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ABSTRACT Some inherent shortcomings of the global positioning systems (GPSs), such as limited accuracy
and availability, limit the positioning performance of a vehicular location system in urban harsh environ-
ments. This motivates the development of cooperative positioning (CP) methods based on emerging vehicle-
to-anything communications. In this paper, we present a framework of vehicular positioning enhancement
based on dedicated short range communications (DSRC). An interactive multiple model is first used to track
the distributed manners of both the vehicle acceleration variations and the switching of the covariances of
DSRC physical measurements such as the Doppler frequency shift and the received signal strength indicator,
with which a novel CP enhancement method is presented to improve the distributed estimation performance
by sharing the motion states and the physical measurements among local vehicles through vehicular DSRC.
We have also presented an analysis on the positioning performance, and a closed-formed lower bound,
named themodified square position error bound (mSPEB), is derived for bounding the positioning estimation
performance of CP systems. Simulation results have been supplemented to compare our proposed method
with the stand-alone GPS implementation in terms of the root-mean-square error (RMSE), showing that the
obtained positioning enhancement can improve comprehensive positioning performance by the percentage
varying between about 35% and about 72% under different traffic intensities and the connected vehicle
penetrations. More importantly, the RMSE achieved by our method is shown remarkably closed to the root
of the theoretical mSPEB.

INDEX TERMS Vehicle localization systems, vehicular positioning enhancements, dedicated short-range
communications (DSRC), cooperative positioning (CP).

I. INTRODUCTION
The availability of high-accuracy location-awareness is
essential for a diverse set of vehicular applications includ-
ing intelligent transportation systems, location-based ser-
vices (LBS), navigation, as well as a couple of emerging
cooperative vehicle-infrastructure systems (CVIS) [1].
Typically, as an important technique, the real-time vehicle
positioning system has drawn great attention in the fields
of transportation and mobile communications [2]. However,
it still faces a big challenge in the areas with inconsistent
availability of satellite networks, especially in dense urban

areas where the stand-alone global navigation satellite sys-
tems (GNSSs) (e.g., GPS) cannot work well. Even though
a set of high precision location equipment (e.g., DGPS) is
deployed, the positioning performance is adversely impacted
in non-line-of-sight (NLOS) (e.g., buildings, walls, trees,
vehicles, and more obstructions) scenarios, or by the severe
multi-path effect in urban canyon environments [3].

In vehicle ad-hoc networks (VANETs), it is expected that
any vehicle with wireless communication capability will be
able to accurately sense each other and to contribute to
vehicular collision avoidance, lane departure warning,
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and intersection safety enhancements [4]–[6]. Apart from
the GPS, a lot of emerging location systems relying on
the spatial radio frequency, such as wireless communication
signals (e.g., WiFi, Cellular, RFID) or inertial navigation
system (INS), are implemented [7]–[10]. In [2] and [11]–[15],
the fundamental techniques in positioning systems have been
presented based on the real-time measurements of time of
arrival (TOA), time difference of arrival (TDOA), direction
of arrival (DOA), received signal strength indicator (RSSI),
Doppler frequency shift (DFS), fingerprinting, and wire-
less channel state information (CSI) techniques. Especially,
cloud-based wireless network proposed in [16] is expected
to provide flexible virtualized network functions for vehic-
ular positioning. Recent researches indicate that these mea-
surements are challenged by some drawbacks varying from
complexities of the time-synchronization, occupations of the
high-bandwidth, to huge costs on the implementations [3].
Although there already exist some location systems, such
as those presented in [17] and [18], which can achieve
lane-level location performance, these systems require the
accurate detection on unique driving events through smart
phones or the deployment of lane anchors. So they dra-
matically depend on the accuracy in real-time event data
provided by smart phones, social network and the road-side
anchors [19]–[21].

To resolve these drawbacks, a new class of vehicular
CP methods has been presented in recent years [12], [22].
Based on vehicle-to-vehicle (V2V), vehicle-to-infrastruc-
ture (V2I) communications, and data fusion technolo-
gies [10], [23]–[25], CP is able to further enhance the
accuracy and the precision performance of the vehicle local-
ization systems. DSRC, with a bandwidth of 75 MHz at the
5.9GHz band, is designed for wireless access in vehicular
environment (WAVE) to ensure a maximum communication
range up to 1000 m under line-of-sight (LOS) conditions,
or up to 300 m under high mobility environments, and to
provide the capacity of 50 millisecond-delays on the end-to-
end communication and a data rate from 3 to 27 Mb/s [26].
Due to the aforementioned properties, DSRC has become an
attractive technology for the CV applications which aim to
establish an inter-connected system among intelligent vehi-
cles, and to make incremental improvements in traffic safety,
transport efficiency and environmental contaminants. To set
up the fundamental framework on the cooperative localiza-
tion systems, insightful explorations have been presented
in [24] and [27] from the fundamental theories to the
real world applications, including the theoretical limits,
the optimized algorithms and the advanced technologies.
Specifically, the field-testing researches indicate that some
DSRC-based CP techniques achieving lane-level accuracy
can profoundly benefit many applications related to traffic
safety [18], [25], [28].

In this paper, we present a framework of DSRC-based
enhancement for mobile vehicle localization using the DSRC
physical layer data and the coarse position and velocity
data provided by the commodity GPS. The enhancement is

achieved by sharing and combining multilateral information
of local vehicles through DSRC. The main contributions of
this paper are summarized as follows:
• Amotion state of each vehicle is represented by its real-
time position and velocity. Using the first-order Taylor
series approximation, we have developed a linearized
system model to formulate the relationship between the
real-time vehicular motion state and the physical layer
measurements including the DFS and the RSSI, and
obtained a transition matrix which reveals the benefit
of information interaction among local vehicles into
cooperative localization enhancements.

• With the linearized system model aforementioned, we
have further proposed a distributed interactive multiple-
model (IMM) Kalman filter, which can be applied to
track variations of acceleration of vehicles and the
covariances of the DFS and the RSSI measurements
under the different situations. The Kalman filter is
implemented to achieve local information fusion among
vehicles in an on-line distributed manner, such that it can
enhance the position performance of vehicle localization
systems.

• We derive a novel theoretical lower bound limit-
ing the positioning estimation performance, named
the mSPEB. The closed-form of the mSPEB needs to
process a lower-dimensional equivalent Fisher infor-
mation matrix (EFIM) and to calculate the bound for
the minimum eigenvalue of a high-dimensional Fisher
information matrix (FIM), such that it is with lower
complexity, when compared to the SPEB used in current
literature [14], [29], [30] that has to calculate the inverse
of the high-dimensional FIM directly.

The reminder of this paper is organized as follows. The
problem to be solved and the analytical models are presented
in Section II. The procedure of the data fusion method and
the CV-enhanced DIMM-KF algorithm are jointly described
in Section III. Numerical results are analyzed and com-
pared in Section IV. Finally, the conclusions are discussed
in Section V.

II. SYSTEM MODEL AND LOCALIZATION ENHANCEMENT
The problem to be solved is to estimate the position of a
target vehicle (TV) moving on a road section where there
are many other moving neighbors around the TV. Assume
that a part of participated vehicles in the CV scenarios are
able to know their own state information, including posi-
tion, velocity provided by the GPS receiver. Meanwhile, it
should be noted that the neighbors state information is easy
to obtain from the DSRC links from which the DFS and
the RSSI measurements can be extracted as well. We define
CV penetration to represent the percentage of vehicles who
hold the CV abilities on the simulated road section. In this
scenario, the TV is considered as a research objective for
positioning enhancements, and the neighbors are considered
as the vehicles who are within the coverage of the DSRC
networks of the TV.
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FIGURE 1. Positioning enhanced by the DFS and the RSSI measurements.

A. SYSTEM MODEL
Consider a CV scenario consisting of the moving vehi-
cles, where each vehicle is equipped with a GPS receiver
providing coarse data to set up the state vector θk =
[mx,k ,my,k , ṁx,k , ṁy,k ]T . The position and the velocity com-
ponents of the vehicle are denoted by (mx,k ,my,k ) and
(ṁx,k , ṁy,k ), respectively. The x and y subscripts denote
the orientation along the East (E) and the North (N) axes,
respectively. The subscript k denotes the time step, and
T is the transpose operator. The dynamic procedure of the
moving vehicles can be considered as the following motion
model [31], [32]:

θk+1 = Fθk +G(ϕk + ζk), (1)

with

F =
[
I2 1tI2
O2 I2

]
, ϕk =

[
ax,k
ay,k

]
,

G =
[ 1

21t
2I2

1tI2

]
, ζk =

[
ζx,k
ζy,k

]
, (2)

where ϕk is the discrete-time command process and ζk is
the system noise modeled as zero-mean Gaussian noise with
a covariance matrix Qk. F is the system transition matrix
describing the movement of the TV between two consecu-
tive time steps. G is the transition matrix that models the
acceleration-related state and the system noise changes. IM
denotes aM×M identitymatrix, andOM denotes aM×M
zero matrix. Correspondingly, ζx,k and ζy,k are the accelera-
tion noise along the E and the N axes, respectively, and1t is
the sampling period.

The command process ϕk is a time-homogeneous Markov
chain with a finite state space which takes a set of acceleration
values ϕ = {a1, ..., aL}. The transition probability matrix for
the different acceleration states in ϕ is defined as5ϕ = [πϕpq]
with the transition probability πϕpq = P{ϕk = ap|ϕk−1 = aq}
where 0 ≤ π

ϕ
pq ≤ 1,

∑L
q=1 ϕpq = 1, p, q = 1, . . . ,L.

It should be noted that the system model (1) with
Markovian switching systems has been widely used
to characterize the state variations of the dynamic
object [29], [32], [33]. In the considerable scenario, it is

reasonable to utilize the Markov chain in the model (1)
to represent the process that vehicles suffer from sudden
changes caused by various traffic incidents, such as stop
signs, or traffic lights switching. Moreover, the set ϕ can
be considered as a sectional-continuous function during each
instant time interval (the sampling period). Such amodel with
the acceleration switching among different non-zero means is
more effective to characterize the vehicle movements in the
real scenario than the motion models only with a zero-mean
white Gaussian noise in general [14], [32]–[34]. In terms of
the system model described as (1), the measurement model
can be defined as follows:

zk = h(θk )+ ϑk(φk ), (3)

where h = [mx,k ,my,k , ṁx,k , ṁy,k , ρ1k , ..., ρ
i
k , r

1
k , ..., r

j
k ]
T is

a nonlinear measurement vector associated with θk, and ϑk
is the measurement noise modeled as zero-mean white Gaus-
sian noise with varying covariance matrix Rk determined by
φk . φk is a time-homogeneous Markov chain with two states
to represent the switching modes φ = {s1, s2}, where s1 is
assigned to the event ‘‘LOS’’, and s2 is assigned to the event
‘‘NLOS’’. Correspondingly, the transition probability matrix
is defined as 5φ = [πφuv] with transition probability πφuv =
P{φk = su|φk−1 = sv}, where 0 ≤ π

φ
uv ≤ 1,

∑2
v=1 φuv = 1,

u, v = 1, 2.
Assume that there are j neighbors within the DSRC cov-

erage of the TV, to whom i of j neighbors are traveling in
the opposite direction (0 ≤ i ≤ j). Signals transmitted from
these i neighbors can be modeled by the deployment of the
DFS measurements. For brief descriptions, we let NDFS

=

{1, 2, . . . , i} denotes the set of the neighbors who provide
the DFS measurements, and ραk denotes that measurements
obtained from the neighbor α at the time instant k , α ∈ NDFS ,
which can be formulated as follows [14]:

ραk = −
f
c

d(dαk )

dt
+ ϑαk , (4)

dαk =
√
(mx,k − mαx,k )

2 + (my,k − mαy,k )
2, (5)

where f is the transmission frequency of DSRC, and c is the
speed of light. dαk is the relative distance between the TV
and its neighbor α, and ϑαk is the DFS-related observation
noise. Correspondingly, (mαx,k ,m

α
y,k ) denotes the position of

the neighbor α. Substituting (5) into (4), the equation (4) can
be reformulated as in (6), as shown at the bottom of this page,
where (ṁαx,k , ṁ

α
y,k ) is the velocity vector of the neighbor α.

Correspondingly, we let NRSSI
= {1, 2, . . . , j} denote the

set of the neighbors who provide the RSSI measurements.
The received power rβk corresponding to that measurements
from the neighbor β at the time instant k , β ∈ NRSSI ,

ραk = −
f
c
[
(mx,k − mαx,k )(ṁx,k − ṁ

α
x,k )+ (my,k − mαy,k )(ṁy,k − ṁ

α
y,k )√

(mx,k − mαx,k )
2 + (my,k − mαy,k )

2
]+ ϑαk , (6)
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is an important metrics obtained from the DSRC physical
layer. According to the log-distance path loss model defined
in [35] and [36], the laws to model the path-loss behavior
of DSRC propagation between vehicles can be formulated as
follows:

rβk = C − 10γ lg(dβk )+ ϑ
β
k , (7)

dβk =
√
(mx,k − m

β
x,k )

2 + (my,k − m
β
y,k )

2, (8)

where C is a constant with regard to the transmission power
and γ ∈ [2, 5] is the path-loss exponent. dβk is the relative
distance between the TV and its neighbor β, and ϑβk is the
RSSI-related measurement noise. Correspondingly,
(mβx,k ,m

β
y,k ) denotes the position of the neighbor β. The

transition process between the LOS and the NLOS conditions
could be sharply modeled as a first-order Markov chain with
two states {s1, s2} [32], [34], [37], [38]. As a result, a zero-
mean white Gaussian noise is considered with a variance
matrix RLOS

k in the LOS condition whereas a variance matrix
RNLOS
k is employed in the NLOS condition. Specifically,

channel modeling in V2V communication environments is
a significant issue without concluding a common sense, so
the fundamental log-distance path loss model has been used
to depict the V2V channel for simplicity.

Note that the set ϕ and the set φ are two independent
Markov chains specifying the behavior of the sudden changes
of the acceleration and the transition between the LOS and
the NLOS conditions, respectively. It should be mentioned
that the state metrics in the measurement model depends
on the quality of the DSRC links between the TV and its
neighbors. Moreover, it is with great probability that the
measurement vector consists of the metrics measured from
both the LOS and the NLOS conditions. Particularly, the
neighbor α ∈ NDFS could contribute to both the DFS and
the RSSI measurements, while the neighbor β ∈ NRSSI

could be functionally divided into two portions. One of them
following the set β ∈ NRSSI/NDFS could just benefit the
RSSI measurements and the other portion could be with the
same function as the neighbor α ∈ NDFS .
To solve the nonlinear observation problem presented in

model (3), an extended Kalman filter (EKF) method has
been used in [14]. Applying the first-order Taylor expansion
to (3) around an arbitrary state vector, h can be transformed
to a stereotyped matrix in which all of the components are
supposed to obtain from the GPS and the DSRC on-board
unit (OBU). Subsequently, the model (3) can be reformulated
as follows:

zk ∼= Hkθk + ϑk (φk ), (9)

where

Hk =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

H11
k H12

k H13
k H14

k
...

...
...

...

Hi1
k Hi2

k Hi3
k Hi4

k

G11
k G12

k 0 0
...

...
...

...

Gj1k Gj2k 0 0



, (10)

with the transition components formulated as (11)-(16), as
shown in the bottom of this page.

Hα3
k =

∂ραk

∂ṁx,k
= −

f
c

(mx,k − mαx,k )

dαk
, (13)

Hα4
k =

∂ραk

∂ṁy,k
= −

f
c

(my,k − mαy,k )

dαk
, (14)

Gβ1k =
∂rβk (0, 0)

∂mx,k
=

10
ln 10

γ
mβx,k

(dβk )
2
, (15)

Gβ2k =
∂rβk (0, 0)

∂my,k
=

10
ln 10

γ
mβy,k

(dβk )
2
. (16)

Let rβ be an infinite differentiable function in some open
neighborhood around (mx0,my0) = (0, 0), then according to
Multivariate Taylor Expansion theorem, the linear approxi-
mation from the Taylor series of rβ (mx ,my) can be formu-
lated as

rβ (mx ,my) ∼= rβ (mx0,my0)+
∂rβ (mx0,my0)

∂mx
(mx − mx0)

+
∂rβ (mx0,my0)

∂my
(my − my0). (17)

After putting into the corresponding point, (17) can be sim-
plified as

rβ (mx ,my)− rβ (0, 0) =
∂rβ (0, 0)
∂mx

mx +
∂rβ (0, 0)
∂my

my.

(18)

Hence, the RSSI measurements of the measurement model
can be linearized into a block matrix, as shown in (10).
The similar proof for the DFS measurements is omitted
due to the space constraint. It should be noted that the
RSSI-related measurements in (9) are not the true value

Hα1
k =

∂ραk

∂mx,k
= −

f
c

(my,k − mαy,k )[(my,k − m
α
y,k )(ṁx,k − ṁ

α
x,k )− (mx,k − mαx,k )(ṁy,k − ṁ

α
y,k )]

(dαk )
3 , (11)

Hα2
k =

∂ραk

∂my,k
= −

f
c

(mx,k − mαx,k )[(mx,k − m
α
x,k )(ṁy,k − ṁ

α
y,k )− (my,k − mαy,k )(ṁx,k − ṁ

α
x,k )]

(dαk )
3 , (12)
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measured at the receiver, but are the value calculated by
the left hand of the equation (18) which is the result of the
true RSSI measurements minus the value of rβ (mx ,my) at
(mx = 0,my = 0).

FIGURE 2. The schematic of the proposed vehicular cooperative
localization method.

B. THE CV-ENHANCED DIMM-KF FOR
MOBILE VEHICLE LOCALIZATION
The schematic of the CV-enhanced vehicle localization
method is shown in Fig. 2. The proposed CV-enhanced
DIMM-KF algorithm handling two switching parameters
in (1) and (9) works as follows:

Step 1) Mixing probabilities calculation

µk+1,l|s = µ
ϕ
k+1,p|qµ

φ
k+1,u|v, (19){

µ
ϕ
k+1,p|q = π

ϕ
pqµ

ϕ
k,p/c

ϕ
q

µ
φ
k+1,u|v = π

φ
uvµ

φ
k,u/c

φ
v ,

(20)

where µϕk+1,p|q and µ
φ
k+1,u|v are defined as the mixing prob-

abilities which are common in the conventional IMM esti-
mator. Both of them can be obtained from (20), where
l, s = 1, 2, . . . , 2L. In (20), πϕpq and π

φ
uv represent the tran-

sition probabilities of the two aforementioned independent
Markov chains, and µϕk,p and µφk,u are the probabilities of
the event that the pth motion model and the uth channel
mode are in effect at the time step k , respectively, where
p, q = 1, 2, . . . ,L, corresponding to the p, qth mode of the
Markov chain ϕ, and u, v = 1, 2, corresponding to the u, vth
mode of the Markov chain φ. Consequently, the normalized
constant can be formulated as

cs = cϕq c
φ
v , (21)

where = cϕq and cφv are the distributed normalized constants
for different Markov chains with the formulation as{

cϕq =
∑L

p=1{π
ϕ
pqµ

ϕ
k,p}

cφv =
∑2

u=1{π
φ
uvµ

φ
k,u}.

(22)

Step 2) Interaction
Mixing the state estimations and the covariance matri-

ces according to the following equations (23) and (24),
respectively,

θ0k|k,s =

L∑
p=1

{
µ
ϕ
k+1,p|q

2∑
u=1

{
µ
φ
k+1,u|vθ

0,0
k|k,p,u

}}
, (23)

P0
k|k,s =

L∑
p=1


µ
ϕ
k+1,p|q

×

P0,0
k|k,p,v +

{
θ
0,0
k|k,p,v − θ

0
k|k,s

}
×

{
θ
0,0
k|k,p,v − θ

0
k|k,s

}T


 ,
(24)

where

P0,0
k|k,p,v =

2∑
u=1


µ
φ
k+1,u|v

×

P0,0
k|k,p,u +

{
θ
0,0
k|k,p,u − θ

0
k|k,p,v

}
×

{
θ
0,0
k|k,p,u − θ

0
k|k,p,v

}T

 .
(25)

Step 3) Mode update and prediction steps
Calculate Hα1

k , . . . ,H
α4
k , Gβ1k , Gβ2k , according to the

equations (11)-(16) and then update the measurement tran-
sition matrix Hk defined by (10) associated with the
CV technologies.

The CV-enhanced DIMM-KF gain is given by

Kk = Pk|k−1,sHT
k × {HkPk|k−1,sHT

k + Rk}
−1. (26)

The update steps of the CV-enhanced DIMM-KF are
given by

θk|k,s = θk|k−1,s +Kk{zk −Hkθk|k−1,s}, (27)

Pk|k,s = Pk|k−1,s −Kk{HkPk|k−1,sHT
k + Rk}KT

k . (28)

The prediction steps of the CV-enhanced DIMM-KF are
given by

θk+1|k,s = Fθ0k|k,s +Gϕk,s, (29)

Pk+1|k,s = FP0
k|k,sF

T
+GQGT . (30)

The likelihood function3k,t and the predictionmode prob-
ability µk,t are formulated as

3k,s = normal(zk −Hkθk|k−1,s; 0, HkPk|k−1,sHT
k + Rk ).

(31)

Step 4) Mode probability update
The probability at the time step k is calculated as

µk,s = 3k,scs/c, (32)

where c is the overall normalized constant defined
as

c =
2L∑
s=1

λk,scs. (33)
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Algorithm 1 One Trial of the CV-Enhanced DIMM-KF
Algorithm

Require: θ0,0k|k,p,u, θ
0,0
k|k,p,v, P

0,0
k|k,p,u, µ

ϕ
k+1,p|q, µ

φ
k+1,u|v, π

ϕ
pq,

π
φ
uv, the GPS, the DFS, and the RSSImeasurements zGPSk ,

zDFSk , zRSSIk
1: Initial cϕq , c

φ
v , µ

ϕ
k+1,p|q, µ

φ
k+1,u|v, θ

0
k|k,s, and P0

k|k,s
2: for q = 1, . . . ,L do
3: for p = 1, . . . ,L do
4: Calculate cϕq and µ

ϕ
k+1,p|q via (22) and (20),

respectively
5: end for
6: end for
7: for v = 1, 2 do
8: for u = 1, 2 do
9: Calculate cφv and µ

φ
k+1,u|v via (22) and (20),

respectively
10: end for
11: end for
12: for s = 1, . . . , 2L do
13: for l = 1, . . . , 2L do
14: Calculate θ0k|k,s and P0

k|k,s via (23)-(25)
15: end for
16: end for
17: Calculate Hα1

k , . . . ,H
α4
k , Gβ1k , Gβ2k via (11)-(16)

18: Set Hk via (10) and set Rk according to the number of
the neighbors in NDFS ∪ NRSSI F CV-enhanced

19: for s = 1, . . . , 2L do F The DIMM Kalman Filter
20: Update θk|k,s and Pk|k,s via (26)-(28)
21: Predict θk+1|k,s and Pk+1|k,s via (29)-(30)
22: end for
23: Combine θk|k and Pk|k via (34)-(35).

Step 5) Combination
In the final stage, the CV-enhanced DIMM-KF algorithm

combines the state estimations and the covariance matrices as
the following manners:

θk|k =

2L∑
s=1

µk,sθk|k,s, (34)

Pk|k =
2L∑
s=1

µk,s ×
{
Pk|k,s + {θk|k,s − θk|k}{θk|k,s − θk|k}T

}
.

(35)

The overall CV-enhanced DIMM-KF algorithm is
described in Algorithm 1.

III. GENERAL PERFORMANCE ANALYSIS
In this section, we briefly review the information inequality,
describe the framework for the designed general measure-
ments containing the positioning-related information, and
study a tight computational method of the fundamental limits
on the positioning metrics which is defined as the square
position error bound (SPEB) in principle [39]. Subsequently,

we transform the problem of estimation of the theoretical
bound to that of analyzing the bound for the trace of the
inversematrix, propose a novel lower bound limiting the posi-
tioning estimation performance, named the mSPEB, which
reduces the computation complexity compared to the calcula-
tion of the SPEB, and finally formulate the Fisher information
matrix (FIM) of the system model for studying the estimated
covariance lower bound of the CV-enhanced positioning.

Throughout this section,4 denotes anN -by-N symmetric
positive definite matrix with eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λN .

λ(4) is the set of all eigenvalues. The parameters S and T
denote the bounds for the lowest and largest eigenvalues λ1
and λN of 4.

0 ≤ S ≤ λ1, λN ≤ T .

TR(·) is the trace operator and ‖ · ‖2F is the F-norm operator.

A. CRLB
To analyze the optimal theoretical performance of an unbi-
ased estimator, the Cramér-Rao lower bound (CRLB) is
commonly regarded as the evaluation benchmark [29], [40].
Note that the variance’s equality with the mean squared
error (MSE) for the estimator 8̂ strictly satisfies the infor-
mation inequality [41],

E{(8̂−8)(8̂−8)T } ≥ I(8)−1, (36)

where I(8) is the FIM for the parameter vector 8. However,
the parameters we interested in are merely the positioning-
related error variance, which indicates that only the upper left
2× 2 submatrix of I(8)−1 is of interest in a 2-D localization
problem.

B. SPEB
The square position error bound (SPEB), a measure to bound
the average squared position error, is commonly defined to
evaluate the performance of localization accuracy on wireless
collaboration networks [39]. Determining the SPEB requires
to obtain the inversion of the FIM as follows:

SPEB = TR{[I(8)−1]2×2}=I(8)−1(1, 1)+ I(8)−1(2, 2).

(37)

However, by reason of I(8) usually being a high-
dimension matrix, the inversion of I(8) is quite complex to
calculate, which results a tradeoff between computation
complexity and performance evaluation. In fact, only the
submatrix [I(8)−1]2×2 can contribute the unique insights into
the bounding laws on the localization problems.

C. EFIM
In order to circumvent the calculation of the matrix inversion,
we firstly introduce the notions of the equivalent Fisher Infor-
mation Matrix (EFIM) [39].
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Given a parameter vector 8 = [8T
�,8

T
ϒ ]

T and let the
FIM I(8) be written as a 2× 2 block matrix

I(8) =
(

I� I�ϒ
IT�ϒ Iϒ

)
, (38)

where 8 ∈ RN and 8� ∈ RM. I� ∈ RM×M repre-
sents the partial information of I(8) only pertaining to �,

Iϒ ∈ R(N−M)×(N−M) represents the partial information
of I(8) only pertaining to ϒ , and I�ϒ ∈ RM×(N−M) rep-
resents the coupled information between � and ϒ , while the
notions corresponding to the dimension meet the conditions
that 1 ≤M ≤ N . Consequently, we obtain the EFIM of �
as follows:

I(8�) = I� − I�ϒ I−1ϒ I�ϒT . (39)

The right hand of (39) is also known as the Schur complement
of the sub-block Iϒ in I(8) [42], which is equivalent to I(8)
for the parameters 8� in the sense that it retains all the
necessary information to deduce the CRLB of �:[

I(8)−1
]
�
= [I(8�)]−1 . (40)

D. THE mSPEB

A novel theoretical lower bound of the MSE matrix of an
unbiased positioning-related estimator is derived through
studying the properties from the bounds for the trace of the
inverse of a symmetric positive definite matrix.
Theorem 1: Given a cooperative localization network with

parameter vectors 8 and 8 = [8T
�,8

T
ϒ ]

T where 8� is the
position information vector and 8ϒ is the other parameter
vector independent of the position information. In a posi-
tioning estimation problem, if the corresponding FIM for the
parameter vector 8, I(8), is a positive definite matrix, then
a lower bound of SPEB is given by

SPEB ≥
−T̄ 2M2

+ (µ̄1T̄ + µ̄2)M− µ̄2
1

µ̄2T̄ − µ̄1T̄ 2
, (41)

where µ̄1 = TR(I(8�)), µ̄2 =‖ I(8�) ‖2F , T̄ is the upper
bound of eigenvalues of I(8�), and M is the dimension of
I(8�). I(8�) is the corresponding EFIM.

Proof: The Schur complement condition on positive
definite matrix states that for any symmetric matrix 6 of the
form

6 =

(
A B
BT C

)
,

if C is invertible, the following property will be obtained:

6 � 0⇐⇒ A− BC−1BT � 0 and C � 0 (42)

where6 � 0meaning that6 is a positive definite matrix. In a
specified positioning estimation problem, it is clear from (42)
that the corresponding EFIM, I(8�), is a positive definite
matrix as long as the corresponding FIM, I(8), is a positive
definite matrix.

Having shown that the lower bound for the SPEB is a
function of the parameters of the EFIM, I(8�), including the

trace, the F-norm, the upper bound of eigenvalues, and the
dimension, we will explain the obtained result by introducing
a Lemma which derives the lower and upper bounds for the
trace of the inverse of a symmetric positive definite matrix
presented by Bai and Golub in [43].
Lemma 1: Let 4 be an N − by − N symmetric positive

definite matrix, µ1 = TR(4), µ2 =‖ 4 ‖
2
F and λ(4) ⊂

[S, T ] with S > 0, then[
µ1 N

] [ µ2 µ1
T 2 T

]−1 [N
1

]
≤ TR(4−1) ≤

[
µ1 N

] [µ2 µ1
S2 S

]−1 [N
1

]
. (43)

In addition, it is obvious that the FIM, I(8) , is a symmetric
matrix. Consequently, in a specified position estimation prob-
lem, if the corresponding FIM is a positive definite matrix,
both the FIM, I(8), and the EFIM, I(8�), are symmetric
positive definitematrix, so all the preconditions of the Lemma
are met. Now, we can use the Lemma above with 4 = I(8).
Noted that the SPEB of the FIM, I(8), is TR

(
I(8�)−1

)
, and

the dimension of the EFIM, I(8�), isM. Expanding the left
hand of the inequality (43) in (44), our end result is concluded
in (41). [

µ1 N
] [ µ2 µ1

T 2 T

]−1 [N
1

]
=
−T 2N 2

+ (µ1T + µ2)N − µ2
1

µ2T − µ1T 2 . (44)

Theorem 2: Given a cooperative localization network with
parameter vectors 8 and 8 = [8T

�,8
T
ϒ ]

T where 8� is the
position information vector and 8ϒ is the other parameter
vector independent of the position information. In a posi-
tioning estimation problem, if the corresponding FIM for the
parameter vector 8, I(8), is a positive definite matrix, then
a lower bound of SPEB is given by

SPEB ≥
M
S̄
+

M∑
I=1

(S̄ − 0II )2

S̄(S̄0II −WII )
, (45)

where S̄ is the lower bound of eigenvalues of I(8),
WII =

∑N
J=1 0

2
IJ , 0IJ is the I,J th element of I(8)

(I = 1, 2, . . . ,M, J = 1, 2, . . . ,N ), N is the dimension
of I(8), and M is the dimension of I(8�). I(8�) is the
corresponding EFIM.

Proof: Similar to the proof procedures discussed in the
Theorem 1, it is concluded that in a specified positioning esti-
mation problem the corresponding FIM, I(8), is a symmetric
positive definite matrix when the FIM meets the conditions
defined in the Theorem 2.

Having shown that the lower bound for the SPEB is a
function of the parameter of the FIM, I(8), including the
lower bound of eigenvalues, the entries on the main diagonal,
the sum of the entries on the Ith row, and the dimension of
the FIM as well as the dimension of EFIM, I(8�), we will
explain the obtained result by introducing another Lemma
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which derives the lower and upper bounds for the entries on its
main diagonal of the inverse of a symmetric positive definite
matrix presented by Robinson and Wathen in [44].
Lemma 2: Let 4 be an N − by − N symmetric positive

definite matrix, and λ(4) ⊂ [S, T ] with S > 0, then

1
S
+

(S − 0II )2

S(S0II −WII )
≤ (4−1)II

≤
1
T
+

(T − 0II )2

T (T 0II −WII )
, (46)

where WII =
∑N

J=1 0
2
IJ and 0IJ is the I,J th element

of 4 (I,J = 1, 2, . . . ,N ).
As we know TR(4−1) =

∑N
I=1(4

−1)II , so the lower
bound of TR(4−1) can be written as follows:

N∑
I=1

(4−1)II ≥
N∑
I=1

{
1
S
+

(S − 0II )2

S(S0II −WII )

}
. (47)

Now, setting the dimension N to M, the left hand of (47)
is the SPEB, then the end result is concluded.

It is noted that the two proposed theorems are suitable
for both 2-D and 3-D localization scenarios in general. For
a specified 2-D positioning problem, the dimension of the
EFIM, M, is set to 2, while for the 3-D, M = 3.
Lemma 3: Given a cooperative localization network with

parameter vectors 8 and 8 = [8T
�,8

T
ϒ ]

T where 8� is the
position information vector and 8ϒ is the other parameter
vector independent of the position information. In a posi-
tioning estimation problem, if the corresponding FIM for the
parameter vector 8, I(8), is a positive definite matrix, the
resulting theoretical mSPEB-the modified lower bound of the
MSE matrix of an unbiased estimator of8� can be expressed
as

mSPEB = max


−T̄ 2M2

+(µ̄1T̄ +µ̄2)M−µ̄2
1

µ̄2T̄ −µ̄1T̄ 2 ,

M
S̄ +

∑M
I=1

(S̄−0II )2

S̄(S̄0II−WII )

 , (48)

where µ̄1 = TR(I(8�)), µ̄2 =‖ I(8�) ‖2F , S̄ is the lower
bound of eigenvalues of I(8), T̄ is the upper bound of eigen-
values of I(8�), WII =

∑N
J=1 0

2
IJ , 0IJ is the I,J th

element of I(8) (I = 1, 2, . . . ,M, J = 1, 2, . . . ,N ), N
is the dimension of I(8), and M is the dimension of I(8�).
I(8�) is the corresponding EFIM.

Proof: According to the proof procedures dis-
cussed in Theorem 1 and Theorem 2, it is obvious that
SPEB ≥ mSPEB, so the end result is concluded.

It should be mentioned that the closed-form of the mSPEB
needs to process a lower-dimensional EFIM and to calculate
the bound for the minimum eigenvalue of a high-dimensional
FIM, such that it is with lower complexity, when com-
pared to the SPEB used in current literature [14], [29], [30]
that has to calculate the inverse of the high-dimensional
FIM directly.

E. INSIGHTS INTO FACTORS AFFECTING
THE CP PERFORMANCE
In this paper, the FIM can be calculated at each time
instant k as

I(θ ) = E

{[
∂ ln (f (z|θ ))

∂θ

] [
∂ ln (f (z|θ ))

∂θ

]T}

= −E
{
∂2 ln (f (z|θ ))

∂θ2

}
, (49)

where z is the measurement vector in (9), θ the state vec-
tor in (1), E{·} is the expectation operator, and f {·} is the
conditional Probability Distribution Function (PDF) of z on
condition of the value of θ . Assume that f (z|θ ) follows a
Gaussian distribution normal(z; zmean, R) as

f (z|θ ) =
EXP{− 1

2 (z− zmean)TR−1(z− zmean)}

(2π )
4+i+j

2
√
DET(R)

, (50)

where the variable z is normally distributed with the mean
zmean and the covariance matrix R, i is the total number of
the neighbors associated with the DFSmeasurements, and j is
the total number of the neighbors associated with the RSSI
measurements. After deploying the natural logarithm on both
sides of (50), the formula can be rewritten as

ln(f (z|θ )) = −
1
2
ln(|R|)−

1
2
(z− zmean)TR−1(z− zmean)

−
4+ i+ j

2
ln(2π ). (51)

Then, substituting (9) into (51), the result of the second-order
partial derivative of the state vector θ can be written as

∂2 ln(f (z|θ ))
∂θ2

= −HTR−1H. (52)

Subsequently, substituting (52) into (49), the form of the
FIM I(θ ) can be simplified as follows:

I(θ ) = HTR−1H, (53)

which can be formulated with the form of a block matrix as
follows:

I(θ ) =
[
IA IB
ITB IC

]
. (54)

The elements of I(θ ) are given by (55)-(57), as shown at the
top of the next page, where σmx , σmy , σṁx , σṁy , σρ , σr are
the elements in the covariance matrix of the measurements
defined in (58)-(59). Consequently, the mSPEB of I(θ ) can
be obtained from (48). IA characterizes the localization infor-
mation corresponding to the cooperation via inter-vehicle
measurements using the GPS and the RSSI-related data,
while IB and IC characterize the same type of measurements
using only the GPS data. As the components of each element
derived in the FIM, I(θ ), we can conclude that each inter-
vehicle measurement or metrics will contribute to positioning
enhancements from the point view of the CRLB.

VOLUME 4, 2016 8345



Y. Wang et al.: DSRC-Based Vehicular Positioning Enhancement

4A =

 1
σ 2mx
+

1
σ 2ρ

∑i
α=1(Hα1

k )2 + 1
σ 2r

∑j
β=1(G

β1
k )2 1

σ 2ρ

∑i
α=1(Hα1

k Hα2
k )+ 1

σ 2r

∑j
β=1(G

β1
k Gβ2k )

1
σ 2ρ

∑i
α=1(Hα1

k Hα2
k )+ 1

σ 2r

∑j
β=1(G

β1
k Gβ2k ) 1

σ 2my
+

1
σ 2ρ

∑i
α=1(Hα2

k )2 + 1
σ 2r

∑j
β=1(G

β2
k )2

 , (55)

4B =

 1
σ 2ρ

∑i
α=1(Hα1

k Hα3
k ) 1

σ 2ρ

∑i
α=1(Hα1

k Hα4
k )

1
σ 2ρ

∑i
α=1(Hα2

k Hα3
k ) 1

σ 2ρ

∑i
α=1(Hα2

k Hα4
k )

 , (56)

4C =

 1
σ 2ṁx
+

1
σ 2ρ

∑i
α=1(Hα3

k )2 1
σ 2ρ

∑i
α=1(Hα3

k Hα4
k )

1
σ 2ρ

∑i
α=1(Hα3

k Hα4
k ) 1

σ 2ṁy
+

1
σ 2ρ

∑i
α=1(Hα4

k )2

 . (57)

IV. NUMERICAL RESULTS
This section discusses a series of computer simulations used
to evaluate the performance of the proposed CP method.
Meanwhile, the insightful data analyses were conducted
to interpret the inherent relationship between traffic inci-
dents and positioning enhancements for mobile vehicle
localization.

A. SIMULATION SETUP
Consider a section of urban roads with a width of four lanes
(each lane with a width of 3.5 m) and a length of one
kilometer. It is assumed that the basic traffic setting is subject
to the following conditions: 1) the traffic intensity of the
road is 20 vehicle/km, 2) the CV penetration is 100%, and
3) the average velocity of the traffic flow is 90 km/h. The
vehicles’ dynamics are described by the model (1), and the
sampling period 1t = 0.2 s. The distribution of the system
noise ζk takes with covarianceQk = diag(σ 2

ax,k , σ
2
ay,k ), where

the elements σax,k =
√

0.99
2 m/s2 and σay,k =

√
0.01
2 m/s2

are the acceleration noise along the E and the N directions,
respectively. The settings of σax,k and σay,k reveal the dynamic
behavior of non-abnormal vehicles moving on the road of
which driving actions on the acceleration are along the x
axis. Three dynamic models corresponding to the different
accelerations of 0 m/s2,−2 m/s2, 5 m/s2 are used, and the
switching between any two of these three models is described
by the first-order Markov chain ϕ with the transition prob-
ability πϕpp = 0.8 (p = 1, 2, 3), and πϕpq = 0.1 (p 6= q;
p, q = 1, 2, 3). As shown in Fig. 1, the TV starts at the
position (300, 10) in m, and then travels on the second lane
from the West (W) to the East (E). The initial velocity is set
as (90, 0) in km/h, and the TV starts to make an approxi-
mated uniform motion between 0 and 35 step, a slow-down
movement with a deceleration of −2 m/s2 between 36 and
40 step, a straight movement with a constant velocity between
41 and 65 step, a speed-up movement with an acceleration of
5 m/s2 between 66 and 70 step, and finally another uniform
movement between 71 and 100 step.

It is assumed that the initial locations of all the neighbors
are practically distributed within the road section according
to the uniform distribution. The dynamics of the neighbors
are subject to model (1). However, they keep a near stable

movement during the entire 100 steps. The DSRC commu-
nication range of each vehicle is set as 300 m, and only the
neighbors under the DSRC coverage of the TV could benefi-
cially contribute to the positioning enhancements for mobile
vehicle localization. It is noted that a vehicle who holds that
communication capability combined with the coarse mea-
surements obtained from the GPS and the DSRC physical
layer is defined as the vehicle who holds the CV technologies.
The measurement process is represented by the model (9),
and themeasurement noiseϑk (φk ) is described by theMarkov
chain φk , which takes with the switching covariance matrix
associated with the DFS and the RSSI measurements under
the LOS and the NLOS conditions with the following formu-
lations:

RLOS
k = diag(σGPS

2

mx,k , σ
GPS2
my,k , σ

GPS2
ṁx,k , σ

GPS2
ṁy,k , σ

LOS,DFS2

ρ1k
,

. . . , σ
LOS,DFS2

ρik
, σ

LOS,RSSI2

r1k
, . . . , σ

LOS,RSSI2

r jk
)

(58)

and

RNLOS
k = diag(σGPS

2

mx,k , σ
GPS2
my,k , σ

GPS2
ṁx,k , σ

GPS2
ṁy,k , σ

NLOS,DFS2

ρ1k
,

. . . , σ
NLOS,DFS2

ρik
, σ

NLOS,RSSI2

r1k
, . . . , σ

NLOS,RSSI2

r jk
),

(59)

respectively. For the GPS measurements, assume that the
variance of the position and the velocity in the LOS and the
NLOS conditions are fixed. In the 2-D localization problem
the LOS and the NLOS conditions are used for depicting the
different situation of the propagation channel on the DSRC
signals that is paralleling to the road plane, whereas the
propagation of the GPS signals is not in that plane, so as
to take the variances of the GPS measurements as σGPSmx,k =√

200
2 m, σGPSmy,k =

√
200
2 m, σGPSṁx,k

=

√
15
2 m/s, σGPSṁy,k

=√
15
2 m/s, respectively. For the DFS measurements, the noise

variance under the LOS condition is set as σ LOS,DFS
ραk

=

100 Hz, and that variance under the NLOS condition is
set as σNLOS,DFS

ραk
= 120 Hz. For the RSSI measurements,

the transmission power related constant C = 20, and the
path-loss exponent γ = 3.5. The noise variance under the

8346 VOLUME 4, 2016



Y. Wang et al.: DSRC-Based Vehicular Positioning Enhancement

FIGURE 3. One trial demo of vehicular positioning estimation with both
the DFS and the RSSI measurements.

LOS condition is set as σ LOS,RSSI
rβk

= 5 dBm, and that variance

under the NLOS condition is set as σNLOS,RSSI
rβk

= 30 dBm.

The transition probability to describe the switching states
between the LOS and the NLOS conditions is set as πφuu =
0.9(u = 1, 2), and πφuv = 0.1(u 6= v; u, v = 1, 2). Assume
that the TV travels under the LOS condition at the beginning,
entering into the NLOS condition between 30 and 80 step,
andmake a another transition into the LOS condition between
81 and 100 step.

B. SINGLE-TRIAL ANALYSIS
In order to verify the effectiveness of the proposed method,
a single-trial test is used to clearly demonstrate the entire
scenario in which the settings follow the parameters that
are described in the Section IV-A. The true trajectory of
the TV (i.e. the black circle and the black dot represent the
initial and the ending positions of the TV, respectively), one
trail of the estimated trajectory of the TV using the CV-
enhanced DIMM-KF method, and the original GPS measure-
ments of the TV are collectively shown in Fig. 3. Compared
to the GPS-based positioning, the proposed CV-enhanced
DIMM-KF method could provide much better performance
on the vehicle localization throughout the entire process.

C. MONTE CARLO RESULTS
To evaluate the closeness from the estimated to the true
trajectories, the RMSEmetrics in position is deployed at each
time step k . The definitions of the RMSE are formulated
as (60), as shown at the bottom of this page, the root-mean-

SPEB is R.SPEBk =
√

1
NT

∑NT
T=1 SPEBk (T ), and the root-

mean-mSPEB is R.mSPEBk =
√

1
NT

∑NT
T=1 mSPEBk (T ).

In (60),
(
m̂x,k (T ), m̂y,k (T )

)
denotes the estimated posi-

tion vector in the T th Monte Carlo simulation. In Fig. 4,
the comparison between the GPS-based positioning and the
proposed CP method is conducted over NT = 1000 Monte
Carlo runs. Each of them follows the basic traffic settings
that are described in the Section IV-A. Meanwhile, for the
TV’s position, the R.SPEB and the R.mSPEB obtained from
the FIM and the EFIM at each time step k are illustrated

FIGURE 4. The performance of the GPS and the proposed method, and
the fundamental limits bounded by the R.SPEB and the R.mSPEB.

as well. The results testify the achieved performance that is
enhanced by the proposed CP method, and also indicate that
the R.mSPEB is at least incredibly close to the R.SPEB in this
specific 2-D case.

To analyze the enhanced performance of the proposed CP
method on different traffic intensities and CV penetrations,
the statistical simulations are created. Each case is imitated
NT = 500 times, and the average achievable performance
for the combinations between the traffic intensity and the
CV penetration was evaluated. Correspondingly, the traffic
intensity is set ranging from 20 to 200 vehicle/km, and the
CV penetration is set ranging from 25% to 100%. Both
Fig. 5 and Fig. 6 are under consideration of the neighbors who
can provide the DFS measurements to benefit the positioning
performance on the TV. Fig. 5 shows that the enhancements
on the vehicle localization system generally increases with
the increase of the traffic intensity and the CV penetration,
respectively. Additionally, in Fig. 6, it should be noted that
a few outliers adversely affected the achieved performance
when the traffic intensity is at a relative high level. Indeed,
regardless of the traffic intensity, the number of the partic-
ipated neighbors is a key factor to the CP method on the
vehicle localization. Fig. 6 shows that the enhancement rate
sternly increases with the increase of number of the par-
ticipated neighbors. With regard to the performance metric

defined as µ% =
[
1− RMSECP

RMSEGPS
× 100%

]
, the enhancement

rate over the GPS-based positioning reaches at about 35% to
about 70%.

Both Fig. 7 and Fig. 8 are under consideration of the
neighbors who can provide the RSSI measurements to benefit

RMSEk =

√√√√ 1
NT

NT∑
T=1

{(
m̂x,k (T )− mx,k (T )

)2
+
(
m̂y,k (T )− my,k (T )

)2}
, (60)
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FIGURE 5. The enhancements for different CV penetrations - DFS only.

FIGURE 6. The neighbors’ number and achieved performance - DFS only.

FIGURE 7. The enhancements for different CV penetrations - RSSI only.

the positioning performance on the TV. Fig. 7 and Fig. 8 show
that the trend of the related increments is similar to Fig. 5 and
Fig. 6, respectively. Correspondingly, the CV-enhancement
method reaches at about 25% to about 60% over the
GPS-based positioning.

Fig. 9 compares the CP method enhanced by using the
DFS and the RSSI measurements with the other enhance-
ment by only using the DFS measurements, showing
that the proposed CP enhancement approach using more

FIGURE 8. The neighbors’ number and achieved performance - RSSI only.

FIGURE 9. The enhancements for the DFS and the RSSI measurements
combination, and for the DFS measurements only.

measurements’ data can better improve the positioning per-
formance for mobile vehicle localization. Significantly, the
achieved enhancement rate is up to 72.10% when the traffic
intensity is 50 vehicle/km/lane.

V. CONCLUSION
This paper proposed a novel method combined both the DFS
and the RSSI measurements extracted from the DSRC phys-
ical layer to enhance the positioning accuracy for the vehicle
localization system.Avoiding some range-basedmethods, the
proposed CP method is designed to leverage both the range-
rate (DFS) and the ranging (RSSI) measurements shared
in the V2V communication environments. The feasibility
and the performance of the method have been investigated
through the following two types of simulations: 1) the single-
trial analysis and 2) the Monte Carlo results. The achieved
enhancement rate on the TV localization can be increased
from about 35% to about 72% compared with the stand-
alone GPS method, according to different traffic intensities
and the CV penetrations. The proposed mSPEB is verified to
bound the fundamental limits for localization systems with
less computational complexity compared to the conventional
SPEB. Additional insight that all inter-vehicle measurements
can improve the CP estimation accuracy is provided from the
point view of the CRLB.
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