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The expected advanced network explorations and the growing demand for mobile data sharing and trans-
ferring have driven numerous novel applications in Cyber-Physical Systems (CPSs), such as Intelligent
Transportation Systems (ITSs). However, current ITS implementations are restricted by the conflicts be-
tween security and communication efficiency. Focusing on this issue, this article proposes a Security-Aware
Efficient Data Sharing and Transferring (SA-EAST) model, which is designed for securing cloud-based ITS
implementations. In applying this approach, we aim to obtain secure real-time multimedia data sharing
and transferring. Our experimental evaluation has shown that our proposed model provides an effective
performance in securing communications for ITS.
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1. INTRODUCTION

The dramatic growth of wireless networks has been advanced in enormous applica-
tions from different dimensions. The Intelligent Transportation System (ITS) is one of
the significant fields in Cyber-Physical Systems (CPSs), which has a tight relationship
with real-time data sharing and transferring within Web-based solutions [Boban et al.
2011]. The rising applications of ITS have enabled a great exploration of Vehicular
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Fig. 1. Architecture of Security-Aware Efficient Data Sharing and Transferring (SA-EAST) Model. It in-
cludes Infrastructure, Ad-Hoc Network (AHN), and Cloud Computing layers.

Communication Systems (VCSs) for multiple purposes, such as safety enhancement,
traffic efficiency, and driving assistance. Deploying a smart VCS is also considered
a critical aspect of employing a smart city [Wu et al. 2012] because the communi-
cations between vehicles play an important role in achieving scalable service scopes
[Calandriello et al. 2011]. For example, an emerging technology Vehicular Digital Video
Recorder (VDVR) has been broadly applied in monitoring vehicles’ behaviors for the
purpose of protecting drivers. However, implementing mobile systems on a rapid mov-
ing object is still facing a major concern regarding unexpected adversaries while high-
performance communications are needed as well. A cloud-based solution exhibits its
potential effectiveness even though it encounters a few constraints caused by multiple
factors [Gai and Li 2012; Gai et al. 2016b]. A high moving speed generates a dynamic
manipulating context that makes the whole system complicated [Karagiannis et al.
2011]. This article focuses on both security and efficiency issues when executing ITS
and proposes a novel approach focusing on real-time secure communications.

Currently, there exist a number of challenges in deploying mobile vehicular digital
systems due to the limitations of wireless communications. For example, migrating data
to cloud servers requires a stable communication performance in a dynamic operating
environment. The rapidly moving objects can lead to an intermitted or unstable con-
nection to cloud resources, which implies that the quality of cloud services are changing
with network dynamics. Maintaining the operations of VCS securely is a challenge in
ITS. For example, adversaries can attack objects when mobile users switch communi-
cation channels. To address this issue, we propose a novel secure approach of applying
VCS in a smart city, which is called the Security-Aware Efficient Data Sharing and
Transferring (SA-EAST) model.

Figure 1 represents the architecture of the SA-EAST model, illustrating a brief
relationship mapping for critical entities in the system. Three layers are involved in
the model: the Infrastructure, Ad-Hoc Network (AHN), and Cloud Computing layers.
At the AHN layer, the mobile users who are attached to On-Board Units (OBUs) also
receive messages from other OBUs. The main components of the OBU have sensors
and wireless transceivers, vehicular embedded systems, and trusted platform modules.
Next, at the Infrastructure layer, Roadside Units (RSUs) are stations that receive
signals from mobile users and connect the users with a Resource Manager (RM). This
layer is usually deployed on the highway, where vehicles move at high speed. Finally,
an RM at the Cloud Computing Layer (CCL) is responsible for assigning tasks to
different remote cloud servers in proportion to real-time server capacities. An operation
of resource allocations is completed to address the service requests and responses by
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communicating with the remote servers on clouds. The security prediction operations
are done by RM.

Furthermore, the proposed mechanism focuses on the functionality and performance
issues of ITS, in which the services are delivered in a dynamic cloud-based environ-
ment. Our SA-EAST model uses a dynamic resource allocation mechanism for support-
ing an efficiency-aware data migration toward cloud servers. The proposed mechanism
is based on vehicular embedded systems capturing video data via vehicular cameras
and sensors, and dynamically selects the optimal cloud server for data transmissions.
Before the tasks are assigned to different cloud servers, RMs will map all available
computing sources by weighting both security and efficiency. The weight of security
is determined by security predictions, which is a mechanism analyzing unusual com-
munication behaviors. Moreover, the distributed cloud server deployment can enable
real-time communications as well as a long-term large-sized data storage. After the
distributed data receivers obtain the video data, they will send the data package to a
datacenter in which users’ location-aware data are maintained.

In addition, our model focuses on the transmission restrictions that mainly take place
when transferring video data to the clouds as well as gaining real-time digital video
management. Focusing on this problem, we propose two crucial algorithms used in our
proposed model. The first is the Cloud Resource Mapping (CRM) Algorithm, which tar-
gets having a panoramic view of cloud servers, such as capacity, data processing time,
transmission costs, and geographic distances. The mapping process is a regular check
for the availability of cloud computing resources. The second algorithm in SA-EAST
is the Security-aware Computing Resource Assignment (SCRA) Algorithm, which exe-
cutes an optimal resource allocation among distributed cloud servers. This algorithm
derives from the Min-Min Scheduling Preemptable Task algorithm [Li et al. 2012].

The proposed model is significant by the use of a jumping-off point of security-aware
efficient data transmissions in ITS. The deployment of the proposed model relies on the
cloud-based server using dynamic server selection methodology to reach real-time data
migrations. The security level can be improved by analyzing communication states.
Next, the solution supports concurrent multiple tasks generated by VCS, which can
reduce the latency caused by large-sized video file transmissions. Meanwhile, the uti-
lizations of the resource allocations mainly concentrate on task scheduling among mul-
tiple cloud servers. This field has rarely been explored by prior research; we evaluate
the proposed model in experiments.

The main contributions of this article are threefold:

(1) We propose a mobile heterogeneous cloud implementation using dynamic task as-
signments to achieve high-security performance of wireless transmissions in ITS.
The concentration of the proposed scheme is increasing both security and effi-
ciency for CPS applications with heterogenous cloud computing, in which a higher-
level performance can be achieved by our proposed distributed parallel computing
method.

(2) We propose an approach of mapping cloud resources that can be implemented in
other systems for security-aware efficient solutions. We estimate the communica-
tion security states by selectively encrypting sensitive data in order to achieve
real-time secure services.

(3) This article presents a novel ITS deployment that can be employed for securing
ubiquitous CPS by using mobile heterogeneous cloud computing. The proposed
scheme can not only ensure that sensitive data are encrypted, but also increase the
amount of encrypted basic data, which depends on latency tolerance.

The remainder of the article is organized as follows. Section 2 presents related works
in the relevant fields. Section 3 summarizes the main security issues of ITS in mobile
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heterogeneous cloud computing. Section 4 presents a motivational example illustrating
an implementation of the proposed model. Section 5 defines the main concepts used
in the proposed model and explains the proposed mechanism. The main algorithms in
the proposed model are displayed in Section 6. The experimental configurations and
results are demonstrated in Section 7. We present our conclusions in Section 8.

2. RELATED WORK

2.1. Vehicular Cyber-Physical Systems Implementations and Improvements

Many studies on multimedia over VCS have been undertaken in recent years [Huang
et al. 2011]. The performance of transmission is one of the main concerns in the research
of VCS [Jafari et al. 2012]. The limitation of the wireless bandwidth is that the data
exchange is executed in the continuous dynamic communication environment. One
approach using compressive sensors was proposed for efficient transmissions, which
used a time domain synchronous frequency-division multiplexing technique [Dai et al.
2013]. Considering the scenario of delay tolerance, a vehicular delay-tolerant network
[Pereira et al. 2012] was proposed to overcome the limitations caused by the sparse
networking connectivities. However, this field of research usually produces a trade-off
between efficiency and security.

The explorations of video wireless transmissions have also been addressed by prior
research in various fields [Carpi et al. 2011]. An approach using multipath transmission
of video streaming traffic over multi-radio mobile devices has been proposed [Song and
Zhuang 2012]. This research was based on probabilistic performance analysis. Other
research focused on predicting wireless networks for gaining energy-efficient video
transmission [Abou-zeid et al. 2014]. Similar research was also done by proposing
a cross-layer resource allocation for scalable video transmission [Cicalo and Tralli
2014]. However, using heterogeneous mobile cloud computing along with dynamic cloud
resource allocations has not been addressed by previous research.

Additionally, some prior research had addressed video streaming performance en-
hancement using cloud computing. One approach was migrating the hazards by using
a graphical model to detect Distributed Denial-of-Service (DDoS) attacks [Wang et al.
2015]. The integration of SDN with cloud computing is utilizing the characteristic of
networking virtualization via cloud systems [Jain and Paul 2013]. The main benefit of
the integration is gaining advantages from both SDN and clouds, such as adding other
cloud-based service types to SDN [Akyildiz et al. 2015]. However, these approaches
cannot solve the problem of vehicular adversaries because of the challenge of wireless
networking governance and threat detections.

Moreover, the efficiency of the Mobile Digital Vehicular Recorder (MDVR) has been
studied from various perspectives in recent years [Wang et al. 2012a]. Data allocations
for memory is one of the research directions that had been verified as an effective
approach for efficiency enhancement from a hardware perspective [Gai et al. 2016a; Qiu
et al. 2014]. Optimizations could be made when workloads were real-time constrained
[Li et al. 2013]. However, dynamic different input datatypes can result in significant
gaps between applications. Traditional data allocation optimizations can hardly satisfy
the demands of task assignments to continuously changing servers.

2.2. Monitoring Unexpected Behaviors in Cyber-Physical Systems

Some improper driving behaviors were considered unexpected incidents for OBUs, and
security issues was one of the major concerns explored by prior research [Gai et al.
2015; Batistatos et al. 2012]. One approach securing the video content proposed using
joint compression and encryptions [Pande et al. 2013]. A lightweight intrusion detection
mechanism was developed for service-oriented vehicular networks [Sedjelmaci et al.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 60, Publication date: January 2017.



Security-Aware Efficient Data Sharing and Transferring 60:5

2014]. Nonetheless, limited prior research attempted to use DVR to monitor real-time
hazards.

Considering detection of malicious behaviors, many previous works had studied tech-
niques for CPS. One approach finding temporal logic falsification of the systems was
to detect falsifying behaviors in CPS using a predefined robustness metric that was
confirmed by the metric temporal logic property [Abbas et al. 2013]. Using a reference
providing constraints was the operating principle of this type of solutions, which could
also be applied in increasing task scheduling efficiency for distributed CPS [Tang et al.
2012]. It also implied that the confirmed estimated criteria of the opportunistic paral-
lel data processing could increase both reliability and operability [Balani et al. 2014].
However, the stated criteria detecting unusual behaviors for cloud servers has rarely
been addressed as yet.

A few prior works also investigated the surveillance of unexpected or unusual oper-
ations in CPS. For instance, a study has been done for assessing security performance
when the mixed criterion of criticality is applied in a Radar Surveillance System (RSS)
[Lakshmanan et al. 2012]. This investigation used a formal overload-tolerance met-
ric to locate unanticipated conditions and allocate computing resources. Similar re-
search was processed by modeling and validating the applications’ abstract manners
in order to increase reliability and trustworthiness [Malik et al. 2012]. Nevertheless,
surveillance-based solutions in CPS were rarely explored in securing dynamic wireless
interconnected objects.

Next, applying mathematical models in VCS has been investigated by previous re-
search in a few dimensions. An approach was proposed to increase highway safety
and efficiency using the coordinated controls of vehicle platoons [Wang et al. 2012b].
Another study focused on scheduling electric station usage. One approach used a fluid
dynamic traffic model as well as M/M/S queueing theory to optimize the schedule and
distribute the charging stations for electric vehicles [Bae and Kwasinski 2012]. In a
different perspective, another approach is adding an electric vehicular operator to have
a holistic view of the charging demands [Ortega-Vazquez et al. 2013].

In summary, the problem we investigated has an urgent demand for solutions in
both academic and industrial fields. The proposed model is an innovative approach
for solving the adversary detection problem in a dynamic vehicular communications
environment.

3. ITS SECURITY ISSUES IN MOBILE HETEROGENEOUS CLOUD COMPUTING

3.1. Main Security Threats

The main security threats impacting on the implementations of ITS in mobile hetero-
geneous clouds are mainly caused by the vulnerabilities of mobile networking commu-
nications. There are several types of malicious attacks perpetrated on mobile networks.

—Channel-related attacks: This type of threat mainly occurs when communication
channels are maliciously occupied or monitored [Gebotys and White 2015]. The target
attack channels can be either public or private. Attackers tap into communications to
damage data packets, such as sending duplicate messages, adjusting data packages,
and inserting harm messages. Channel congestion is also a common attack method:
channels are maliciously occupied for disabling data deliveries. Channel bandwidth
is fully expended so that the interconnections between communication nodes are
interfered with or disconnected.

—Node-based attacks: Some malicious methods attack mobile networks via intrud-
ing or controlling communication nodes. There are a few approaches to launch-
ing this type of attack. First, some adversaries pretend that they are one of the
nodes in the communications, in which the harmful information is spread. Second,
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the attacker intrudes into the networks to duplicate and send out the same mes-
sage as the manner of multiple nodes, by which the malicious node swindles other
nodes. The receivers will hardly be able to identify the trustworthiness since the
same message is repeatedly received. Third, the adversarial party can also interfere
with the nodes’ collaboration by impeding broadcasting messages to certain nodes in
the networks, such as some Denial of Service (DoS) attacks [Serpanos and Voyiatzis
2013; Xiang et al. 2011].

—Infrastructure vulnerabilities in networks: Malicious activities also take place when
the infrastructure in traffic management systems is abused or in improper opera-
tions. In ITS, RSUs play an interconnection role that is also an attack target for
adversaries. Attackers usually use three intrusion methods. First, controlling an
RSU to generate conflict monitor messages can disable other RSUs’ functions. In
addition, combining capturing infrastructure with node-based attacks can increase
harm while the infrastructure can be considered a node in the network [Dua et al.
2014]. Finally, physical damage can result in dramatic unexpected abuses due to
irregular operations.

3.2. Constraints of Security-Aware Efficiency Enhancement

The fundamental approach to protecting sensitive information is encrypting data be-
fore the data are transmitted in the networks, such that the adversaries can hardly
have direct decipherings on the nodes. The constraints of this mechanism is that there
is a contradiction between security and efficiency [Wang et al. 2014; Qiu et al. 2011].
Time consumption increases when the security level goes up. For reaching real-time
services with low latency time, it is almost impossible to encrypt all transmissions due
to the large-size data and continuous data generation. Addressing this conflict, our
proposed model uses the Computation Time-Oriented (CTO) method to classify encryp-
tion targets. The operating principle of using the CTO method is dynamically selecting
encrypted objects while ensuring that sensitive data are encrypted. The details of the
proposed CTO operations are given in Section 5.

4. MOTIVATIONAL EXAMPLE

This motivational example simulates an OBU running on a highway that transmits
video data to cloud servers via connecting RSUs [Karagiannis et al. 2011]. Concurrent
wireless communications also include other tasks of VCSs due to other vehicular func-
tionalities. It implies that the tasks are independent from each other, but some tasks
have predecessor–successor relations.

In this example, there are eight independent data packets, marked {A, B, C, D, E, F,
G, H}. Table I contains the security requirements of the input data packets and their
corresponding time consumptions. There are eight data packets, from A to H. Each data
packet X can select encrypt data (X1) or nonencrypt data (X2). Three working modes
are offered by three cloud service providers: M1, M2, and M3. Service providers have
various performances for different data packets. Moreover, there are three working
modes provided by different cloud vendors, namely, M1, M2, and M3. Two options for
each data packet are available, which means different security levels’ operations by the
selections of the encryptions. In the table, 1 means nonencryption and 2 means with
encryptions.

In addition, we assume that A, D, and H are sensitive data that need encryptions.
Other data packets have two options, either encrypting or nonencrypting data. There-
fore, data packets A, D, and H only have the higher-level security options, A2, D2,
and H2. In Table I, Length refers to the number of data units in the packet. The time
consumption under each cloud resource is the time cost of each data unit. Figure 2 illus-
trates the Data Flow Graph (DFG) with predecessor–successor relations. Figure 2(a)
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Table I. Security Requirements and
Time Consumptions

TCPU
DP Length M1 M2 M3
A1

10
- - -

A2 2 3 4
B1

4
2 2 4

B2 4 4 6
C1

10
1 2 3

C2 2 3 5
D1

20
- - -

D2 1 2 5
E1

5
2 3 5

E2 4 5 7
F1

2
1 1 2

F2 2 2 4
G1

7
2 3 3

G2 4 5 6
H1

15
- - -

H2 2 2 3
Note: DP = Data Packets; TCPU =
Time Consumption Per Unit; the
length is counted by units.

Table II. Data Packets Assignment

TC
Layers Length DP M1 M2 M3

i 10 A2 20 30 40

ii

15 H2 30 30 45

10
C1 10 20 30
C2 20 30 50

4
B1 8 8 16
B2 16 16 24

ii

20 D2 20 40 100

7
G1 14 21 21
G2 28 35 42

5
E1 10 15 25
E2 20 25 35

2
F1 2 2 4
F2 4 4 8

Note: DP = Data Packets; TC = Time Con-
sumption; the length is counted by units.

Fig. 2. Dataflow for the motivational example. Figure 2(a) represents a dataflow graph for the given data
processing tasks. Figure 2(b) represents task flow using parallel computing.

represents the DFG of the given eight data packets. As shown in this figure, data
A needs to be transmitted before B, C, and H. Data D and E can be processed after
B. Data C must be processed before F and G. Therefore, we can allocate data packet
transmissions to different clouds by different layers. Figure 2(b) displays the task flow
using parallel computing. For instance, B, C, and H can be parallel computed because
all these data packets can be executed after A, as shown by the layer ii in Figure 2(b).

Furthermore, we generate a table for assigning data packets based on these ele-
ments. Table II illustrates the optimizations of the task assignments using distributed
cloud resources. First, we group the data packet into three layers, which derives from
Figure 2(b). Next, at each layer, we sort the data packets in a descending order accord-
ing to the number of units. Once all time costs are finalized, we start determining the
data packet assignments. The assignments are in descending order and the succeeding
working mode selection needs to be associated with the preceding assignment.

Next, repeat the steps outlined earlier and we eventually obtain the following as-
signments: A2 → M1, H2 → M1, C2 → M2, B2 → M3, D2 → M1, G1 → M2,
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Fig. 3. Efficiency performance comparison at the same security level between FIFO and SA-EAST.

E1 → M3, and F2 → M1. The total time is 75 from (20+30+25) by encrypt-
ing data A, D, and H. Figure 3 is an efficiency performance comparison between
the First-In-First-Out (FIFO) method and SA-EAST. The order of task processing is
A2 → C2 → B2 → H2 → F2 → E1 → D2 → G1. The examined targets have the
same security performances, as well as the same cloud service providers. The result
is that SA-EAST has a shorter execution time than FIFO, which has a 29 time unit
difference deriving from (104 – 75).

5. CONCEPTS AND THE PROPOSED MODEL

5.1. Problem Definition and Main Concepts Used in the SA-EAST Model

Definition 1 (Data Packets Assignment Problem on Heterogeneous Clouds). Given a
set of data packets that need to be transmitted, which consist of both sensitive data
and basic data. The data transmission timing costs are varied and the information of
transmission capacities is available. The problem is to determine an approach mini-
mizing the execution time by assigning data packets to heterogeneous cloud servers,
ensuring that the sensitive data are encrypted and partial basic data are encrypted.

The inputs are cloud server availability, historical execution time for each type of
data, and input data packets. The input data packets need to be separated into several
independent data subpackets. The required information includes the length of each
data packet and the corresponding time consumption operated by each working mode.
At least two working modes are offered by cloud service providers, including encryption
and nonencryption. The output is an assignment plan that assigns data packets to
heterogeneous clouds for minimizing execution time as well as increasing security level.
The main concepts used in our proposed SA-EAST model are defined. The following
itemized definitions are crucial entities and contexts in the model.

—Cloud Manager: An interconnector managing and assigning tasks to cloud resources
depending on the OBUs’ geographic positions and service contents. We use notation
C={C1, C2, . . . , Cn}, where n ∈ N.

—Terminal Cloud Server: A group of cloud servers in which the video data are eventu-
ally stored, operated, and maintained for specific purposes of the usage.

—Heterogeneous Mobile Cloud Computing: In the SA-EAST model, this term refers to
various cloud vendors offering OBUs different service contents, qualities, or perfor-
mances due to the various techniques and locations.

—Cloud Server: Cloud servers in SA-EAST is an exchangeable term with Distributed
Cloud Servers (DCS) and cloud resources. We use the notation R={R1, R2, . . . , Rn},
where n ∈ N. The capacity information for each server is the input of SA-EAST.
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Fig. 4. Mapping process structure. Wireless connections are processed by deploying RSUs, which connect
cloud clients with the remote cloud.

—Sensitive Data: Those data must be encrypted in wireless communications.
—Basic Data: Refers to the data that can be either encrypted or nonencrypted, which

depends on latency tolerance. Encrypting these data can increase the system’s entire
security level.

We consider time consumption a critical factor since the key concentration of our
approach is efficiency. We use T, T = {T1; T2; . . . ; Tn, n ∈ N} to denote the total time
consumption, which consists of a variety of timing consumptions caused by different
sources, such as wireless transmissions, video operations, audio operations, and data
analysis. For each observed time spot, we use {t1, t2, . . . , tn}, where n ∈ N.

Figure 4 is a structure illustration of the mapping process. As illustrated in the figure,
the running vehicle is an OBU that captures video data during the driving period. The
data inputs may consist of a variety of video file formats with different container
formats since the VDVR may support multiple video recording devices synchronously.
Therefore, various coded video and audio data may be in different data types. Other
data are also in the queue since VCS is applied by deploying embedded systems [Qiu and
Sha 2009] with other wireless services, such as the Global Positioning System (GPS),
Vehicle Speed Limit Alarm System (VSLAS), or Mobile Intrusion Detection System
(MIDS).

Meanwhile, the communications are delivered by connecting to a set of RSUs. The
received signals are sent to the cloud manager, which arranges task assignments for
heterogeneous mobile cloud computing. The cloud manager looks for available dis-
tributed cloud servers and maps their conditions with capacities [Qiu et al. 2015].
Data analyses are done on distributed cloud servers. The results are sent to the ter-
minal cloud server for real-time data usage or maintenance. For instance, a real-time
camera-view monitor can be implemented.

In order to ensure real-time wireless video transmissions, the critical part is to min-
imize the latency when transmitting a large packed video file. It is a major restriction
for MVCR real-time transmissions, since a long queue can cause a large latency and in-
fluences other functions of VCS. Moreover, an important factor is that the computation
time can vary due to the executions operated by different hardware, even though the
same task is performed. For instance, compared with CPUs, Graphics Processing Units
(GPUs) can have a higher performance when encountering a similar operation. This
phenomenon forms a heterogeneous cloud environment that offers selections for cloud
users. Our proposed algorithm mainly focuses on this issue and provides an efficient
video data transmission. This issue is related to not only networking bandwidth, but
also cloud server computation capacities and conditions.
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Fig. 5. Example of forecasting values using the exponential smoothing technique. α = 0.6.

5.2. Computation Time-Oriented Security Enhancement Using Greedy Algorithm

The mechanism of CTO consists of two steps. The first step is categorizing all data
packets into two groups, including sensitive and basic data. A table mapping all time
consumptions under cloud resources needs to be generated. The results will be used
to determine the server selection later. Next, we use the DFG method to identify the
layers by which the data packets are grouped. At each layer, we sort the data packets
depending on their lengths; then, the data packets are assigned one by one. For each
data packet, the cloud server offering the shortest execution time will be selected.
During the manipulative process, the server is occupied and other data packets need to
select other available servers. The cloud manager uses this method to assign all data
packets until all layers are accomplished.

5.3. Mapping Cloud Resources Using Exponential Smoothing Techniques

The first phase of our proposed model is to identify the cloud servers’ capacities. It
requires a prediction since the performances of the cloud servers are influenced by a
variety of factors. The technique that we use for forecasting performance trends is the
Exponential Smoothing Technique (EST). EST is a technique that analyzes historical
trends for forecasting the value of the next time period [Chan et al. 2012]. The equation
of EST is Equation (1):

Ft+1 = Ft + α(Rt − Ft), (1)
where F refers to a forecasting value. Ft+1 and Ft denote the forecasting values at time
spots/periods t+1 and t, where t refers to a time spot/period. Rt denotes the real value
at time t. α is a Smoothing Weight (SW) that is scoped in 0 < α < 1. Therefore, we gain
the function as follows:

F(t + 1) = f (F(t)). (2)
Figure 5 is an example of using exponential smoothing technique to forecast com-

putation time consumptions with α = 0.6. In the figure, the broken line refers to the
forecast values and the solid line refers to the actual value gained from the observa-
tions. The actual values can be obtained from cloud managers in our model.

Therefore, addressing the total time consumption, we use the forecast technique to
map all available cloud resources. Assume that there are group cloud resources R.
F Ri

t denotes the forecast time consumption. Since the time consumption derives from
various components, we consider the total time a sum of time consumptions generated
from a set of data transmission and processing, such as video, audio, vehicular position,
and other functions [Pang et al. 2014]. We use F Ri

t ( j) to denote each component’s
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Fig. 6. Operating structure of efficiency-aware cloud computing resource allocations.

time consumption. Correspondingly, the actual time cost is T Ri
t ( j). Therefore, we can

calculate the forecasting time cost on each cloud server by using Equation (3), and the
actual time cost is gained by Equation (4):

F Ri
t =

m∑
j=1

F Ri
t ( j) (3)

T Ri
t =

m∑
j=1

T Ri
t ( j). (4)

The total time consumptions of all cloud servers are gained from summing up F Ri
t

and T Ri
t . To minimize the execution time, we always select the shortest execution time,

which is denoted as jmin. We predict the total time consumption value from Equation (5)
and the actual time cost is gained by Equation (6):

T f orecast =
n∑

i=1

F Ri
t =

n∑
i=1

m∑
j=1

F Ri
t ( jmin) (5)

Tactual =
n∑

i=1

T Ri
t =

n∑
i=1

m∑
j=1

T Ri
t ( jmin). (6)

We use Equations (5) and (6) for the purpose of mapping real-time cloud severs’
status and availabilities.

5.4. Cloud Resource Allocations Minimizing Time Consumptions

We also propose an approach allocating tasks to various cloud resources in order to
accomplish tasks in the shortest time period. As described in Section 4, data collections
are sent to a layer called the cloud manager that is responsible for assigning tasks
to distributed cloud servers. The main challenge of this step is that the manipulative
process is dynamic due to dramatic position changes that can result in the varied
performances. For the purpose of proper selections, we use the technique introduced in
Section 5.3 as well as a greedy algorithm, the SCRA algorithm.

Figure 6 is an operating diagram of cloud computing resource allocations. We divide
the long waiting queue into a number of subtasks when the tasks are independent from
each other. As mentioned earlier, we select the shortest time consumption from a set
of available cloud servers, {R1, R2, . . . , Ri} (i ∈ N). We define each subtask as an Sk,
and there is a set S={S1, S2, . . . , Sk} (k ∈ N). A selection operation determining the
shortest time period is denoted as θ ( j, S, t), which refers to the cloud server j, subtask
S, and time period t. The computation of θ follows the following formulation, for which
Min refers to the shortest time.

θ =Min

[ j∏
i=1

F(t + 1, Sk, Ri)

]
(7)
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Therefore, considering the wireless transmission time Ttrans, using the SCRA algo-
rithm can further formulate the calculations as follows:

Tforecast =
n∑

i=1

m∑
j=1

s∑
k=1

θ

{
Min

[ j∏
i=1

F(t + 1, Sk, Ri)

]}
+ Ttrans. (8)

The following section focuses on explaining the crucial algorithms used in the model.

6. ALGORITHMS

6.1. Cloud Resource Mapping (CRM) Algorithm

ALGORITHM 1: Cloud Resource Mapping (CRM) Algorithm

Require: R, {T h
i (Sk)}.

Ensure: M

1: The OBU sends out the service request to the Cloud Manager that searches the idle cloud
servers.

2: if cloud server is idle/available then
3: Rtemp ← Ri
4: end if
5: List all Ri in Rtemp; input T h

i (Sk)
6: for all target measured data input types Ii in Ri ∈ Rtemp do
7: for all cloud servers Ri do
8: if historical dataset is not empty then
9: MeasureContainer ← {T h

i (Sk)}
10: Using Equation (1) to generate predictions, obtain the shortest time consumption

T short
i (Sk)

11: M ← T short
i (Sk)

12: end if
13: end for
14: end for
15: RETURN M

The CRM algorithm is designed for mapping the cloud resources by tagging resource
capacities and predicting accomplishment time. The inputs of the algorithm include the
historical trend data from cloud servers. Addressing the computing capability. we aim
to measure the server capacity by considering a few data input scenarios. For instance,
we measure the performance differences caused by the diversity of hardware, such as
CPU, GPU, and memory. The measurement is based on predictions using the historical
data.

Algorithm 1 contains pseudocodes for the CRM algorithm. The target measured cloud
servers are within the set R. The corresponding historical execution time T for each
type of data input is represented as T h

i (Sk). Different data inputs are denoted as Ii.
The output will be a table M that maps all forecasting computation time with the
corresponding data type inputs. As shown in Algorithm 1, there are a few main phases
for the implementations.

(1) Input required datasets, including recent historical reference datasets and cloud
server information, which will be used for server capacity analysis.

(2) Search all idle cloud servers and add the information to a temporary dataset Rtemp.
(3) Input the historical reference dataset and start the prediction process using expo-

nential smoothing techniques.
(4) Try all situations if the reference dataset is nonempty and add the results to the

table M.
(5) Output the M after all predictions are done.
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6.2. Security-aware Computing Resource Assignment (SCRA) Algorithm

The SCRA algorithm is designed to use the outcomes of the CRM algorithm and dy-
namically select the cloud servers. The computation time is mapped by predictions
from analyzing the historical datasets. The input data packages, Data, consist of a
number of components that are defined as fields. The output will be an allocation plan
for assigning tasks to heterogeneous cloud resources, which is represented as Assign-
mentPlan.

Algorithm 2 contains pseudocodes of the SCRA algorithm. In the algorithm, machine
denotes a cloud server.

ALGORITHM 2: Security-aware Computing Resource Assignment (SCRA) Algorithm
Require: A data package: data, M

Ensure: Allocation plan: plan
1: Initialize an endTimeList, input M, Temp← ∅
2: while ∃ data are not assigned do
3: for ∀ fields in data do
4: for ∀ machine do
5: endTimeList.add(sum up machine.freeTime and machine.processTime(field))
6: end for
7: end for
8: for ∀ input data packets do
9: if the data packet does not have preceding task then
10: Temp ← data packet
11: end if
12: end for
13: for all data packets in the set Temp do
14: Sort data packets according to the lengths in a descending order
15: Select the minimum endTime in endTimeList
16: Assign the field process on the machine that has minimum endTime
17: machines.freeTime ← minimum endTime
18: /*Forward the tasks to other cloud servers*/
19: end for
20: end while
21: RETURN AssignmentPlan

The main phases of the SCRA include the following steps:

(1) Input data packages and the mapping table generated from the output of executing
Algorithm 1. Obtain data from M, list cloud servers’ available time, and predict
processing time consumptions.

(2) Calculate the time consumptions and sort them to a list according to the forecasting
accomplishment time.

(3) Group data packets by using CTO methods. Sort the data packets at each layer
based on the lengths of the data packets.

(4) Select the minimum accomplishment time from the list and determine the cloud
servers to which the task is assigned. Forwarded tasks must be accomplished within
a shorter time period.

(5) While there exist data that are not assigned, repeat the preceding steps till all data
are assigned.

(6) Output the AssignmentPlan and execute the plan.

7. EXPERIMENT AND THE RESULTS

For the purpose of evaluation, we perform a series of experiments to simulate the
practical implementations. Experimental configurations are given in Section 7.1 and
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crucial experimental results are presented in Section 7.2. Finally, Section 7.3 presents
discussions about findings and future work.

7.1. Experimental Configurations

We conducted experiments on our own written simulation environment assuming that
vehicles send out a package every second. The hardware used in our experiments
included an HP server having the following hardware configuration: 8-core CPU, a
16GM memory, and a MySQL 5.7. We used the VMWare workstation operated within
a Ubuntu 15.04 LTS server in order to simulate cloud computing. In addition, the
experiments consisted of a few examinations. First, we evaluated the performance of
the CRM algorithm. Two settings simulate four cloud servers: clouds A, B, C, and D.
We aimed to measure computation time consumption from two aspects: accuracy at the
specific time period and performance at different data inputs. Accuracy was examined
by comparing the actual time consumptions with the forecasting values.

We also evaluated the performance of the SCRA algorithm by simulating the total
time consumptions, including data transmission and data processing. In a data pack-
age, there were 5 characteristic fields measured in our experiment, including video
data, audio data, the vehicle’s coordinates, the vehicle’s velocity, and gasoline volume.
Moreover, we set up a number of cloud servers using different configurations in this
simulation system. The configurations are based on defining five different levels of
capacities that are associated with the targeted characteristic fields.

We measured a variety of experimental scenarios using a group of experimental
settings to evaluate the performance of the proposed resource allocation scheme. Two
comparison targets were traditional cloud approaches and utilizing a supercomputer as
cloud server. The performances of supercomputers and normal servers were configured
by putting different parameters in our simulator. The configurations of the settings are
as follows:

—Setting 1: We simulated a scenario of common cloud services, which cloud users
connect with only one fixed performance cloud server.

—Setting 2: We simulated a supercomputer that has higher-level performances. The
calculation speed is n times faster than one single cloud server.

—Setting 3: We simulated our proposed approach using m distributed cloud servers.
—Setting 4: We simulated a set of experiments to compare the SA-EAST with the FIFO

method, which were based on the same security requirements and performances.

7.2. Experimental Results

In this section, we present some results gained from our experimental evaluations. Both
algorithms were examined and partial outcomes are exhibited for the demonstration
purpose.

First, Figure 7 represented a time comparison between the actual execution time
costs and the forecasting total time costs using four cloud servers—assumed as
Cloud A, B, C, and D—when the value α was 0.6. The figure displays 10 rounds
of experimental results, which could prove that our mechanism could fit in the
requirements of certain cases. The time gaps were all in the acceptable range. For
measuring large-sized continuous input data, Figure 7 illustrates partial experimental
results for comparing values between actual and forecasting consumptions within a
great amount of experimental runs. The value of α was selected as 0.6 as well. The
findings derived from Figures 7 and 8 could prove that prediction of value fluctuations
was applicable for mapping server capacities.

Figure 9 presented a comparison of forecasting values for four cloud servers. Accord-
ing to the figure, cloud B usually performed better than other clouds due to shorter
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Fig. 7. Time difference comparing the actual total time consumptions with forecasting total time consump-
tions for four cloud servers, including clouds A, B, C, and D. Time is measured by milliseconds. Experimental
runs: 10. α = 0.6.

Fig. 8. Experimental results for comparing values between actual and forecasting consumptions within a
great amount of experimental runs by using exponential smoothing techniques. Four cloud servers include
clouds A, B, C, and D. α = 0.6.

time consumptions. This cloud server was usually selected as the main processor in
the clouds. The demonstrations from Figures 7 to 9 proved the feasibility of our pro-
posed scheme. The following figures were generated from the evaluations of the SCRA
algorithm.

Figure 10 presents a comparisons of delays among settings 1, 2, and 3. Accord-
ing to the figure, delay grew dramatically fast on setting 1 when execution time
increased. Settings 2 and 3 had similar performances. It implied that traditional cloud
services using limited fixed cloud servers had great difficulty in real-time video trans-
mission and data processing. Our proposed scheme using distributed cloud resources
and supercomputer-based solutions were two potential solutions.
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Fig. 9. A comparison of forecasting time consumptions on different data inputs for four cloud servers,
including clouds A, B, C, and D, using exponential smoothing techniques. α = 0.6.

Fig. 10. Comparisons of delay distributions among settings 1, 2, and 3, associated with the execution
time. Supercomputer capacity: 4 times faster than a single regular server. The number of distributed cloud
resources: 4.

Figure 11 presented a comparison of time delay between our proposed approach
and implementing supercomputers. The figure showed that our approach had a better
performance than that of the supercomputer. The delay was limited into an acceptable
range when executing SA-EAST. In addition, we examined the distribution of the
data pack ages by measuring the dataset volumes. Figure 12 displayed a data sample
showing the data volumes between different data types. Data 0 had the biggest volume,
which was a video data file. Other data types required much less transmissions, which
meant that the main transmission costs were produced by transferring video data.
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Fig. 11. Comparison of delay distributions between SA-EAST and using a supercomputer. Supercomputer
capacity: 3 times faster than a single regular server. The number of distributed cloud resources: 4.

Fig. 12. Data volume distributions between various data types.

More experiments were done for evaluating the performance differences between
SA-EAST and using supercomputers. Figure 13 illustrates a number of experimental
results produced by simulating different supercomputers. The configurations were
based on the speed of the supercomputers, which were 2, 3, 4, and 5 times faster
than regular cloud servers. The figure shows that our proposed approach had a stable
performance. However, the performances of supercomputer-based solutions had a
strong relationship with the computation capability of the supercomputer.

Figure 14 demonstrates that our proposed scheme had an advantage of reducing
execution time while security performance is the same compared with FIFO methods.
According to the figure, the SA-EAST approach performed better in saving time than
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Fig. 13. Performance comparisons between settings 2 and 3 using different parameters. The number of
distributed cloud resources: 4.

Fig. 14. Transmission time consumption (ms) comparisons between SA-EAST and FIFO with the same
security performances. Experimental setting: 4.

FIFO in most situations. The influencing factors included the length of the data packets
and the cloud servers’ capabilities.

Finally, we focused on examining the proposed approach by using different cloud
resource capabilities. The experiments were done by deploying different amounts of
cloud server as well as the computation speeds. Our experimental results verified two
assertions. The first was that the number of cloud servers had a positive relationship
with efficiency. The second was that there was a critical point for the computation
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Fig. 15. Performance comparisons for setting 3 using different cloud resources.

capabilities. Performance would become stable once the calculation capabilities pass
the critical point.

In summary, our experimental evaluations proved that our proposed approach could
be a solution for supporting real-time video transmission attached to VCS. Our ap-
proach was superior to traditional cloud service offerings and had more stable perfor-
mances than using supercomputers.

7.3. Discussions

Based on the results gained from our experimental evaluations, we found that our
proposed approach was an efficient cloud-based solution for achieving real-time com-
munications in ITS. Heterogeneous mobile cloud computing is deployed in our proposed
model, which could work efficiently in most operation scenarios. For the purpose of a
successful model implementation, we presented two suggestions to engineers and sys-
tem designers.

First, our approach provided a method of using regular clouds for reaching high
performance. In general, deploying supercomputers or high-performance computing
facilities could assist in gaining a high-speed execution. However, this deployment
was not affordable for most organizations. Thus, using a regular computing resource
is one of the major benefits of using our approach. The whole performance could be
similar or superior to using supercomputer-based solutions due to distributed parallel
computing. Second, from a practical perspective, collecting historical data is significant
for establishing an effective forecasting system. A proper configuration of dividing data
in a periodic manner was an alternative for system designers.

Finally, our future work will be focused in two directions. The first will be to converge
the proposed approach into the existing ITS system in order to examine practical per-
formances and implementation feasibility. Multiple dimensions will be covered by this
direction, such as big data, data fusion, and distributed data storage. The evaluation in
the real-world context would be completed in our future work. The other research focus
will be attempting to leverage the SA-EAST model in other systems, such as Social
Cyber-Physical Systems (SCPSs), the Internet-of-Things (IoT), and smart cities.
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8. CONCLUSIONS

This article proposes a novel cloud-based approach supporting real-time vehicular
multimedia data transmissions when implementing VCS. The proposed model, SA-
EAST, was an exploration of dynamically assigning data packet to cloud resources
based on security requirements. Implementing the proposed scheme could not only
protect sensitive data, but also increase the entire security level, which depends on the
cloud servers’ performances. Two main algorithms in SA-EAST were CRM and SCRA
algorithms. The experimental evaluation proved the implementation feasibility and
adaptability of the proposed scheme.
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