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Abstract—Portable smart devices have paved the way for ac-
cessing and capturing different types of multimedia contents with
human interactions, leading to the emergence of cyber-physical
systems (CPSs). Although the massive data collected from these
physical terminals can contribute to the improvement of their
quality of lives by building smart communities, CPSs intensify the
information overload problem. Therefore, plenty of research ef-
forts have been paid to develop multimedia recommender systems.
However, most existing research activities neglect its time-varying
features due to system dynamics, i.e., not only the amount of
input data constantly grows, but also the change of user behaviors
and system operating environment. In order to sustain the high
accuracy of recommendations, the system in a CPS has to be
updated regularly. However, the more often the update proceeds,
the more the cost of other computational resources. To this end,
in this paper, we propose an adaptive recommender system by
using feedback control frameworks in CPSs. The proposed solu-
tion continuously monitors its changes and estimates the loss of
performance (in terms of accuracy) to overcome the data aging
problem and justify if the current "revisiting ratio" between the
new and old items can still accurately reflect current user behavior.
Theoretical analysis and extensive results by using a real data set
in a cloud setting are supplemented to show the advantages of the
proposed system.

Index Terms—Cyber-physical systems (CPSs), feedback control
framework, recommender systems.

I. INTRODUCTION

A FTER the occurrence and development of the Internet,
people’s understanding about information has been enor-

mously changed. In the past, the transmission of information
often took a long time, and thus, the lack of information has
once become a strong obstacle for communications. However,
the availability of data centers and wide-area wireless networks
have paved the way for accessing and capturing different types
of multimedia contents (i.e., text, images, audios, and videos)
[1]. As a result, people can acquire the latest information
(e.g., news, friend’s condition, and new movies) anywhere and
anytime with portable smart devices like the smartphone and
iPad [2]. This intimate coupling between the cyber and physical
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spaces has led to the emergence of cyber-physical systems
(CPSs) [3], as a new generation of systems with computa-
tional and physical capabilities that can interact with humans
through many new modalities [4]. Typical examples of CPSs are
cyber-physical social networks (that build social networks with
data collected sensors) and intelligent transportation systems
to gather and process multimedia data transmitted from the
vehicles.

Nevertheless, these physical things, i.e., smart devices,
are usually associated with limited computational processing
speed, memory size, etc., and in a CPS application, information
overload has become a serious problem, particularly for these
smart mobile devices that cannot store a lot of multimedia
contents for users. The power of recommending interesting
information to specific users has emerged as a bottleneck on the
path to intelligent information processing in CPSs. Therefore,
designing analytical and efficient recommendation models to
address the information overload problem is very important [3].
In order to address this issue, recommender systems have been
proposed as an essential tool for users to navigate the plethora
of contents according to their own interests. Examples include
the user interfaces provided by Amazon [5], Netflix [6], and
Last.fm [7]. For Amazon, a digital enthusiast may find that the
login page is filled with all sorts of recommended equipment
which he/she may like. Also, a young mother will easily find
a satisfying cookbook with the help of the “Guess you like”
section. This is because Amazon has made full use of the
user’s purchase history to build a personalized recommendation
model and then applies it to predict the user’s behavior. This
approach not only brings high profits but also significantly
eases the shopping experience for customers. After the first
inception of the recommender system, a number of engines
(i.e., item-based recommendation, user-based recommendation,
collaborative filtering (CF) algorithm [8], and singular value
decomposition (SVD) algorithm) have blossomed.

However, there are still fundamental issues that need to be
considered from theoretical analysis perspectives for recom-
mender systems in CPSs. First, although a lot of schemes
have been raised to improve the quality of results, they seldom
consider the system loss (e.g., resource and accuracy) during
the recommendation process, particularly in a big data environ-
ment. During the process of system operations, data accumulate
continuously, which requires more and more time and com-
puting resources for data transmission and model training. In
the meantime, people often change their likes and dislikes as
they are affected by seasonal trends or new things. Therefore,
obsolete training sets also need to be cleaned up when they
cannot correctly reflect a user’s current behavior. In order to
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sweep useless data in time, some systems set an update cycle
and make regular updates. However, the change of system is not
following a linear growth, and thus, a more practical solution
should be proposed, instead of fixed update frequency. Second,
existing recommender systems tend not to recommend “old”
items that users have viewed before. They believe that users will
not get interested to items that they have seen before. It may
be true in some scenario, such as an online bookstore where
customers barely choose books they already have. However, in
some other situations like online video viewing, it is very likely
that users will repeatedly watch videos they liked, particularly
TV series. Therefore, it is necessary to consider the user dif-
ferences and make recommendations according to their distinct
characteristics.

Towards this end, in this paper, we aim to design an ef-
ficient feedback control framework to balance the stability
and accuracy of the recommender system for CPS applica-
tions like smart communities while minimizing the cost of
resources. Two feedback controllers (i.e., training set controller
and recommendation list controller) are introduced to monitor
the system performance and dynamically decide whether the
benefit of performing an update exceeds the cost of resources.
A novel concept of “revisiting ratio” is proposed to represent
the percentage of new and old items, and a preference model is
designed to monitor the current “revisiting ratio” of user profile
and adjust the “revisiting ratio” of recommendation list when
the change of user behavior is detected.

The contribution of this paper is fourfold.

1) We study the patterns of user behavior for a large-scale
real data set, including their periodically viewing trend,
preference on popular video channels, geographic lo-
cality characteristics, invariance, and dynamics.

2) We introduce a personalized recommender system with
both historical and new items. A new concept of
“revisiting ratio” is introduced to represent the percent-
age of new recommended items and old ones. New
recommendations are made from the traditional recom-
mender system, while old ones are produced from the
newly proposed “preference model.”

3) We design a training set controller to monitor the status
of the system. The controller decides when and how to
make an update to the training set, based on the Internet
congestion control theory. We also propose the “slow
recovery” and “fast adjustment” approaches to make
the system accuracy recover fast to the steady state.

4) We propose a recommendation list controller to cap-
ture the change of user behaviors. By monitoring the
trend of “revisiting ratio,” this controller automatically
adjusts the components of the recommendation list to
fast fit on system dynamics. Based on the proportional-
integral-derivative (PID) control theory, we propose a
prediction model and use the ordinary least squares
(OLS) regression method to perform the update.

The rest of this paper is organized as follows. In Section II,
we highlight related research activities. Section IV establishes
a formal model of our system. Section III introduces our

observations on user behaviors from a real online video watch-
ing data set. Section V describes the designs of two con-
trol loops and the architecture of the entire feedback control
framework. Extensive experimental results are presented in
Section VI, followed by the conclusions and future work given
in Section VII.

II. RELATED WORK

CPSs have become a very interesting research area [9]. An
increased dependence on CPSs led to the collection of a vast
amount of multimedia data, which brings the information over-
load problem [10]. Therefore, plenty of research efforts have
been paid recently on how to develop multimedia recommender
system in CPSs. In [11], Yu et al. make use of location and tra-
jectory data from GPS-enabled mobile devices to recommend
geographically related friends in cyber-physical social network.
Gao et al. build a cross-domain recommendation model for
CPSs with an eye to tackle the data sparsity problem [3].

Since the quality of recommendations largely determines the
merits of the system, recommendation algorithms become the
key problem for both academics and industrial circles [12].
The CF-based recommendation is the earliest and is one of
the most successful recommendation technologies, based on
the assumption that users will not change their preferences
over time. Generally, it first measures a user’s distance by
calculating the similarity between their preferences. Then, the
K-nearest users are chosen to be neighbors of the target user
[13]. Finally, the system predicts how much the target user is
interested in a particular article according to his/her neighbors’
attitudes. As pure CF recommendation process does not require
any information about items, it can handle the recommended
objects including unstructured complex objects such as music
and movies. However, this approach is based on the historical
data, i.e., it cannot get a good result to new users and items
[14]. In addition, it also requires a lot of computation resources
since user preferences are often stored in a sparse matrix [15].
Content-based recommendation [16] was originated in the field
of information retrieval and information filtering, which makes
use of the content information of the item. Different from
CF, it does not require the user’s evaluation of the item but
requires the user’s interests and preferences extracted from
the description about the content by using machine learning
techniques. Focusing on the features of an item, this approach
can achieve high accuracy without large-scale users, and it
overcomes the cold start problem. However, it requires good
structural characteristics during the feature extraction, and thus,
these features are often very difficult to obtain. Aside from
these two algorithms, there is also a method called knowledge-
based recommendation. Similar to the reasoning technology, it
makes use of additional casual knowledge and requires strong
interactions with users [17], [18].

Apart from the key recommendation algorithms, system di-
versity and dynamics are also the key features of recommender
systems. Therefore, there are also a lot of approaches proposed
to follow the trends of users and the change of item [19]. In
[20], Jambor et al. summarize the reasons of temporal dynam-
ics as the change of the user’s preference and system itself.
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Lathia et al. perform a user survey [21] to show that temporal
diversity is an important facet of recommender systems. Burke
[22] proposes a temporal leave-one-out approach to provide
insight into the user-specific and system-level evolution of the
recommendation behavior. Furthermore, Bakir and Albayrak in
[23] notice that users’ tastes also have diversity. To determine
user preferences, they examine the dates when users ranked
products and use this information to provide customized sug-
gestions. In addition, The first dynamics web recommender
system is proposed by Taghipour et al. in [24]. He also modeled
the recommendation process as a Q-learning problem.

Unlike these approaches where statistical methods play an
important role, the use of control theory makes update as a
response to dynamics. Classical control theory was proposed as
an interdisciplinary branch of engineering and mathematics and
was designed to deal with the behavior of dynamical systems.
In [25], Ogata provides a gradual development of this theory by
investigating the analysis and design of discrete-time control
systems. He discusses in detail the theoretical background and
shows how to use MATLAB in system design. Parekh et al.
[26] address that adding a controller that manipulates the target
system’s tuning parameters can achieve service level objectives
for a software system, which is then applied in the email server
to maintain a reference queue length. Meng et al.[27] evalu-
ates a control theory-based rating recommendation updating
algorithm in order to exclude unfair ratings from reputation
systems. Bohang et al. [28] applies the control theory into the
urban traffic adaptive control problem and design a closed-loop
traffic control scheme. Control theory is also applied in supply-
chain-management system, Agaran et al. model a supply chain
system through state-space techniques and then design a linear-
quadratic-Gaussian controller [29].

In summary, all existing research activities cannot fully
balance the workload of computing and the accuracy of rec-
ommender systems when the multimedia data are accumulated
from CPSs. Therefore, in this paper, we aim to propose a
personalized recommender system for cloud-integrated CPSs.

III. OBSERVATIONS OF USER BEHAVIORS FROM

A REAL ONLINE VIDEO VIEWING DATA SET

Specifically, in this paper, we consider a CPS application as
video watching in smart communities, which supports a number
of reliable recommendation services to improve the quality of
lives. To illustrate this scenario, we use a real data set acquired
from a large online video media platform, and we start from
discussing the observed user behaviors in video watching to
reveal the characteristics behind that.

A. Data Set Descriptions

Our data set is made up of 14 watching logs from a famous
online video website in China that contains 1 000 000 users and
2000 videos in total. An average of 1 500 000 records per file
is observed, and its size is around 8 GB each. Each record line
has 48 attributes, including user identifier (ID), item ID, watch-
ing time, IP address, user location, channel information, etc.,
describing different aspects of the user’s watching behavior.

Fig. 1. Trend of viewing workload of each day by three different channels.

Fig. 2. Percentage of top 20 channels among all channels that three different
users have watched on each day.

B. Periodic Viewing Trend

Figs. 1 shows the overall trend of viewing workload on
each day for three different channels. It is obvious that chan-
nel 1 follows a clear periodic weekday/weekend trend over
a week, and the number of viewings on weekends (days 3
and 4 and 10 and 11) is remarkably higher than that of work-
days. Compared to channel 1, channel 3 attracts more viewings
during the weekdays, but less on weekends. As for channel 2, its
characteristics of viewing workloads on Saturday and Sunday
are almost identical as that of the weekdays. This is highly
likely due to the type of these three channels. Channel 1 is a TV
series channel which is often updated on weekends, and thus,
followers watch it a lot after it is updated (i.e., on weekends).
On the contrary, channel 2 is a normal daily news channel which
broadcasts every day. Since people may only focus on the news
of the day, its viewing workload tends to be stable for the whole
week. Channel 3 is a movie channel that contains all released
films, and thus, users prefer to watch it when they have time
at any time in a week. Therefore, its viewing workload is the
highest, and not much difference can be observed on Saturdays
and Sundays.



LIU et al.: PERSONALIZED MULTIMEDIA RECOMMENDATIONS FOR CLOUD-INTEGRATED CPSS 109

Fig. 3. Daily average of viewing times of each province in China. Darker area
represents the larger geographical workload the users generate.

C. Workload of Top Videos

Since the top ranked videos usually attract a great deal
of viewings and consume much system resource, we se-
lect three different users and analyze the percentage of top
20 channels over all channels that they have watched on each
day. Fig. 2 shows the diversity of a user’s preference to these
top 20 channels. We observe that, first, top channels occupy
much in some user’s profile (e.g., user 2). It is obvious that
more than 30% of channels he/she watched on each day is
top channels, and this ratio goes even up to 78% at day 9. On
the contrary, user 1 only watches less than 20% of top videos,
which indicates that he/she does not like to follow the current
trend. Second, different users have different reactions upon the
day’s top channels. For example, user 2 likes the top channels
of day 9 a lot, but the other two users have no interests on
them. However, this situation is different at day 4 and day 12. In
other words, not all these users have the same preferences over
time. Therefore, a good recommender system design should
fully consider this ratio (between the viewed top channels and
all channels) as it can effectively reflect a user’s preferences
over time.

D. Geographical Locality

Fig. 3 describes the daily average of viewing times of each
province in China. Darker area represents the larger geographic
workload that users generate. We can easily find out that most
users come from Beijing, Hebei, Shandong, and Guangdong
provinces. In addition, users in different areas have different
viewing behaviors.

E. Variance and Dynamics of User Preferences

We consider that the watching behavior of a user has two
main characteristics: dynamic and invariant. That is, in a short
period of time, user behaviors and interests are likely to be
dynamic and will change. However, in the long run, a user’s
preference is invariant, particularly when they are following
TV series. To clarify this observation, Fig. 4 illustrates the

Fig. 4. Cumulative fraction of viewing times for different users.

cumulative fraction of viewing times for three different users.
We observe that the curves can be divided into two segments:
low viewing part (0–20 times) occupying 75% of data and
high viewing part (more than 20 times) occupying 20% of
data, i.e., users’ preferences can be very dynamic. Nevertheless,
when we focus on the high viewing part, it is obvious that their
behaviors are invariant since all three users have fixed channels
to watch, particularly for user 3 who has watched one channel
for 120 times.

IV. SYSTEM MODEL

In this section, we first present a formal model for describing
the system architecture and then introduce the system flow.

A. Assumptions and Notations

In a smart community application of CPSs, we consider
that a recommender system is embedded in an online video
application, where users holding their smart devices actively
browse our recommendations and watch those they are inter-
ested in. Since the procedure of our proposed recommender
system to make recommendations is identical for all users
(however, the results are personalized), for simplicity reasons,
we drop the user index for the following discussions. The
website/application will store daily new log files l(t) = {li(t)},
where li(t) means the ith log at day t, into a persistent database
at the end of day. We also define a training set, denoted as
Tm(t) = {l(i)|i ∈ [m, t]}, where m is the starting point of the
current training set and t denotes the current day. It can be
regarded as a sliding window in time, within which all data
are used to make recommendations. The final recommenda-
tions, denoted as Rf (t), consist of the new recommendations
Rn(t) and old ones Ro(t), or Rf (t) = Rn(t)

⋃
Ro(t). Rn(t)

is produced by our recommendation module (see Section V-E),
while Ro(t) is the output from our proposed preference model
(see Section V-C). Each day, the training set controller and
recommendation list controller are running at background and
monitoring the system performance. They take error signals
as input, then use the control function to decide how much



110 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 1, MARCH 2017

TABLE I
LIST OF NOTATIONS AND DESCRIPTIONS

adjustment should be made to their controlled modules, and
then retrain the system model at background when necessary.
For the training set controller, it continuously monitors the
performance variable κ(t) (including recall/precision value),
compares with the predetermined reference value k0, and com-
putes the error signal ε(t). Then, it decides whether m should
be updated and how should it be adjusted (i.e., to expand or
reduce). For the recommendation list controller, it first com-
pares the “revisiting ratio” of recommendation list λ(t) and the
“revisiting ratio” of user profile ϕ(t) (see Section V-E) and then
generates λ(t+ 1) from error signal ς(t). Under the self-control
of these two controllers, our solution can provide high-accuracy
recommendations with low cost every time users log in the
website/application. Table I shows the list of notations used in
this paper.

B. System Flow

The system flow is shown in Fig. 5 and can be summarized
as follows.

Step-1: We take l(t) as input and perform data pre-
processing, including data cleaning (to eliminate noises and
then extract useful fields by data reduction), and training data
set adjustment, as Tm(t) = l(t)

⋃
Tm(t− 1).

Step-2: The recommender system module produces Rn(t)
and Ro(t) by using the proposed preference model. Final
recommendations become Rf (t) = Rn(t)

⋃
Ro(t).

Step-3: When the proposed two controllers receive a user’s
feedback u(t+ 1) at the next day t+ 1, they starts to evaluate
the current system performance. For the training set controller,
it calculates κ(t) and ε(t), takes ε(t) as input, and then applies
the proposed adjusting strategy to adjust m. For the recom-
mendation list controller, it evaluates system performance by
comparing λ(t) and ϕ(t). The comparison result ς(t) is then

Fig. 5. Closed-loop control of our proposed recommender system, including
a training set controller and a recommendation list controller.

sent to generate λ(t+ 1) by using the proposed prediction
model (see Section V-E).

Step-4: The aforementioned process will be repeated
each day.

V. PROPOSED FEEDBACK CONTROL-BASED

RECOMMENDER SYSTEM FOR CPSS

In this section, we introduce how we design a novel feed-
back control-based recommender system. We first explain the
consumption of our implicit rating; then, we introduce an
open source recommender system (denoted as recommendation
module) for new items. After that, the mechanism for recom-
mending old items by using the proposed preference model will
be described. Finally, we introduce two feedback controllers
and explain their control strategies.

A. Implicit Rating

The use of explicit rating ranges from grading students’
homework to assessing consumer goods. A central feature of
explicit ratings is that the evaluator has to examine the item and
assign a value to it based on the rating scale [30]. However,
this value is usually very hard to obtain, and manual annotation
often imposes a cognitive cost. These problems have led to
speculations that implicit ratings may be a solution [31].

Implicit ratings include measures of interests such as whether
the user read an article or not, and if so, how much time
the user has spent on reading it. There are several types of
implicit data that can, in principle, be captured and studied.
The authors in [32] use three types of implicit data: read/
ignored, saved/deleted, and replied/not replied. In [33], Morita
and Shinoda use reading durations in place of the read/ignore
attribute.
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Since our data set lacks of explicit ratings but has some
other related information that can be used to indicate a user’s
preferences, we decide to pick some representative ones and
integrate them to make implicit ratings by using the ordered
weighted averaging (OWA) [34] operator. We first explain these
four parameters that we consider, and then, we describe how we
adopt OWA to make the ratings.

1) Fraction of Clicks on a Channel: The first factor is the
percentage of clicks on a particular channel i among the overall
number of clicks for all channels, as a normalized fraction. Let
the number of clicks on channel i in areaA be denoted as ζi(A).
Then, A = all indicates the entire area that the data set covers,
and i = top indicates the number of clicks on top channels.
We have

Ci =
ζi(all)∑
i ζi(all)

. (1)

The higher this value is, the more the user prefers this channel.
2) Geographic Locality Index for a Channel: As shown in

Fig. 3, different areas have geographic diversity, but users in
the same province may share the same preferences. Thus, we
consider the popularity of clicking number in an area p among
the entire number of clicks across all areas for a particular
channel i as

Gi =
ζi(p)

ζi(all)
. (2)

For instance, if a user u locates in Beijing, then his/her ge-
ographic preference to channel i can be calculated by Gi =
ζi(Beijing)/ζi(all).

3) Percentage of Top Channels: As mentioned earlier, users
have different preferences to top ranked channels. In other
words, considering the percentage of top channels in a user
profile can be very helpful to predict a user’s viewing behavior.
Therefore, we use Ti to denote the percentage of the clicking
number for channel i among all clicks of top channels as

Ti =
ζi(all)
ζtop(all)

. (3)

4) User Tolerance on a Channel: Generally speaking, when
a user gets bored with the content of the current video, he/she
tends to drag the progress bar and make it fast forward.
Therefore, the more drags a user has performed, the less the
preference that he/she may have to this channel. To normalize
this parameter to between 0 and 1, we adopt the reciprocal form
of this value as the user tolerance on channel i as

Di =
1

℘i
(4)

where ℘i denotes the dragging times of the channel i, which
can be extracted from our data set.

5) OWA Operator: The OWA operator is one of the ad-
vanced fusion operators that maps a vector (size n) of different
values to a single fused value by using a normalized weight
vector [35]. This fusion operator actually has the capability

of spanning the whole averaging operator domains [36]. Here,
the aforementioned four considered parameters (i.e., fraction
of clicks on a channel, geographic locality, percentage of top
ranked channels, and user tolerance on a channel) are denoted
as Ci, Gi, Ti, Di. Assume that function F (i) denotes the im-
plicit rating to channel i, with weighting vector w, where w =
{w1, w2, w3, w4} and

∑n
j=1 wj = 1. We have

F (i) =

n∑

j=1

wjbj (5)

where bj equals to the jth biggest element in the bag <
Ci, Gi, Ti, Di >. The bigger the value, the more the users may
like this item from this perspective. We therefore order these
four parameters in the descending order and use the exponential
OWA operator to find out the weights of each vector as w1 =
η, w2 = η(1 − η), w3 = η(1− η)2, and w4 = (1− η)3, where
parameter η belongs to the unit interval 0 ≤ η ≤ 1.

B. Open Source Recommender System by Using Myrrix

In our design, we leverage an open source recommender
system, called “Myrrix” [37], to make new recommendations.
It is powered by Apache Mahout and proposed to build a
temporal high-scalability recommendation engine in big data
environment. There are two layers in this system. By using the
machine learning model updated by the computation layer, the
serving layer can answer requests, records input, and provides
recommendations in real time. Therefore, we believe that the
fundamentals of Myrrix serve as an ideal recommender system
due to its simplicity, scalability, and universality.

C. Preference Model

For a certain item i, we consider that there are three aspects
that are key to decide a particular user’s preference on i. First,
the more frequent the user views an item, the more he/she may
like it. Thus, historical viewing times 
(t) is of our concern to
the system design. Second, we consider this user’s last viewing
of the item j(t) = t− n(t), where n(t) is the day of the last
viewing record. If i has not been watched for a relatively long
period of time, one may conclude that the user highly likely has
already lost interests of it. Finally, we introduce a new metric
called “loyalty value,” denoted as Ψ(t), to uniquely represent
the cyclical viewing behavior of a user. That is, if an item has
been viewed every Saturday, it is more likely to be viewed
again next Saturday. This always happens for TV series that has
predefined showing time. The loyalty value can be computed
by two variables, the number of intervals ε(t) and loyalty
times �(t), as

Ψ(t) =
�(t)

ε(t)
. (6)

An example to calculate the loyalty value is shown in Fig. 6.
First, we pick the days when i has been watched by u. Second,
we number the intervals of neighboring two days and mark the
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Fig. 6. Example to calculate loyalty value. In this scenario, ten intervals are
observed in total, and the user is not “loyal” in the third and eighth days, marked
by a red cross. Therefore, �(t) = 8.

ones lower than the loyalty cycle (i.e., 7 days) as �(t). Third,
we sum up the overall number of intervals as ε(t). Finally, we
calculate the loyalty value as shown in (6). As shown in the
figure, we randomly select a video watching log of a user and
arbitrarily set the loyalty cycle to five days. It is clear that there
are ε(t) = 10 and �(t) = 8 in this example. Therefore, the
loyalty value of this user to this particular video is 0.8, which
shows a high degree of user loyalty to this item.

Then, to consider the historical viewing times 
(t), the du-
ration from used training set j(t), and loyalty value Ψ(t), we
compute the degree of user preference Θ(t) to an item as

Θ(t) = a× Ψ(t) + b× 
(t) + c× j(t) + d (7)

where a, b, c, d are four parameters derived by logistic re-
gression. The regression coefficients are estimated by using
maximum likelihood estimation. An iterative process is used
to find a closed-form expression for the coefficient values that
maximize the likelihood function. This process begins with a
tentative solution, revises it slightly, and repeats this revision
until an improvement is minimum. At this point, the process is
said to have converged, and the parameters are finally set.

D. Training Set Controller

In this closed-loop controller, we focus on the adjustment
of the size of the training set by investigating its impact on
the system accuracy. When new users join the system or new
items are added to the website as just released, the overall
volume of data increases over time. Meanwhile, existing users
also tend to change their interests, which further complicates
the scenario. To this end, we explicitly consider the data aging
and data deficient problems that may result in inaccurate rec-
ommendations. The former happens when we build the training
set with outdated data. Since these data cannot reflect a user’s
current preference anymore, our recommendations can be quite
inaccurate. The latter occurs when the current data set does not
contain enough user information to identify the user pattern.
In addition, training a recommendation model is very time
consuming and thus cannot be easily repeated [38].

To solve the aforementioned problems, we propose a train-
ing set controller. In its control loop, we use the achieved
“precision” κ(t) as a metric to evaluate the system perfor
mance. We also set a reference value, denoted as κ0, to rep-
resent our expected system performance. By comparing these
two values, an error signal ε(t) is generated to decide whether
to perform an update on the current training set. If so, we use
the adjustment model to update m iteratively, until the accu-
racy of recommendations achieves the optimum. The detailed
procedure is described as follows.

Step 1: System performance evaluation: We take l(t+ 1) as
a user’s feedback to our recommendations and compute κ(t) as

κ(t) =
|Rf (t) ∩ l(t+ 1)|

|Rf (t)|
(8)

where |Rf (t)| denotes the size of Rf (t).
Step 2: Calculate the error signal as: ε(t) = κ0 − κ(t).
Step 3: Generate the control signal by the proposed

adjustment model: Our proposed adjustment model aims
to use ε(t) to generate control signal μ(t). Our ad-
justment model is derived from the well-known network
congestion control theory in transmission control protocol
(TCP)/IP, where “slow start” and “congestion avoidance”
are used.

Of the first two phrases of TCP/IP congestion avoidance
algorithms, the former applies to the start stage where too
much data packets tend to be sent into the network space. In
order to avoid congestion, we ask the host to stop and wait
for a response every time after sending a packet. If a reply is
successfully received, we increase the maximum segment size
by one, which makes the value of congestion window (Cwnd)
increase exponentially with the round-trip time to maximize the
use of network bandwidth resources. When congestion window
(Cwnd) exceeds the “slow start threshold” (SSthresh) that we
set, the “slow start” process is switched to the “congestion
avoidance” phrase where Cwnd changes to linearly increase.
With the switch of these two phrases, we can successfully
avoid excessive growth of network and maximize the network
throughput in the same time [39].

Slightly different from these, we propose “slow recovery”
and “fast adjustment” approaches to optimally adjust m to the
best scope. When ε(t) > κ0, we start our iterative updating
process until the recommendations made by the current training
set can achieve the expected κ0. During this process, recom-
mender systems will serve as a tool to inspect the effect of the
update. Similar to “slow start threshold” (SSthresh) in TCP,
we introduce a novel concept of “slow recovery threshold,”
denoted as SRthresh, to represent the permitted number of
times for adjustment. That is, if the system performance has
not improved after we update the system for SRthresh times, it
switches from “slow recovery” to “fast adjustment” phase. In
other words, for the former, we linearly increase or delete m;
for the latter, we exponentially adjust m.

Algorithm 1 shows the pseudocode of our proposed ad-
justment model. At current day t, given system performance
κ(t) and by using current training set Tm(t) and reference
performance κ0, we use a user’s feedback u(t+ 1) to perform
the adjustment.
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Algorithm 1 Slow Recovery and Fast Adjustment

Require: SRthresh
1: ε(t) = κ0 − κ(t);
2: i = 1;
3: if ε(t) > ethr then
4: while ε(t) > ethr do
5: if i < SRthresh then
6: m̂ ← m± 1;
7: else
8: m̂ ← m× 2±(i−SRthresh)

9: end if
10: Make recommendations based on T m̂(t).
11: Calculate error signal ε1(t) and ε2(t).
12: if ε1(t) < ethr or ε2(t) < ethr then
13: return m̂;
14: end if
15: i ← i+ 1;
16: Choose m̂ with min(ε1(t), ε2(t));
17: end while
18: else
19: return No adjustment should be performed.
20: end if

E. Recommendation List Controller

As mentioned earlier, the ratio of new and old items can be
quite different for each user and can largely reflect a user’s
viewing preferences/behavior. Therefore, it is important to
observe the trend of this parameter in a user profile before
making recommendations, and adjust the composition of the
final recommendation list according to this value. Here, we call
it as the “revisiting ratio,” denoted as λ(t). Specifically, new
items indicate those items that a user has viewed before, while
old ones are the others. The value is calculated by the ratio of
new and old items. λ(t) ∈ (0, 1) indicates that a particular user
prefers old items, while λ(t) > 1 indicates that he/she prefers
new ones more. However, user behaviors are dynamic, which
makes it very challenging to predict exactly what they will
watch next, and the only possible solution is from long-term
observations. Here, we propose another feedback control loop,
the recommendation list controller, to monitor the dynamics of
user preference and balance the number of new and old items
in the final recommendation list.

Similar to the training set controller, this controller also
consists of an evaluation metric of system performance, an error
signal, a control function, and a control signal. Every time the
system receives a user feedback, it calculates the “revisiting
ratio” λ(t+ 1) and compares it with λ(t) to evaluate the current
system performance. Without loss of generality, the lower value
of this error signal indicates better system performance. After,
we input the error signal into a proposed prediction model
(the control function) to produce λ(t+ 1).

The PID controller is a time-dependent method, to consider
the system performance within a period rather than the last
result. Its basic idea is to use system error and its accumulation
in the time domain to make the control signal. Since accurate
prediction on user behaviors in our system also needs long-term

observations, it is necessary to consider user profiles within a
period of time when we predict λ(t+ 1). Thus, we design a
prediction method based on the PID control theory. Formally,
we have the prediction function as

λ(t+ 1)=P × ς(t) + I ×
t∑

i=0

ς(i)Δ(i)+D × ς(t)− ς(t− 1)

(9)

where P , I , D are three parameters in this model, representing
the proportional gain, the integral gain, and the derivative gain.
Similar to the training set controller, we set a limit of the error
signal. Every time ς(t) exceeds the threshold, denoted as ς0, we
believe that a user’s preference has changed, and thus, an update
to the current prediction model should be performed. Therefore,
we use OLS to recalculate the parameters in this model (i.e., P ,
I , D) based on the latest user profiles.

In statistics, OLS is a method for estimating the unknown
parameters in a linear regression model. This method minimizes
the sum of squared vertical distances between the observed
responses in the data set, and the responses predicted by the
linear approximation. This technique can be applied to single
or multiple explanatory variables and also categorical variables
that have been appropriately coded. The basic form of the OLS
regression model is

Ŷ = β̂0 + β̂1X1 + β̂2X2 + · · ·+ β̂kXk (10)

where Ŷ is the response variable, k is the number of prediction
variables, Xk is the continuous explanatory variable, and β̂k is
the regression coefficient of Xk. Our goal is to obtain a set of
Xk with minimum Y − Ŷ (Y that represents the real value of
the response variable or minimize the sum of squared residuals.
We first give these parameters tentative values, revise them
slightly to see if it can be improved, and finally repeat this
revision until the error is minimum.

The detailed procedure of our recommendation list controller
is described as follows.

Step 1: System performance evaluation: We take ϕ(t+ 1)
as the latest user preference, to evaluate the current system
performance. Every time we receive it, we compare it with λ(t)
and calculate the error signal ς(t) as

ς(t) =
ϕ(t+ 1)

ϕ(t+ 1) + 1
− λ(t)

λ(t) + 1
. (11)

Step 2: Compare the error signal with the reference value: If
ς(t) < ς0, the current λ(t) can still reflect a user’s preference,
and no adjustment is needed; go to Step 4. Otherwise, we
consider that this user’s behavior has largely changed, and thus,
an update to the model should be performed.

Step 3: Update the prediction model: Three parameters are
considered in this model, namely, P , I and D, representing
the proportional gain, the integral gain, and the derivative gain,
respectively. We adopt the OLS regression method to estimate
the aforementioned three parameters. During this process, the
latest user profile (i.e., data from the last update until now) is
accumulated to be the training set of regression.

Step 4: Generate a new control signal: We adopt the pro-
posed prediction model to generate the control signal λ(t + 1).
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TABLE II
PARAMETER SETTINGS USED IN EXPERIMENTS

VI. PERFORMANCE EVALUATION

In this section, we extensively evaluate its correctness and
effectiveness on a real data set. We first introduce our exper-
imental environment and then show the results. Since there is
no direct information showing a user’s interests to channels
(e.g., through user ratings) in our data set, without loss of
generality, we use the number of viewing times to indicate
his/her preference. That is, the higher the frequency that a user
clicks an item, the more he/her likes it. Based on this, open
source project Myrrix [37] is selected to build explicit ratings
of user and items to recommend the new items.

A. Simulation Environment

We use Apache Hadoop, an open-source project to develop
the reliable, scalable, and distributed computing platform in the
cloud, as the simulation environment. Considering the scale
of our used data set, we implement a Hadoop cluster with 11
nodes, one as the master node and the others as data nodes.
These nodes are all virtual machines supported by VMware
with Intel Core i-5 CPU, 20G disk and all running Ubuntu
12.04. All virtual machines are connected with a 10-Mb/s
switch as a local network. Table II shows the parameter settings
used in our experiments.

B. System Level Performance

In this section, we conduct a set of simulations to explicitly
evaluate the performance of our feedback control-based recom-
mender system.

First, we investigate the stability of our proposed two feed-
back controllers. As mentioned earlier, system dynamics is the
main reason for resource cost and loss of accuracy. By self-
monitoring and self-adjusting the system, our proposed feed-
back controllers can successfully reduce the performance loss.
We randomly choose 100 users and make recommendations
for ten consecutive days. Fig. 7 shows the attained average
accuracy of all users and its error bar, with respect to different
sizes of training set. It is clear that the benchmark approach
(i.e., without controllers) cannot sustain high accuracy (abrupt
changes are observed) when we change the size of the training
set. However, our proposed approach improves the stability of
attained accuracy. This is due to the fact that our proposed train-
ing set controller is able to continuously monitor the system
status and performs updates on Tm(t), including increasing
or deleting m and adjusting Tm(t) to an appropriate size.
Therefore, our system can keep providing a high degree of
accuracy.

Fig. 8 shows the impact of the number of recommendations
on the achieved accuracy. First, we randomly select three users,
recommend them the different but fixed number of channels

Fig. 7. Attained average accuracy of all users and its error bar, with respect to
different sizes of training set.

Fig. 8. Impact of the number of recommendations on the achieved accuracy.

for 30 days, and show the curve of achieved accuracy. Then,
we compare with our proposal, i.e., given the predicted time-
varying |Rf (t)| for 30 days, we compute the average number
of recommended channels and the corresponding achieved
average accuracy (see the purple triangle in the figure). For
fixed |Rf (t)|, we observe that the highest accuracy for user 1a
appears when |Rf (t)| = 110. However, for user 2, this value
expands to a range. This indicates that his/her behavior has
more dynamics. User 3’s behavior also has some randomness
since he/she does not have a fixed watching frequency. In
comparison, in our proposed solution, |Rf (t)| is predicted on
the daily basis, and thus, it varies according to the user behavior.
However, fixing the number of recommendations (i.e., |Rf (t)|
does not vary) can only make accurate predictions when a user
happens to always watch the same number of channels, and this
is why our proposal achieves certain performance gain.

Next, we focus on the effectiveness of our proposed adjust-
ment model, i.e., “slow recovery” and “fast adjustment.” In this
experiment, we use watching logs for 20 days as the initial
training set. Each day, we make recommendations with new
training sets and compute the error signal ε(t) until it is less than
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Fig. 9. Simulation results for the effectiveness of our proposed adjustment
model.

Fig. 10. Impact of “revisiting ratio” on different measurements.

the threshold k0 (= 0.3) or does not have enough remaining
training data to add. As shown in Fig. 9, our proposal is the first
to reach the predetermined threshold only after seven adjust-
ments. The “slow recovery only” strategy (i.e., SRthresh = ∞)
achieves the same goal with three more adjustments than our
proposal. Although the “fast adjustment only” strategy (i.e.,
SRthresh = 1) performs well at the beginning, it has the worst
performance at the end because it deletes data too fast and this
causes the data deficiency problem. Therefore, our proposal can
make a balance between adjustment speed and performance,
and in turn, more computational resources and update time can
be saved.

Finally, we investigate the impact of “revisiting ratio” λ(t)
on different measurements, as shown in Fig. 10. We compare
our proposed scheme (i.e., to adjust λ(t) by using the PID
controller), with using simple moving average (referred to as
“SMA”) and using weighted moving average (referred to as
“WMA”), with the same number of new items and old items
(referred to as λ = 1). As shown in the figure, our proposal
is better than all other three approaches since the enforced
recommendation controller successfully monitors the change of
user-friendliness and self-adjusts the preference model.

Fig. 11. Simulation results for achieved accuracy over time.

Fig. 12. Simulation results for the consumed compute time over time.

C. Compute Time and Accuracy Over Time

One of the benefit of our proposal is the capability to handle
the tradeoff between computational cost and achieved accuracy.
This can help service providers have a reasonable estimate for
resources. Fig. 11 depicts the computational efforts (measured
in compute time) for the benchmark approach (i.e., without the
controller), with only the training set controller, with only the
recommendation controller, and with our proposal. Fig. 12 fur-
ther demonstrates the accuracy over time. It is obvious that the
benchmark approach needs almost 130 s to make recommenda-
tions, where it consumes time to build up a model with a larger
scale of training set. However, when we adopt our proposed
training set controller to dynamically adjust the size of the
training set, the computational effort can be reduced by up to
57% (see day 27). However, when we evaluate the accuracy
of these four systems as shown in Fig. 12, we observe that
our solution can raise the accuracy by 10%, compared with the
no-controller solution. Once the controllers start to update the
system, the performance becomes stable. The reasons are due
to the optimal training set with the adjustment of the training
set controller, and the successful following of user preferences.
Since our recommendation list controller keeps observing the
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trend of a user’s preferences, our recommendations are always
based on his/her most recent interests. Therefore, our proposal
achieves the best performance over time.

VII. CONCLUDING REMARKS

In this paper, we proposed to use feedback control theory
to design and implement a personalized multimedia recom-
mendation system for cloud-integrated CPSs, where a typical
application is to recommend videos on smart devices in a
community. We first investigated the patterns of user behaviors
from a real data set and designed a personalized recommender
system to recommend both the historical and new items. Then,
a new concept of revisiting ratio is introduced to represent
the percentage of new recommended items and old ones, and
a newly proposed preference model is adopted to make new
recommendations. Furthermore, we designed two feedback
controllers, the training set controller and recommendation list
controller, to self-monitor the status of time-varying system and
decide when and how to make an operational parameter update.
Extensive experimental results have shown that our system not
only reduced the cost of resources but also effectively increased
the recommendation accuracy.

Future work spans different directions. First, although our
proposal achieves high accuracy, there is an ongoing discussion
in relation to how to find the best order of recommenda-
tions. Leveraging learning-to-rank method will lead to more
effective recommender system. Second, rather than building
a generalized model for all users, a user-dependent model
could be investigated to autonomously adjust the parameters
according to diverse user behaviors. Finally, we plan to design
a new evaluation system since existing ones only consider
the occurrences of recommended items but ignore the viewing
times. If users view items made by our system for many times,
the performance of our system can be considered as good.
Therefore, viewing times of recommendations will be added
into the new evaluation system. A lot of work can follow.
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