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ABSTRACT In recent years, online social networks have gained tremendous popularity because of the
massive number of online users, the fast spread of information, and strong inter-personal influence. However,
due to the high complexity of the user interaction and the real-time changing of the online social networks,
it is still a big challenge to model the spreading process of the information delicately and, then, to predict the
information diffusion precisely. In this paper, we exploit a hydrodynamic model to describe the spreading
process of the information in online social networks. By using the proposed hydrodynamic information
diffusion prediction model (hydro-IDP), we can describe the spreading process of the information on both
temporal and spatial perspectives. It is also helpful in extracting the characteristics of information diffusion
(e.g., the information popularity, the user influence, and the diffusivity of social platform). We also consider
the superimposed effect of the information diffusion resulted from influential users in the model. The high
accuracy of the model results has illustrated that our proposed Hydro-IDP model is competent to describe
and predict the spreading process of information in online social networks.

INDEX TERMS Online social networks, information diffusion, hydrodynamics, influential users,
superimposed effect.

I. INTRODUCTION
The online social networks (OSNs) (e.g., YouTube,
Sina-Wibo and Twitter) have stupendously grown up
since 2010, and the various of information with forms of
SMS, photo and video are spreading easily and effectively
through those online social networks. The information which
exchange through OSNs platform have become more and
more popular and affect our communication with friends and
family, and even changed our daily life.

The extremely large amounts of information with various
contents have accelerated lots of researches in the field of
information spreading in online social networks. The results
of these research can help people understand the spreading
process of the information better, and then help in better
optimizing business performance (e.g. optimizing marketing
campaigns), following events (e.g. analyzing revolutionary
waves) and solving issues (e.g. preventing terrorist attacks,
anticipating natural hazards), etc. [1]. But it is still a greatly
challenging to analyze the specific mechanism of the spread-
ing process of information because of the real-time changes
of the networks and complexity of the social interactions.

In the present researches, there are two major categories of
models for information diffusion modeling, i.e., explanatory
models and predictive models [1]. The explanatory models

strive to retrace the spreading path of the information in
OSNs. Most of them have focused on the measurement
and analysis of the network structures [2]–[7], the user
interactions [8]–[10], and the spreading characteristics of
the social media, such as empirical approaches [11], [12]
which utilize data mining [13], [14] and statistical modeling
schemes [15]–[17].

The objective of predictive models is to predict how a
specific diffusion process would unfold in a given social
network, based on the research results of the past process
of the information spreading. For example the independent
cascades model [17]–[20] and the linear threshold model
which is established based on static graph structure [21], [22].
Several studies for information diffusion on temporal pattern
are based on the epidemic model [23], [24] and the linear
influence model [4]. A few recent attempts use a partial dif-
ferential equation model to predict the information diffusion
on both temporal and spatial dimensions [25]–[27].

As shown in Table 1, we give a summary of popular
predictive models in the related works with respect to
dimension focus, parameter setting mode and mathematical
modeling mode. The proposed hydrodynamic information
diffusion predictionmodel (hydro-IDP) in this paper has been
listed in the last row, it is the only attempting for modeling
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TABLE 1. Summary of prediction models for information diffusion.

the information diffusion in space-time dimension without
parametrization method.

One of the most challenge of modeling the information
diffusion in spacial dimension is the superimposed effect due
to the influential users. How to calculate the user influence
and their sum effect to the information diffusion is concern to
the prediction accuracy. On the other hand, because of a large
amount of the participant users, the change of the information
spreading with time due to the interaction of the users is also
a huge challenge in temporal dimension.

In this work, we have greatly improved the initial version
of hydrodynamic model [29] to describe the information
spreading process in online social networks. In our proposed
model of hydro-IDP, we correlate the characters between the
information diffusion in the cyber space-time and the fluid-
density flow evolution in the physical space-time. Using the
density of influenced users, one can describe the spreading
of the information fluid in apace-time dimensions with a few
initial parameters extracted on the basis of status of informa-
tion and publisher. It also provides a way to examine the con-
tribution for accelerating information spreading by the social
platform diffusivity, the user influence and the information
popularity, etc.

The remainder of this paper is organized as follows.
We have introduced the framework of our proposed
Hydro-IDP model and the numerical solution of the hydro-
dynamical equations in Sec.II. In the part A of Sec.III, we
have present the space-time patterns of a real data set which
were collected from the site of Sina-weibo. In the part B and
part C of this section, we have validated the hydro-IDPmodel
for predicting the information spreading process. We have
also analyzed the model characteristics such as the web-site
diffusivity, the information popularity and the user influence
of the information publisher, etc. Finally, we have given the
conclusion of this paper and the discussion of our future
works in Sec.IV.

II. FRAMEWORK FOR HYDRO-IDP MODEL
A. THE FRAMEWORK OF HYDRO-IDP MODEL
There are the following major functional components in the
proposed Hydro-IDP model: data acquisition and previous

FIGURE 1. The framework of Hydro-IDP.

analysis, parameter setting for specified information, hydro-
dynamic modeling and information diffusion prediction as a
goal. In Fig.1, we provide a flow diagram to illustrate the
concept of our proposed Hydro-IDP model.

Specifically, it includes the following three main steps:
1) Data acquisition and analysis: Collect the previous data

set for analysing the characteristics of the information
diffusion on the social platform.

2) Parameter setting: Determine the model parameters of
initial energy density distribution, initial source radius
for a specified information, and flow velocity for the
social platform.

3) Hydrodynamic modeling: Modeling the information
diffusion via Hydro-IDP with optimized parameters.

We will provide more detailed discussions of these
three key components later.

B. THE HYDRODYNAMICS
The hydrodynamics which we used in this paper is a solu-
tion for modeling the evolution of the various kinds of
fluid based on a set of partial differential equations. The
hydrodynamic model was been widely used in the fields of
meteorology, engineering, chemistry and physics, etc [30].
Once we decide the initial condition and an equation of state,
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we can describe the spatio-temporal spreading of any fluid
through hydrodynamic model. In this work, we attempt to
utilize hydrodynamic model onmodeling the spreading of the
information fluid in OSNs. The formulation of the conserva-
tion law of the information fluid in OSNs is similar to that
for spatial biology [27], [31]. We extend the discrete space-
time points of the information fluid into a continuous interval
and then describe the diffusion of the information fluid with
Hydro-IDP model.

In the table 2, we list the corresponding physical meaning
of the parameters of Hydro-IDP model and their counterpart
definitions for information fluid in OSNs. Corresponding
with the characteristic parameters of the hydrodynamics,
we treat the information publisher as a centre space-time
point of the fluid source. And then the model parameters
of initial source energy, the initial source radius, the initial
flow velocity are correspond to the information popularity,
publisher influence and the diffusivity of the social platform,
respectively.

TABLE 2. Model parameters and counterpart definitions in OSNs.

In this work, we use the ‘‘friendship hops’’ to describe the
user’s cyber-distance in the spatial dimension [27]. One can
use friendship hops to refer to the number of user’s links. And
then, the distance of any two users is defined as the length (the
number of friendship hops) of the shorted path between them
in the social network graph. Clearly, the direct link of two
users have a distance of 1, while one’s direct followers have
a distance of 2 from the other user, and so on. Finally, we use
the density of the influenced users to measure the diffusion
of the information flow.

With the model parameters and the counterpart definitions
in OSNs, the ideal hydrodynamic description for the system
of a information diffusion could be defined with local energy
density conservations

∂µTµν = 0, (1)

where Tµν is the so called energy-momentum tensor for
the ideal fluid, Tµν = (E + p)uµuν − pgµν with the
energy density E and the pressure p for the fluid element
in the local rest frame which moving with flow velocity uµ.
In the Hydro-IDP model, we use the invariant-time coordi-
nate as Xµ = (t, r), and the space-time metric tensor as
gµν = diag(1,−1,−1,−1) [30].

Considering the cyber-distance of friendship hops in online
social networks and the isotropic diffusion, the hydrodynamic

equation (1) can be written as below in the spherical
symmetry frame

∂tE + ∂r [(E + p)v] = −
2v
r
(E + p),

∂tM + ∂r (Mv+ p) = −
2v
r
M , (2)

whereM is the momentum density which corresponds to the
energy density E .

In this work, we use a so-called Godunov method to solve
the hydrodynamic equations numerically (2) [32]. It allows
to solve the equations with type of

∂tU + ∂rF(U ) = −G(U ) (3)

(which U being E or M in equations (2)) by first solving the
partial differential equation

∂tU + ∂rF(U ) = 0 (4)

with Harten-Lax-van Leer-Einfeldt (HLLE) algorithm [33],
which yields a prediction Ũ for the true solution U . And
then one corrects this prediction by solving the ordinary
differential equation

dU
dt
= −G(U ), (5)

which is numerically realized as

U = Ũ −1tG(Ũ ). (6)

In our calculation, we simply use a equation of states of ideal
fluid, p = 2/3 E , to close the hydrodynamic equations (2).

III. MODEL RESULTS FOR INFORMATION DIFFUSION
A. CHARACTERISTIC OF INFORMATION
DIFFUSION IN REAL DATA SET
We collected the data set of 6500 video tweets during
May 2012 to February 2013 from the most popular online
social network in China of Sina-weibo [34]. The data set
include all repost/comment actions of user property for each
video tweet, for example, action timestamp, the action-user’s
identity document (ID), user’s follower-counts, friendships
relationship for every user, etc. The reposted or commented to
the tweets were labeled as an action by the influenced users.
In totally, there are more than 200 million action records
have been labeled on these video tweets. These data set of
the friendship hops and timestamps for the tweets provide
the opportunity to analyse the density of the influenced users
in both temporal and spatial dimensions. It is necessary and
important work to study the impact of the friendship rela-
tionship on the information spreading and then to predict the
information diffusion through online social networks which
are especially built on the friendship pattern. In this work
we have analysed all of these 6500 video tweets and in
the next we demonstrate the results of three representative
tweets of different following-user scales in fig.2. The video
tweet 1 is the most popular tweet which have been followed
by 92992 users, video tweet 2 and 3 have been followed
by 65660 and 35401 times, respectively.
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FIGURE 2. (Color online) Density distribution of the influenced users for three representative tweets with (a) days as time and
(b) friendship hops as distance.

In the Fig.2 (a), we have shown the density distributions
of the influenced user with the time of 8 days for three
representative video tweets which have been followed by
92992, 65660 and 35401 times, respectively. We can find
that for all of these three tweets, there are above 95 percent
influenced users have reposted and commented the video
tweets in the first eight days. We also find from Fig.2 (b)
that there are above 98 percent influenced users have fol-
lowed the tweets in the first six friendship hops. So we
only present the real data set and the model results from
1 to 8 days and from 1 to 5 friendship hops in this work.

In the Fig.3 (a-c), each line represents the density of influ-
enced users at a certain friendship hops from 1 to 5 for
three tweets which have been shown in fig.2. Our analysis
results have shown that almost 87.3% of all the video tweets
in the real data set fall into this category of picture (a),
we label this kind of video tweets with type I. From picture
of tweet type I, we can find that the density distribution of
the influenced users evolves regularly for every distance with
the time and the density value becomes stable at the 5th
day. This is because this video tweet is no longer ‘popular’
and has almost stopped spreading. We also can find that the
density distribution of the influenced users at the small hops
are obvious higher than that of influenced users at the big
hops. This is because that the followers whowere closer to the
tweet publisher play the more important role in information
diffusion.

In the pictures of (b) and (c) in Fig.3, we have also shown
the density distribution of the influenced users for the other
two video tweets. It’s worth noting that the density value
at hops = 2 are higher than that of the density value at
hops = 1 in Fig.3 (b) which was labeled type II. This
is because that there are more influential users who have
followed the video tweet than that of type I, and then greatly
improve the diffusion of this type of tweets. In this paper, we
also improved the Hydro-IDP model to consider the affection
for information diffusion resulted by the influential user who

has more than one hundred thousand followers. In picture (c),
there is a sudden rise of the density value at the 7th day
(i.e., New Year’s day), which further promotes the informa-
tion spreading.

Fig.4 has shown the density distribution of influenced users
with spatio-temporal dimension. The dash lines illustrate the
model results for video tweet 1, and the solid lines are corre-
spond value for the real data set. The results have shown that
the density value of influenced users decreased regularly with
distance and time.

B. MODEL RESULTS FOR INFORMATION OF TYPE I
The past empirical studies have shown that the process of the
information spreading present different space-time patterns
with a variety of factors, for example the different social
platform, the network structure, the real-time changes of the
network, the interaction of the users, and so on. Such factors
make it more challenging to model and predict the informa-
tion spreading. In this work, we have proposed a Hydro-IDP
model for describing the information evolution in temporal
and spatial dimensions.

We have given the comparison results of the density dis-
tribution of the influenced users between the model value
(solid lines) and the real data set (dashed lines) in Fig.4.
In the model calculation, the flow velocity which describe
the platform diffusivity of Sina-weibo was fixed with v = 1.
We also extract the initial radius of the spheriform source
with R = 5 which matching the publisher’s influence scale
of 1.5 million followers. And then we adjust the initial energy
density of the spheriform sourcewhich decrease linearly from
the maximum value of E = 300 to 0. The largest value of
E = 300 at the first distance on the first day indicates the
most active degree of the information and it is the datum point
of the parameter tuning.

Takes into account both the efficiency and the accuracy
of the model, we have chose 50 time steps and 100 space
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FIGURE 3. (Color online) Density of influenced users over 8 days with 5 friendship hops as distance for three tweets
of (a)-(c) corresponding to tweet1-tweet3 which have been shown in Fig.2.

FIGURE 4. (Color online) Comparison for model results (solid lines) and
actual data (dashed lines) of influenced user density for a tweet of type I
with distance at different times.

steps in the numerical calculation of our Hydro-IDP model
to correspond to one day and one hop of the information
spreading.

We calculate the accuracy of the model results with Ap
which was defined as

Ap = 1−
|Dp(t, d)− Da(t, d)|

Da(t, d)
, (7)

where Dp(t, d) is the space-time density value of the influ-
enced users for the model results and Da(t, d) is the actual
value of the real data set. We have also list the accuracy of
model results in table 3 with hops form 1 to 5 and days from
1 to 6 for the video tweet 1. One can find the average accuracy
of the hydro-IDP results are 81.82% at distance 1 and 75.70%
for the first three hops.

C. MODEL RESULTS FOR INFORMATION OF TYPE II
In our analyses of information spreading which were shown
in Fig.4, we have find that the model results (solid lines)
have shown a slightly concave. It does not conforms with the
real data set (dash lines) of slightly up-convex especially at
distance 2, and the prediction accuracy of the model results
are not very satisfactory. This is because we have ignored the
superimposed effect of the influential users in the diffusion
of tweet type I in our calculation. But these kind of superim-
posed effect should not be ignored for the tweets of type II.
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TABLE 3. Model accuracy of tweet type I.

FIGURE 5. (Color online) Superimposition effect of the tweet diffusion
resulted by influential users.

In Fig.6, we give the density value of a video tweet of type II
with the friendship hops at the different days. We can see that
there are two differences with the video tweet of type I which
have been shown in Fig.4. The density value of the influenced
users on the second distance are much bigger than the value
on the first distance, as well as the density value with the time.
This is because that there are more influential users of 15 than
the most case of tweets type I which less than 3, and then
greatly improve the spreading of this tweet at distance 2. So
we must consider the superimposition effect (see Fig.5 for a
schematic diagram) in our hydrodynamic model to describe
the spreading of tweet type II. In Fig.5, the circle with the
text of ‘‘Source’’ is the tweet publisher and the circle with
the number of 1, 2, 3 or 4 describe the publisher’s follower
with distance of 1, 2, 3 or 4, respectively. The radius of the
concentric circles describe the scope of the user’s influence.

The video tweets of type II make up only about 6.7% of
the overall total. But the publishers with more influential
followers have a lot of social influence and can promote the
information diffusion tremendously. So, it is very interesting
and necessary to model and predict the diffusion of this kind
of information. In this section, we improve the hydro-IDP and
use the superposition method to describe the effects of multi-
influential-users and then model the information diffusion for
tweets of type II.

FIGURE 6. (Color online) Comparison for model results (solid lines) and
actual data (dashed lines) of influenced user density for a tweet of type II
with distance at different times.

Firstly, we extract the influential follower of the publisher
with the tweet 2 has been shown in Fig.3 (b). There are
15 influential followers who have been followed by more
than a half million users. We have list the number of the
influential followers (NOIF) with the magnitude of the fol-
lowers (MOF) and their hydrodynamic contrast of the initial
source radius (ISR) for this tweet in table 4.

TABLE 4. Model parameters of influential users for tweet 2.

Secondly, we use the Hydro-IDP model to calculate the
spreading process of the tweet for nth influential user,
Dn(t, d), with the initial energy density Dpublisher (t, 2) of the
tweet at distance 2 with tth day.

Finally we use the superimposed method to calculate the
total effect of the tweet diffusion as

DTotal(t, d) = Dpublisher (t, d)+
n∑
1

Dn(t, d). (8)

The model results have been shown in Fig.6 with solid
lines and the prediction accuracy are listed in table 5. We can
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TABLE 5. Model accuracy of tweet type II.

find that the model results present the characteristic of the
diffusion of the tweet type II which have large number of the
influential followers in distance 2. The average accuracy of
the hydro-IDP prediction are 84.95, 88.00 and 76.20 percent
in the first three steps. It’s necessary to note that we only
consider the effect of the influential users at the distance
(friendship hops) 2. So the density value of the model results
at distance 3 are all slightly smaller than that of the data set.

Our studies have shown that one can use the proposed
Hydro-IDP to model the information spreading in a specific
online social networks, once we decided the information
popularity, the scale of the user influence and the platform
diffusivity. The parameters of the model, in turn, offer a
opportunity to extract the affect of the information popularity,
user influence, the diffusivity of the specific social platform,
etc. These results may help people better understand the
spreading mechanism of the information in online social
networks.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we have extended a prediction model for
describing the spreading process of the information in the
online social networks. Because the model was based on
the hydrodynamics, one can use it to model the information
diffusion in both temporal and spatial perspectives. In the
model calculation, we have connected the physical space-
time of the hydrodynamics with the cyberspace space-time
for the information diffusion. By modeling the information
spreading process for the video tweets collected from the
most popular social platform, Sina-weibo, we have studied
the contribution for promoting the information spreading
by the publisher’s influence, the platform diffusivity for the
social networks, the influential users and the information pop-
ularity, etc. The model results achieved an averaged accuracy
of 76.70% in the first three hops for the video tweet of type I
in the real data set.

For considering the influence for the information diffusion
resulted from the influential users like the tweet of type II
shown in Fig.3 (b), we have improved the Hydro-IDP model
to added the superimposed effect. Based on the improved
model, we describe the spreading process of video tweet
type II with the averaged accuracy of 83.05% for the first
three hops.

In the further work, we plan to improve the Hydro-IDP
to model the cross-platform diffusion of the information in

online social networks. In addition, the infection rate of the
influential users is worthy to be studied deeply to refine the
model.

REFERENCES
[1] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, ‘‘Information diffusion

in online social networks: A survey,’’ SIGMOD Rec., vol. 42, no. 2,
pp. 17–28, 2013.

[2] M. Gomez-Rodriguez, L. Song, N. Daneshmand, and B. Schölkpof,
‘‘Estimating diffusion network structures: Recovery conditions, sample
complexity and soft-thresholding algorithm,’’ in Proc. Int. Conf. Mach.
Learn. (ICML), 2014, pp. 1–9.

[3] J. Yang and J. Leskovec, ‘‘Modeling information diffusion in implicit
networks,’’ in Proc. IEEE Int. Conf. Data Mining, Dec. 2010,
pp. 599–608.

[4] A. Saxena, S. R. S. Iyengar, and Y. Gupta, ‘‘Understanding spread-
ing patterns on social networks based on network topology,’’ in Proc.
IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal.Mining (ASONAM), Aug. 2015,
pp. 1616–1617.

[5] X. Ge, J. Ye, Y. Yang, and Q. Li, ‘‘User mobility evaluation for 5G small
cell networks based on individual mobility model,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 3, pp. 528–541, Mar. 2016.

[6] S. A. Myers, C. Zhu, and J. Leskovec, ‘‘Information diffusion and external
influence in networks,’’ in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2012, pp. 33–41.

[7] C. Jiang, Y. Chen, and K. J. R. Liu, ‘‘Evolutionary dynamics of information
diffusion over social networks,’’ IEEE Trans. Signal Process., vol. 62,
no. 17, pp. 4573–4586, Sep. 2014.

[8] C. Jiang, Y. Chen, and K. J. R. Liu, ‘‘Modeling information diffusion
dynamics over social networks,’’ in Proc. IEEE Int. Conf. Netw., Acoust.,
Speech Signal Process. (ICASSP), May 2014, pp. 1095–1099.

[9] C. Luo, X. Zheng, and D. Zeng, ‘‘Inferring social influence and MEME
interaction with Hawkes processes,’’ in Proc. IEEE Int. Conf. Intell. Secur.
Inform. (ISI), May 2015, pp. 135–137.

[10] R. Zollet and A. Back, ‘‘Critical factors influencing diffusion of interac-
tivity innovations on corporate websites,’’ IEEE Trans. Prof. Commun.,
vol. 58, no. 1, pp. 2–19, Mar. 2015.

[11] N. Du, Y. Liang, N. Balcan, and L. Song, ‘‘Influence function learning in
information diffusion networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML),
2014, pp. 2016–2024.

[12] J. Niu et al., ‘‘An empirical study of a Chinese online social network–
Renren,’’ Computer, vol. 46, no. 9, pp. 78–84, 2013.

[13] G. Niu, Y. Long, and V. O. K. Li, ‘‘Temporal behavior of social net-
work users in information diffusion,’’ in Proc. IEEE/WIC/ACM Int. Joint
Conf. Web Intell., Intell. Agent Technol. (IAT/WI), vol. 2. Aug. 2014,
pp. 150–157.

[14] L.-J. Kao and Y.-P. Huang, ‘‘Mining influential users in social net-
work,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2015,
pp. 1209–1214.

[15] J. A. Langa, J. C. Robinson, A. Rodriguez-Bernal, and A. Suárez, ‘‘Perma-
nence and asymptotically stable complete trajectories for nonautonomous
Lotka–Volterra models with diffusion,’’ SIAM J.Math. Anal., vol. 40, no. 6,
pp. 2179–2216, 2012.

[16] M. D. Choudhury, Y. R. Lin, and H. Sundaram, ‘‘How does the data
sampling strategy impact the discovery of information diffusion in social
media?’’ in Proc. ICWSM, 2010, pp. 34–41.

134 VOLUME 5, 2017



Y. Hu et al.: Modeling for Information Diffusion in Online Social Networks via Hydrodynamics

[17] K. Lerman and R. Ghosh, ‘‘Information contagion: An empirical study of
spread of news on Digg and Twitter social networks,’’ in Proc. 4th Int.
Conf. Weblogs Soc. Media (ICWSM), 2010, pp. 1–8.

[18] N. Alrajebah, ‘‘Investigating the structural characteristics of cascades
on Tumblr,’’ in Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal.
Mining (ASONAM), Aug. 2015, pp. 910–917.

[19] M. Farajtabar et al., ‘‘Back to the past: Source identification in diffu-
sion networks from partially observed cascades,’’ in Proc. Artif. Intell.
Statist. (AISTATS), 2015, pp. 232–240.

[20] C. Tong et al., ‘‘A novel information cascade model in online social
networks,’’ Phys. A, Statist. Mech. Appl., vol. 444, pp. 297–310, Feb. 2016.

[21] A. Nematzadeh, E. Ferrara, A. Flammini, and Y.-Y. Ahn, ‘‘Optimal net-
work modularity for information diffusion,’’ Phys. Rev. Lett., vol. 113,
p. 259901, Aug. 2014.

[22] A. Guille and H. Hacid, ‘‘A predictive model for the temporal dynamics of
information diffusion in online social networks,’’ in Proc. 21st Int. Conf.
Companion World Wide Web, 2012, pp. 1145–1152.

[23] F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan, ‘‘Epidemio-
logical modeling of news and rumors on Twitter,’’ in Proc. 7th Workshop
Soc. Netw. Mining Anal., 2013, Art. no. 8.

[24] Y. Hashimoto and H. Ohsaki, ‘‘On estimating message diffusion dynamics
in epidemic broadcasting,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 3. Jul. 2015, pp. 133–138.

[25] F.Wang, H.Wang, andK.Xu, ‘‘Diffusive logisticmodel towards predicting
information diffusion in online social networks,’’ in Proc. 32nd Int. Conf.
Distrib. Comput. Syst. Workshops (ICDCSW), 2012, pp. 133–139.

[26] F. Wang, H. Wang, K. Xu, J. Wu, and J. Xia, ‘‘Characterizing information
diffusion in online social networks with linear diffusive model,’’Proc. 33rd
Int. Conf. Distrib. Comput. Syst. (ICDCS), 2013, pp. 307–316.

[27] H. Wang, F. Wang, and K. Xu. (2013). ‘‘Modeling information diffusion
in online social networks with partial differential equations.’’ [Online].
Available: https://arxiv.org/abs/1310.0505

[28] M. E. J. Newman, ‘‘The structure and function of complex networks,’’
SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003.

[29] Y. Hu and M. Chen, ‘‘Information diffusion prediction in mobile
social networks with hydrodynamic model,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Kuala Lumpur, Malaysia, 2016, pp. 1–5.

[30] L. D. Landau and M. Lifshitz, Fluid Mechanics. New York, NY, USA:
Pergamon.

[31] J. D. Murray, Mathematical Biology: I. An Introduction. New York, NY,
USA: Springer-Verlag, 1989.

[32] M. Holt, Numerical Methods for Fluid Dynamics: With Applications to
Geophysics (Springer Series in Computer Physics). Berlin, Germany:
Springer, 1977.

[33] V. Schneider, U. Katscher, D. H. Rischke, B. Waldhauser, J. A. Maruhn,
and C.-D. Munz, ‘‘New algorithms for ultra-relativistic numerical hydro-
dynamics,’’ J. Comput. Phys., vol. 105, no. 1, pp. 92–107, 2003.

[34] [Online]. Available: http://epic.hust.edu.cn/yinghu/IDP/datasource01

YING HU received the M.S. degree from the
Harbin Institute of Technology in 2008, and the
Ph.D. degree from the Dalian University of Tech-
nology in 2014. He is currently a Post-Doctoral
Fellow with Embedded and Pervasive Computing
Lab, Huazhong University of Science and Tech-
nology. His recent research interests include big-
data in healthcare, internet of things and online
social information diffusion.

RACHEL JEUNGEUN SONG is currently pursu-
ing the Ph.D. degree with the School of Computer
Science and Technology, Huazhong University of
Science and Technology. Her research focuses on
Internet of Things, mobile cloud, body area net-
works, emotion-aware computing, healthcare big
data, cyber physical systems, and robotics.

MIN CHEN was an Assistant Professor with
the School of Computer Science and Engi-
neering, Seoul National University (SNU) from
2009 to 2012. He was a Post-Doctoral Fellow
with the Department of Electrical and Computer
Engineering, University of British Columbia for
three years. He was a Post-Doctoral Fellow with
SNU for one and half years. He is currently a
Professor with the School of Computer Science
and Technology, Huazhong University of Science

and Technology. He is the Director of Embedded and Pervasive Computing
Lab. He has authored over 180 paper publications. He received the best paper
award from the IEEE ICC 2012, and the Best Paper Runner-up Award from
QShine 2008.

VOLUME 5, 2017 135


