: 8 RC per second
Al Spec: 4 VCPU, 1 GB MEM, 80GB disk
Unit time cost: 4 RC per second
Spec: 1 VCPU, 8 GB MEM, 80GB disk
Unit time cost: 4 RC per second

m8.small

The contracts can be made from the each resource contract
on the workflow scheduling, also from the imposing penalty
on service-level violation and even from the long-term VM
reservation. Unlike the billing contract with hourly policy on
real cloud service domain, we assign unit time as a second for
the minute examination on the schemes. When the specifica-
tion of resource can be simplified as a tuple [r%,r? ] of ith
resource contract (where 7 is the number of CPU cores and
ri is the numeric value of RAM size in GB) and the weight
vector @ = [w,, wy,] to apply the effectiveness of each element
on tuple is presented, the unit time cost on VM allocation c,,,
is calculated as follows:

i

C’U.’U

= We 1L w7 (12)

In case the weight vector is assigned as [0, 0.5], the unit costs
for each of VM instance types are calculated in Table I'V. Then,
relative cost on VM allocation can be represented in (13), where

7} 18 unit time consumption on ¢th resource contract
Ty (13)

In addition, we define the relative cost on j th service-level
violation as shown in (14) by using the penalty cost model in (9)
where j is the sequence number of the workflow, ¢/, is unit time
cost on service-level violation, 77, is degree of service-level
violation, and « is constant relative cost imposed per violation

-(7’3—7’8]1>—|—a, i —7,>0

otherwise.

. J
C] — C'LLSU

Sv

(14)

3

6) VM Allocation Cost and Penalty Cost: The performance
metrics “VM allocation cost” and “penalty cost” are defined
in relative cost referred to [19]. Therefore, operation cost on a
system can be compared within same performance metric.

7) Average Service-Level Violation: Finally, the perfor-
mance metric “average service-level violation” stands for the
degree of violation only for encountered failures that is unable
to keep the service level.

We built the two cloud platforms with five computing
nodes for the OpenStack and four computing nodes for the
CloudStack, respectively. Due to the heterogeneity in the mul-
tiple cloud services (e.g., Amazon EC2, GoGrid, Windows
Azure), various VM operation policies are implemented, while

and software as illustrated in Fig. 6 and Table IV [21], [22].
Cloud OS systems (i.e., OpenStack and CloudStack) provide
the VM lifecycle management (i.e., create, terminate, pause,
reboot, snapshot) through the network service, volume service,
scheduling service, image service, and virtualization.

Under the experimental environment, we orchestrated high
performance scientific application as NGS with burrows-
wheeler aligner (BWA) software package, as illustrated in
Fig. 3(b). We orchestrated NGS with the BWA as a scientific
workflow. NGS is used to determine the order of the nucleotide
bases in DNA molecules. In addition, it is used to analyze the
resulting sequences to understand biological phenomena and
the relation between genotype and phenotype. In particular,
BWA is a pipelined set of tasks for analyzing the genome by
using the Burrows-Wheeler transform compression techniques.
Similar to a typical scientific application, BWA is also com-
puting/data intensive, time consuming, and divisible to some
degree [14]-[16].

From the application profiling on BWA applications [23],
data collected on each service are expressed as expected execu-
tion time matrix T. The matrix gathers the expected execution
time of each task on heterogeneous VM types for partial tasks
under the testbed environment. The matrix analysis shows
performance diversity over the distributed cloud resources
[24], [25].

In the conventional heterogeneity computing researches
[24], [25], they defined degree of expressing heterogeneity of
machines and tasks to show the effectiveness of schemes in var-
ious environment. The machine heterogeneity is degree of the
machine execution times varying for a given task and can be
calculated as averaging variations of each row on the matrix
T. Similarly, the task heterogeneity is the degree of the task
execution times varying for a given machine and can be cal-
culated as averaging variations of each column on the matrix
T. As shown in Table V, the testbed environment shows high
machine heterogeneity and high task heterogeneity.

B. Experimental Results and Discussion

In the experiments, we evaluate proposing framework in two

criteria.

1) We focused on evaluating increase in task affinity
for efficient cost-performance resource utilization in
heterogeneous cloud while guaranteeing service level rep-
resented in Section IV. The task division policy in Fig. 5
enlarges the solution set of workflow scheduling with task
parallelization with profit model [refer to (8)]. In addi-
tion, the division policy simplifies constraint workflow
scheduling problem into consideration of single metric,
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Fig. 7. Test 1—comparison of service level violation cost w.r.t. different
deadline requirements as 500, 700, 900, and 1100 s over various workload.
(a) Without task division policy. (b) With task division policy.

concluded in finding optimal resource planning to execute
workflow with high cost-performance efficiency upon the
constraint. The evaluations focused on tolerance of the
division policy over tight constraint and system failure.

2) The evaluation focused on the VM allocation cost through

RVM management with VMP management scheme in
Section III (Fig. 6), cost-adaptive resource manager.

In test 1, with different workload of contracts on work-
flow execution in an exponential distribution from 18 to 4
tasks/h, we measured the relative cost of service-level viola-
tion according to the different SLA requirements of schemes
“without division policy” in Fig. 7(a) and “with division pol-
icy” in Fig. 7(b). Because there is no dependency between
the workflow scheduling due to avoidance of competition for
resources through the provision of abundant resources from the
multiple cloud services over worldwide providers, we can obvi-
ously figure out the decline of relative cost over the longer
interarrival time accordingly by considering a small work-
load when experiment times are the same. When we compare
Fig. 7(a) and (b), the scheduling with the division policy shows
a lower cost demand for the same workload, and we found that
there is about an 85% decrement of service-level violation cost
on average. As service-level requirements become tight, penalty
cost cg, Of (9) is increased with SLA Violation SVof (10).
When the SV is higher than the certain value, it makes more
profit to divide and parallelize a task with additional resource,
which means the increase in the VM leasing cost ¢, in order
to reduce SV and cg, and guarantee the SLA requirements.
Because the decrease of cg, is higher than the increase of ¢,

Service level violation cost (relative-cost)
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Fig. 8. Test 2—comparison on service level violation cost w.r.t. different
parameters on the penalty cost function as 8 =1, 3, 5, 7 [refer to (9)].
(a) Without task division policy. (b) With task division policy.

in that case, the scheduling with the division policy can per-
ceive that case with comparison to the cost with division or
no and do the task parallelization adaptively in order to max-
imize the profit of (8) and guarantee the SLA requirements.
However, the scheduling without division policy cannot pro-
vide this mechanism, so the SV in the tight SLA requirements
keeps increasing. As a result, our proposed scheme shows lower
values on the service-level violation cost as shown in Fig. 7.

In test 2, with a different workload of contract on workflow
execution in exponential distribution from 18 to 4 tasks/h, we
measured the relative cost of service-level violation according
to the different parameters of the penalty cost function for both
the schemes “without division policy” in Fig. 8(a) and “with
division policy” in Fig. 8(b). When a user imposes excessive
penalty cost on service-level violation, cg, is rapidly increased
depending on SV according to (9), so even the small increase of
SV makes high cost. In this case, the division policy might try
to avoid the violation by an intensive rate of division to reduce
the ¢, and guarantee the SLA Requirement. Although the addi-
tional VM leasing cost is required in this way, the decrease of
Csy by violating SLA Requirement is higher than the increase
of ¢, by task division; therefore, the scheduling with division
policy decides to divide and parallelize a task to maximize its
profit (8) and guarantee the SLA Requirement. On the other
hand, when an insignificant penalty cost function is imposed,
the division policy might not divide and parallelize the task
with the comparison of penalty cost and the leasing cost in the
profit model described in (8). The reason is that the increase of
Csp Dy violating SLA Requirement is higher than the decrease
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Fig. 9. Test 3—average service level violation w.r.t. degree of failure v as 1,
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Fig. 10. Test 4—relative cost on VM allocation cost with different scheduling
policies (i.e., with/without task division policy, with/without RVM manage-
ment).

of ¢, by task division in this case. The beta value indicates
the imposed relative cost per second for service-level viola-
tion. Unlike the increment of the violation cost in proportion
to beta in Fig. 8(a), the division policy in Fig. 8(b) selects the
best solution of division with the profit-cost model. As the beta
value becomes higher, the certain value of SV which triggers
the division in our proposed policy becomes lower; hence, c,
also becomes lower. Furthermore, in the extreme case that beta
is 7, our proposed policy does not allow SLA Requirement to
violate by radical division because of the excessive penalty cost
as shown in Fig. 8(b). However, the scheduling without division
policy cannot treat it adaptively on the beta value. As a result,
our proposed scheme shows about 50% improvement of cost

efficiency for service-level violation on average compared to
workflow scheduling without division.

In test 3, with different workload of contract on workflow
execution in exponential distribution from 18 to 4 tasks/h, we
measured average service-level violation according to the dif-
ference degree of failure « on each task for both “without task
division policy” in Fig. 9(a) and “with task division policy” in
Fig. 9(b). To figure out the influence of unexpected failures or
delays in distributed cloud computing, we simulated artificial
delay with imposing arbitrary delay on workflow by multiply-
ing degree of failure y on execution time of each task in the
workflow instance. Then, we can figure out that the case with-
out division cannot handle the additional burden from delay
and show result of excessive service-level violation. On the
other hand, the proposed scheme shows its capability to handle
unexpected failures in some degree. Because scheduling with
division policy decides whether the division policy is applied or
not before executing each task on a workflow request to max-
imize its profit (8) and guarantee the SLA requirement, it can
treat the unexpected failures or delays adaptively. We expect
that if there are more divisible tasks in workflow instance,
system will have more capacity to cover failures.

In test 4, with different workload of contract on workflow
execution in exponential distribution from 36 to 7.2 tasks/h, we
measured the VM allocation cost according to different poli-
cies to determine the effect on RVM management over various
policies. From the cost efficiency of an RVM with a long-
term leasing contract, we can operate a cost-adaptive resource
management system with RVM management. However, RVM
cannot be operated in an on-demand manner because it can
waste utilization of resource when it is idle. Obviously, we
can realize how the influence of cost-adaptive resource man-
agement on division policies varies with various interarrival
times. Generally, the resource provisioning policy without divi-
sion policy shows better synergy on the VM allocation cost than
the others. From the detailed analysis of raw data, we found
that the division policy burst the simultaneous VM requests
and run out of the RVM in resource pool because the amount
of operational RVMs determined as the average of arrival
VM demand by resource provisioning policy is usually lower
than the temporary burst demand. Therefore, this phenomenon
induces creating more OVM for the additional VM used by task
division. Eventually, the case with division has a poor perfor-
mance on the VM allocation cost compared to the case without
division which makes the best use of RVM, although the work-
loads are the same in both cases. However, when we consider
the operation cost calculated by the addition of VM allocation
cost and service-level violation cost, the resource provisioning
policy with division policy always show better cost efficiency
than the others. Also, the results of tests 4 and 5 demon-
strate the relationship of the workload and number of leased
RVMs.

Finally, we derived the requirements of the VM provision-
ing scheme as shown in Fig. 6 in terms of computational time
complexity that stands for operational feasibility. We assumed
that historical data are already stored by VM types and are also
sorted in chronological order. When we denote number of VM
types as K, number of historical data on each VM type as N, the
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computational complexity can be derived as at most O (K N 2)
that is acceptable time consuming in implementation domain.
Moreover, we explore the computation time complexity on the
task division policy in workflow scheduling that is depicted in
Fig. 5. The task division policy is comparison algorithm of the
operational profit between task division case and nondivision
case. The policy traverses a DAGs with the different topologies
based on control logic represented in the Petrinet model. In our
scheme, the traversal technique of the Petrinet topology can be
identical to Breadth-First Search (BFS) algorithm when we cut
out the edges that make visit same vertex twice. The compu-
tational time complexity of BFS algorithm is already derived
as O (|V| + |E|) where the variable |V'| denotes the number of
vertex and the variable | E| denotes the number of edge, respec-
tively [26]. Therefore, we can conclude that the task division
policy is also a practical solution.

VI. CONCLUSION

In this paper, to address the difficulties on the highly scalable
and flexible system for processing various scientific applica-
tions, we designed the SGC platform that is able to process
multiple scientific applications concurrently upon heteroge-
neous cloud environment while considering user-specified con-
straints. Furthermore, we adjust cloud broker model to the SGC,
which mediate VM among multiple cloud service providers and
users to provide better resource availability. In the cost-adaptive
resource management scheme, we proposed a VM provision-
ing scheme that determines the amount of operational RVMs
with respect to the distribution of arrival. In the experiments,
the results showed that the proposed scheme can reduce the
VM allocation cost by about 20% compared to the system with-
out the scheme. However, it can be rather inefficient for wrong
decision of overprovisioning in case of static resource pool
management. Especially, the burst-typed pattern on the request
showed cost performance degradation according to run out of
the resource pool. Also, we proposed a workflow scheduling
scheme with the division policy. To overcome the hardness on
finding a resource schedule in heterogeneous cloud environ-
ment, we integrated multiple objectives into one performance
metric. Our experiments showed that the workflow scheduling
scheme with the division policy decreases the VM allocation
cost while guaranteeing the service level required by the user.
Even though there are unexpected failures caused by delay with
resource unavailability, division policy operated with profit
function and Petrinet control make the SGC tolerable. We
expect that the proposal SGC might provide cloud ubiqui-
tous processing by interworking between the cloud data center
and mobile devices via simplified interface. The cloud users
might be able to submit, monitor, and manage their scientific
application processing on VM instance anytime, anywhere.
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