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Abstract

To meet the demands of vehicular networks, 
such as high throughput, high mobility, low laten-
cy, heterogeneity, and scalability, SDN has been 
applied for raising the user experience through pro-
viding high-performance communications between 
vehicular network nodes, reconstructing the vehic-
ular network structure, and optimizing networking 
coverage, system security, communication latency, 
and so on. However, the existing SDN applica-
tions in the vehicular network mainly focus on the 
data communications between the vehicles and 
other network nodes or devices, while the vehic-
ular controller area network is still limited to some 
particular applications, only providing users with 
basic services, but unable to meet the demands in 
a complex driving environment. Thus, this article 
proposes an SDN-based approach to develop the 
safety-oriented vehicular controller area network, 
which can guarantee traffic safety based on driver 
fatigue detection and emotional recognition, which 
are monitored through the driver’s physiological 
and psychological state.

Introduction
With the development of mobile networks, the 
Internet of Things (IoT), and wireless sensor net-
works (WSNs), vehicular networks have gradually 
become one of the most effective approaches to 
implement intelligent transportation systems (ITS). 
For example, IEEE 802.11p is the standard that sup-
ports ITS applications in vehicular ad hoc networks 
(VANETs) [1]. Vehicle networks are expected to 
analyze and utilize various information inside and 
outside vehicles themselves through information 
and wireless communication techniques. Specifi-
cally, through vehicle-to-vehicle (V2V), infrastruc-
ture-to-vehicle, and vehicle-to-infrastructure (V2I) 
communications, which are the foundation and 
key support technologies determining the overall 
performance of vehicular networks, road safety 
and traffic efficiency are significantly improved.

However, the traditional wireless communi-
cation technologies are not available to meet 
the advanced demands from vehicular networks, 
including high throughput, high mobility, low laten-
cy, heterogeneity, scalability, and so on. To address 
the great challenge, software defined networking 
(SDN) has been applied to vehicular networks 
to improve the user experience through provid-
ing high-performance communications between 

the vehicular network nodes, reconstructing the 
vehicular network structure, and optimizing the 
networking coverage, system security, communica-
tion latency, and so on [2]. It can be expected that 
in future network configuration, various terminals, 
such as vehicles, will be added to the network. The 
traditional network structure is not conducive to 
managing and controlling a large number of net-
work nodes, so they should be part of the con-
trol functions that are distributed to the edge of 
the network, especially in the Internet of Things 
(IoT) [3]. In particular, the technology of distributed 
computing can be used in the scenario of vehicle 
communication in IEEE 802.11p to improve the 
service quality of vehicular networks. In [4], Liu et 
al. investigate the scheduling for cooperative data 
dissemination in a hybrid I2V and V2V commu-
nication environment. Specifically, an approach 
based on a centralized scheduler at the roadside 
unit (RSU) is proposed to represent the first known 
VANET implementation of the SDN concept.

However, the existing SDN applications in the 
vehicular network place more attention on V2V, 
V2I, and even in-vehicle power line communica-
tion for data transmission [5–7], while the con-
troller area network (CAN) is still limited to some 
particular applications, such as, entertainment, nav-
igation, and location-based services, which only 
provide users with basic services but cannot meet 
the demands in a complex driving environment. 
Especially for driver safety, V2V and V2I can pro-
vide drivers with vehicular information to reduce 
the frequency of traffic accidents. For example, 
safety distance reminders, safety speed alerts, 
pedestrian reminder, collision avoidance remind-
ers, traffic guidance, and other services can be 
provided. However, the current CAN cannot eas-
ily monitor drivers’ physiological and psychologi-
cal states to avoid traffic accidents due to drivers’ 
fatigue and moods. Therefore, this article proposes 
an SDN-based approach to develop a safety-ori-
ented vehicular CAN (SOVCAN), which can guar-
antee traffic safety from the following two aspects.

Drivers’ Fatigue Detection: According to sta-
tistics, fatigue can significantly reduce a driver’s 
vigilance and increase reaction time, which is an 
important cause of traffic accidents. Through a 
camera detecting the state of a driver’s eyelids 
and the frequency of a driver’s slight nodding. the 
system can effectively find the micro sleep behav-
ior, and then alert and warn the driver to prevent 
traffic accidents.
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Drivers’ Emotional Recognition: In recent 
years, road congestion and other external factors 
induced by drivers’ emotional abnormalities, lead-
ing to open gambling cars or even malicious acts 
toward pedestrians or other vehicles, have caused 
major hazards affecting traffic safety. Through the 
expression recognition and emotional computing 
method, the system can find drivers’ mood swings 
and effectively avoid road rage.

The remainder of this article is organized as 
follows. We first present the three-tier architec-
ture of SOVCAN. Specifically, data acquisition, 
intra-CAN data processing, and inter-CAN data 
communication layers are described. Then we 
conclude the article.

SOVCAN Architecture
As shown in Fig. 1, SOVCAN consists of three 
layers: data acquisition, intra-net data processing, 
and inter-net data communication.

Data Acquisition: In this layer, drivers’ physi-
ological information including responses are col-
lected. The acquisition of physiological signals 
depends mainly on wearable devices, and physi-
ological response data collection depends on the 
camera, which can be fused for more compre-

hensive facial feature extraction and expression 
recognition [8].

Intra-Net Data Processing: Perceptual data 
is first transmitted to the onboard intelligence 
device for analysis, including fatigue identification 
and emotion perception. If the analysis result of 
driving state is abnormal, SOVCAN will imme-
diately indicate the car in the vehicular control 
system for emergency treatment, such as braking, 
alarming, and speed limiting. Traditional mobile-
phone-based computing is different. The vehicle 
can provide a wealth of resources, particularly 
energy, and in the SOVCAN computational com-
plexity is not too high. Hence, almost all of the 
data analysis can be done locally, and the com-
munication overhead can be reduced.

Inter-Net Data Communication: Although 
most of the data processing can be done within 
the CAN, in order to retain the driver’s data for a 
long time, we also need to transfer these data to 
the cloud for preservation. In particular, when the 
driver changes terminal, it can also download its 
feature information from the cloud to reduce the 
time initializing the device. In addition, through 
the inter-network data communication, we can 
also send abnormal information to the cloud and 
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Figure 1. SOVCAN architecture.
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nearby equipment to warn nearby pedestrians 
and take appropriate emergency measures.

It should be noted that, taking into account 
feasibility and compatibility, this article uses the 
smartphone as the CAN hub to provide data 
acquisition, computing resources, network access, 
and vehicle control system docking.

Data Acquisition
The system mainly collects two types of data: 
physiological behaviors and facial expressions 
through a camera. The data for physiological 
behaviors is to detect driver fatigue and facial 
expressions for emotion detection.

Physiological and Behavioral Data Acquisition

At present, there are three main methods of 
fatigue detection: physiological-signal-based 
detection, traffic-data-based detection, and physi-
ological-behavior-based detection.

Physiological signals may accurately reflect the 
extent of human fatigue, and electroencephalog-
raphy (EEG) [9], heart rate variability (HRV) [10], 
and so on. This can effectively detect the extent of 
a person’s fatigue. However, these intrusive detec-

tion techniques rely on special acquisition devices 
and can reduce the driver’s user experience and 
hinder normal driving. Moreover, some research 
indicates that the degree of fatigue can be mea-
sured by the steering wheel steering angle and lat-
eral position of the vehicle and other variables in 
the process of driving traffic data [11]. However, 
because such methods often require retrofitting 
existing vehicles, such as the installation of sensors, 
it is difficult for them to be widely used.

Fatigue testing based on physiological behav-
iors to analyze the drowsiness of people will need 
to discover people’s fatigue states. For example, 
the behavior of the eyelid and the head can accu-
rately reflect whether the driver has dozed off 
[12]. Such methods only need an image capture 
device to record physiological behavior of the 
driver and can determine whether he/she is in a 
state of fatigue. This acquisition method can be 
very compatible with existing vehicles. Thus, the 
method in this article is to collect drivers’ real-time 
behaviors by placing a cell phone in the cab.

Facial Expression Data Acquisition

Sentiment analysis is a complex field of study. 
Currently, it can be divided into three categories: 
•	 Physiology-signal-based emotion analysis [13]
•	 External-based emotion analysis [14]
•	 Facial-expression-based emotion analysis 

[15].
However, based on the way the physiological 
signal depends on an invasive device to acquire 
physiological signals, text-based emotion analysis 
applied to the scenarios has many text resources, 
such as social networking. These two methods are 
not applicable to CAN. We only need to record 
the driver’s face image or video and use technol-
ogies like image and video segmentation and pat-
tern recognition to analyze the emotional state. 
The fusion of facial-expressions-based emotion 
analysis and physiological behavior data collec-
tion methods reduce the system overhead and 
complexity greatly.

Intra-Net Data Processing
The face image acquired by the camera of the 
mobile phone will be used for fatigue detection 
and emotion recognition. Its essence is real-time 
image processing for the driver. As shown in 
Fig. 2, it includes the following steps: face detec-
tion, facial image preprocessing, face geometry 
extraction and expression recognition, and excep-
tion handling.

Face Detection

Face detection is the most important basis for 
facial expression recognition, which is the basic 
step for subsequent facial expression prepro-
cessing. Facial expression is the basis of feature 
extraction and classification. Face detection is to 
detect the face from an image, extract the face 
information (eye, nose, etc.), and locate the face 
position.

Facial Image Preprocessing

Preprocessing of a facial image is essential for 
expression recognition. First, the result of the 
above face detection can identify the approxi-
mate facial area. Then we can find the location 
of the eyes and nose in the region. According Figure 2. Intra-net data processing.

Wink

Expression recognition
Laughing Terrified Crying

SurprisedReally? Yelling! Suspicious

AnnoyedHappy Sad Mad

SoreOuch! Bored Eye roll

LDA

Rotation Segmentation Normalization

Facial image preprocessing

Histogram equalization

PCA

Face detection

Feature extraction

Eyelid separation

Head position

Fatigue

Exception
handling

DANGER



IEEE Communications Magazine • August 2017 97

to these locations, we can correct the face 
accurately and do operations such as position 
correction, scaling, and grey level normaliza-
tion. After preprocessing, we get most of the 
regions that are related to the expression. Then 
we need to exclude some areas unrelated to 
the expression, such as background, ears, hair, 
neck, and shoulders, and normalize the size and 
gray value of the obtained expression areas to 
reduce the light and the impact of light intensity 
as much as possible.

Facial Feature Extraction and 
Expression Recognition

We face image preprocessed dimension reduc-
tion, feature extraction’s main geometric features, 
such as eyes, nose, eyebrows, mouth, and other 
positions, and change its position and measure 
to determine its size andshape, including distance 
and proportion. One of the most important fea-
tures is the geometric characteristics of the eye. 
The location of the eye can determine the rela-
tive displacement of the head, so we can deter-
mine whether the driver has micro-sleep-induced 
nodding behavior. In addition, depending on the 
closed state of the eyelids, the blink frequency of 
the driver can be used to estimate the degree of 
drowsiness of the driver. By using the classifier, 
we can divide the facial geometric feature space 
into type space. According to the facial expres-
sion database, it is accurate to determine in which 
emotion the driver’s current facial expression 
belongs.

In our proposal, principal component analysis 
(PCA) and linear discriminant analysis (LDA) are 
used for facial feature extraction. In particular, 
PCA is a reproducible approach to reduce data 
dimension, while LDA is an effective approach to 
reduce data dimension and classify data.

Exception Handling

Once the driver is in a state of fatigue or an 
unusual mood, the vehicle terminal will imme-
diately direct the vehicle control system to take 
some measures such as acknowledging a warn-
ing, emergency braking, and speed limiting.

Inter-Net Data Communication
As shown in Fig. 3, inter-network data communi-
cations include three approaches: vehicle-to-cloud 
(V2C), cloud-to-vehicle (C2V), and V2V.

Vehicle to Cloud

With the resources provided by vehicles, a vehi-
cle terminal can complete most local tasks with-
out offloading any to the cloud for processing. 
However, in the following scenarios, the CAN still 
needs to transfer local data to the cloud.

Data Uploading: As most of the data collected 
in the SOVCAN is video, it requires considerable 
storage space. Although the local equipment can 
provide a certain storage capacity, it cannot meet 
the needs of actual use. For example, the smart-
phone used in the system can provide 32 GB of 
storage space to store only 480 min of video with 
resolution of 1280  720. In addition, the train-
ing of historical data and analysis is available to 
improve the accuracy of facial expression classi-
fication. Therefore, it is necessary to upload the 
data to the cloud and save them in the cloud. 

The real-time requirements for such data transmis-
sion are not high, so it mainly uses vehicle-to-RSU 
(V2RSU), WiFi, and other low-cost means of com-
munication methods.

Message Delivery: It mainly includes request-
ing messages and exception messages. A request-
ing message is the message that needs to be sent 
to the cloud when a vehicular device is initialized 
or a software error occurs. It indicates that the 
relevant functional components need to be trans-
ferred to the local smart device. When the sys-
tem finds driver fatigue or abnormal emotion, an 
exception message will be sent to the cloud for 
further exception handling. The size of this kind 
of message is small, and the message is in real 
time. Hence, in the absence of a low-cost means 
of communication, it will communicate directly 
through the mobile network.

Cloud to Vehicle

Depending on the condition of the vehicle, the 
cloud will also send some data to the vehicle, 
including system initialization data and remote 
control messages.

System Initialization: In order to ensure the 
normal operation of the SOVCAN system, the 
necessary system function modules must be 
downloaded from the cloud to the local level, 
such as to a data processing module, when a 
vehicle’s intelligent equipment is installed or 
recovered. The scale of the system initialization 
data is large, and the data is the core of the sys-
tem. We must exclude the cost and download it 
to the local level. However, due to its common 
data, it can be considered to be cached to the 
equipment at the edge of the vehicular network 
for improving the download speed and reducing 
the communication costs.

Remote Control: In extreme cases, when the 
driver cannot guarantee safe driving, the cloud 
can send emergency braking commands, con-
trolling the vehicle remotely. The quantity of this 
kind of control data is small, but its real-time 
nature is extremely strong. Therefore, no matter 
how much it may cost to communicate, we must 
transmit the control information to the onboard 
intelligent equipment.

Figure 3. Inter-net data communication.
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Vehicle to Vehicle

In addition to the communication between the 
vehicle and the cloud, there is data communica-
tion between vehicles. When SOVCAN detects 
that the driver’s status is abnormal, it will send 
warning information to nearby vehicles to prompt 
other drivers to avoid the high-risk driving behav-
ior that the vehicle may incur. Inter-vehicle com-
munication in such scenarios is different from 
traditional V2V. In conventional V2V, communica-
tion between vehicles includes direct communica-
tion between vehicles, RSU communication, and 
base station communication. The V2V commu-
nication in SOVCAN is intended to broadcast a 
reminder message to nearby vehicles. Direct com-
munication between vehicles is too inefficient, 
and the base station (BS) coverage area is large 
an hence does not apply to this scenario. Thus, 
V2V communication uses RSUs to broadcast to 
nearby vehicles, and the efficiency and cost of this 
communication are better.

A Testbed for SOVCAN
In order to evaluate the availability of the pro-
posed scheme, we developed a testbed for 
SOVCAN, which is expected to provide safety-ori-
ented vehicular service based on smartphones 
through CAN.

Testbed Architecture

As shown in Fig. 4, the SOVCAN-based testbed 
consists of a smartphone, a BS, and a data cen-
ter (DC). The detailed mechanism is described as 
follows.

Smartphone: In SOVCAN, the smartphone 
plays the most important role to support data sens-
ing and communication. Moreover, with with spe-
cial software (an Android app) developed by the 
Embedded and Pervasive Computing (EPIC) Lab at 
Huazhong University of Technology and Science 
installed, the smartphone can provide more com-
plex services, including fatigue monitoring, emo-
tion recognition, emergency contact, and so on.

Base Station: In the testbed, a Long Term Evolu-
tion (LTE) BS is implemented as an RSU to support 

V2I and V2V communications. Specifically, through 
V2I the data is transmitted from the vehicle to the 
BS, which provides the connection to the cloud. In 
the V2V communication, once the abnormal status-
es are detected and transmitted to the BS, a warning 
broadcast will be made to the vehicles accessing 
the BS. In the testbed, Amari LTE is deployed, which 
includes Iteenb as the LTE access network and LTE 
mobile management entity (LTE MME) software as 
the LTE core network involving a service gateway 
(SGW), packet data network gateway (PGW), home 
subscriber server (HSS), and so on. The hardware 
consists of a radio frequency unit, a high-perfor-
mance computer, and an LTE terminal.

Data Center: In the cloud, a DC, the Inspur 
In-Cloud Smart Data Appliance, is implemented 
to provide more storage and computing resourc-
es. Specifically, it consists of two main clusters:
	 1. An admin cluster with 2 nodes, providing 

64 CPU cores, 256 GB of RAM, and 3.6 TB 
of storage

	 2. A worker cluster with 7 nodes, providing 
84 CPU cores, 336 GB of RAM, and 252 TB 
of storage

In particular, the sensory data is transmitted and 
stored in the DC as historical data to improve the 
learning model, while some computation-intensive 
tasks are offloaded to the DC.

Experiment

In order to verify the availability of SOVCAN in 
the actual environment, an experiment is designed 
for evaluation. In this experiment, four volunteers 
drive the same car deploying SOVCAN about 
40 minutes on the same routes. In particular, the 
route includes normal roads and a long tunnel.

Figure 5 illustrates the recognition accuracy of 
SOVCAN in this experiment. Through the experi-
ment, the recognition accuracy in the tunnel is obvi-
ously lower than that in the normal environment, 
because the light is darker in the tunnel, which caus-
es a significant negative effect on image process-
ing. Of course, it is simple to verify the availability 
of SOVCAN, so we do not design more compre-
hensive experiments including the consideration of 
more traffic conditions and the external environ-
ment, or comparison with other related approaches.

Open Issues and Future Directions
Although the testbed is able to provide the essen-
tial services for vehicle safety, more details are 
not considered for improving the availability and 
performance.

Low Delay: In order to improve the accuracy 
of fatigue monitoring and emotion recognition, 
more physiological and psychological data should 
be sensed, processed, and transmitted through 
SOVCAN. In particular, safety message transmis-
sions have a very low delay constraint, such as 
less than 1 ms.

Frequent Handover: In SOVCAN, the commu-
nications between the vehicles, RSU, and cloud 
are frequently handed over, which is a huge issue 
for providing reliable communication.

Highly Efficient Services: For the future CAN, 
vehicular smart devices are not only the control 
platform but also entertainment centers for users. 
Different multimedia services need to be provided 
by vehicular networks. It is a great challenge to 
improve the service efficiency.

Figure 4. Testbed for SOVCAN.

Data center

Smart
phone

Local
broadcastingBase station

SOVCAN
App



IEEE Communications Magazine • August 2017 99

Robustness: The experiment illustrates that 
recognition accuracy is strongly related to exter-
nal factors. For example, some accessories on a 
driver’s face significantly affect facial expression 
recognition, such as glasses or a scarf. Moreover, 
the quality of the sensory image is limited under 
some circumstances, such as on bumpy roads or 
in insufficient light, which considerably lower the 
system performance.

Conclusion
The rapid development of vehicular networking 
has brought revolutionary changes to society, 
covering almost every aspect of daily life. More 
and more applications, systems, and services for 
vehicular networking are being expanded. This 
article proposes SOVCAN, which aims to detect 
drivers’ fatigue and mood swings in CAN to guar-
antee safe driving. Specifically, according to the 
different requirements of data communication in 
SOVCAN, we use SDN technology in three dif-
ferent scenarios: V2C, C2V, and V2V. According 
to the different demands for real-time communi-
cation, efficiency, and cost, appropriate communi-
cation is selected in the SDN-based architecture.

In our current work, there are still some tech-
nical challenges. In particular, the most critical 
problems are lack of robustness in facial feature 
extraction and expression recognition, road bumps 
obscuring the collection of facial images, and the 
complex cab background affecting the accuracy 
of detection in the network data processing. There-
fore, in the future, we will try to use non-invasive 
wearable technology under the premise of keeping 
the normal driving behavior such as smart clothing 
to improve the robustness of the system.
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Figure 5. Recognition accuracy of SOVCAN.
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