Future Generation Computer Systems 56 (2016) 766-772

Contents lists available at ScienceDirect

FiBICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

A novel pre-cache schema for high performance Android system

—
@ CrossMark

Hui Zhao?, Min Chen ¢, Meikang Qiu®*, Keke GaiP, Meiqin Liu9

2 Software School, Henan University, Kaifeng, Henan, 475000, China
b Department of Computer Science, Pace University, New York City, NY 10038, USA

¢School of Computer Science and Technology, Huazhong University of Science and Technology, Wanhan, China

4 College of Electrical Engineering, Zhejiang University, ZJ 310027, China

HIGHLIGHTS

Use middleware-based pre-cache technology.
Use middleware-based approach to save networking traffics.

Generate Version Flags, which is a proposed new component of web pages.

Propose a novel model for high-performance Heterogeneous Android systems.

ARTICLE INFO ABSTRACT

Article history:

Received 12 March 2015
Received in revised form

7 April 2015

Accepted 5 May 2015
Available online 21 May 2015

As a mobile operating system framework, Android plays a significant role in supporting mobile apps.
However, current Android application model is not efficient by using current two common approaches,
including Activity+XML Layout Files (AXLF) and HTML+WebKit (HWK) models. In this paper, we propose
a novel middleware service solution that overcomes the drawbacks with using the pre-cache approach,
PrecAche Technology of Android System (PATAS). The proposed method uses HTML to design the application

interface and separately store the Page Framework (PF) and Page Data (PD). We create a new middleware

Keywords:

Android systems

Pre-caching

Middleware services

High performance

Distributed computing systems

of web pages, Version Flags, to indicate whether PF and PD are expired. Our experimental results represent
that the proposed approach can improve the execution efficiency as well as reduce the networking costs,
which can be broadly used in cloud-based distributed systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of the mobile technologies, mo-
bile applications have been broadly used in multiple domains. The
implementations of the mobile apps have brought mobile users
a variety of benefits, such as entertainments, communications,
and personal information management. Mobile devices have be-
come a platform supporting mobile apps and wireless communi-
cations [1]. The high-performance of wireless networks are also
beneficial for the expansion of the mobile apps, such as distributed
computing and mobile cloud computing [2,3]. The openness of An-
droid systems brings a higher-level flexibility for implementing
multiple wireless technologies [4]. However, current Android apps

* Corresponding author.
E-mail addresses: zhh@henu.edu.cn (H. Zhao), minchen2012@hust.edu.cn
(M. Chen), mqgiu@pace.edu (M. Qiu), kg71231w@pace.edu (K. Gai),
liumeiqin@zju.edu.cn (M. Liu).

http://dx.doi.org/10.1016/j.future.2015.05.005
0167-739X/© 2015 Elsevier B.V. All rights reserved.

are facing a great challenge in efficiency and fast response to the
user demands due to the inefficient execution models [5]. This pa-
per addresses this issue and proposes a novel approach for high
performance Android systems by using pre-cache technologies.
As a popular framework, Android is a mobile phone operat-
ing system that is established on the basis of the Linux kernel.
Considering a complete open mobile platform, the emergence of
Android has brought a large number of opportunities to smart
phones as well as challenges. Android system has become a popu-
lar operating system on mobile embedded systems, which has been
continuously increasing as the improvements of computation ca-
pability, wireless networks, and distributed deployments [6-8].
Cloud computing provides Android systems with a broad service
delivery platform with a strengthened communication capabil-
ity [9]. Content caching is an approach for optimizing performances
of Android systems in distributed computing systems [10,11].
Nevertheless, increasing the efficiency of the Android apps
is a challenging issue for current mobile developers. There are
two traditional app approaches for Android, including Activity

http://dx.doi.org/10.1016/j.future.2015.05.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.05.005&domain=pdf
mailto:zhh@henu.edu.cn
mailto:minchen2012@hust.edu.cn
mailto:mqiu@pace.edu
mailto:kg71231w@pace.edu
mailto:liumeiqin@zju.edu.cn
http://dx.doi.org/10.1016/j.future.2015.05.005

H. Zhao et al. / Future Generation Computer Systems 56 (2016) 766-772 767

+ XML Layout Files (AXLF) and HTML 4+ WebKit (HWK). First, as an
official method recommended by Google, AXLF performs a lower-
level response to user demands, even though it supports all great
features of Android system. The other approach is HWK, which uses
HTML technology to develop mobile apps. Despite the efficiency of
HWHK is better than AXLF, the drawback of using this model is that
a lot of unnecessary documents will be generated by repeatedly
downloading from remote servers. Therefore, there is an urgent
demand for finding out an approach that can take all advantages
of prior models as well as avoid disadvantages.

Addressing this issue, we propose a novel method named
PrecAche Technology of Android System (PATAS). The proposed
paradigm mainly consists of three algorithms, namely Server-Side
Execution Procedure Algorithm (2SEPA), On-Premise Load Page Algo-
rithm (OPLPA), and Page Synchronization Algorithm (PSA). Imple-
menting the proposed schema aims to prevent from unnecessary
downloading data base on the high efficiency performance. The
main contributions of this paper are twofold:

1. We proposed a novel model for high-performance Android
systems using the pre-cache-based technology.

2. Our schema uses middleware-based approach to save network-
ing traffics by generating Version Flags, which is a proposed new
component of web pages.

The remainder of the paper is organized as the following order:
In Section 2, related works in Android domains are reviewed.
Section 3 describes the models and concepts used in our proposed
schema. A motivational example is provided in Section 4. Next,
the details of our proposed algorithm is given in Section 5.
The experimental results and the conclusions are represented in
Sections 6 and 7.

2. Related works

Prior research has addressed Android research in multiple
perspectives. This section reviews the related works concerning
Android models by using AXLF and HWK. Being aware of the
Android systems, the Open Handset Alliance (OHA) was established
by Google and its partners in November 2007 when released
the first Beta version of the Android operating system, Software
Development Kit (SDK). More than 80 firms in mobile domains
attach to the organization and most mobile apps follow the
standard formed by OHA.

Due to the restrictions of the computing capabilities, current
mobile apps are required to perform low energy costs [12]. Many
previous research has addressed the issue of energy consump-
tion [13]. Leveraging mobile cloud-based solutions is an option for
mobile apps to achieve low energy costs, high performance, and
optimal task scheduling [14-16]. Using heterogeneous distributed
computing has a positive impact on mobile computation offload-
ing and connections across multiple platforms [17]. The benefits of
heterogeneity in mobile distributed computing enable many mo-
bile systems to migrate the focuses into interface design and data
display with implementing human-computer interactions.

AXLF is one of the classic methods supported by Android
systems. Applications use this model can straightly use the
components provided by Android as well as maximize the usage
of the Android system resources to achieve a dazzling visual
effects. Multiple functionality-aimed apps can be executed by this
approach, such as games, multimedia, and online communications.
Two crucial parts in this model include Activity Manager (AM)
and View System (VS). Using XML layer files to describe user
interface layout is able to reduce the complexity of the system [18].
The interconnections between platforms can enable the apps
communications based on the cross-platform tools [19].

However, some mobile apps do not need fashionable user in-
terfaces but need complex system structures, such as e-dictionary,

Office Automation (OA) systems, and E-commerce-related apps. Us-
ing AXLF approach can result in heavy workload and interface exe-
cutions. In addition, the default component provided by Android
needs users to have a strong background in computing, which
results in the difficulties in workload controls. There are some sys-
tem which need to be provided traditional computing network
access and mobile access both, it will take twice as much time to
developed respectively webpage design and mobile applications,
and these two works cannot be shared by each other, this also
greatly increased the workload of developers.

HWK is the other optional approach because the AXLF model
is not efficient in running apps delivering information services.
When using this model in Android applications, HTML technology
is applied to develop webpage so as to achieve the applications
user interface and response functions of each component. Then
WebKit components of Android are used to load the page to display
complex user interface and useful information in the form of the
page [20]. When programmers develop applications with using
this model, such as writing a webpage, the pages in the website
can be directly used as the mobile user interface. Loading the page
for the application user interface can achieve human-computer
interactions. Currently, this model has gradually become one of
the mainstream models for Information-as-a-Service mobile apps.
However, implementing HWK model usually need a lot of extra
execution time and can cause heavy networking traffic. Due to the
workload of updating data, users have to download many extra
contents.

Applications can store the data on-premise when the informa-
tion is not needed to be changed, such as e-dictionaries, which
implies that the wireless networks are not required if the source
is stored locally. A middleware who can temporarily or perma-
nently store the resource is an optional method when the resources
are migrated to the clouds [17,21,22]. Using a middleware-based
model has a potential to solve the problems we mentioned be-
fore. However, apps implementing HWK model must download
all pages when apps needs to update the details of the infor-
mation, even though most page information is already stored in
mobile devices. This results in a longer execution time and unnec-
essary network traffics. Therefore, implementing HWK model usu-
ally needs extra execution time and can cause heavy networking
traffics. Users have to download extra contents due to the work-
load of data updates.

3. Models and concepts

In this section, we introduce the basic models and concepts
of our proposed schema, PATAS. Two crucial aspects of PATAS
are covered in this section, including HTML page separation and
execution procedure re-design. The whole HTML page is separated
into two components, including Page Framework (PF) and Page Data
(PD). A new component of web pages is introduced in our proposed
schema, which is set of Version Flags. A version flag is a middleware
that indicates whether PFs or PD are expired. Fig. 1 shows the
architecture of PATAS.

Page Framework and Page Data: A PF refers to the framework
of web pages, such as page layout, configuration information,
and components and executions. A PD represents the real-time
data that need load into the page, such as prices and images in
e-commerce. Using pre-caching technology can allow applications
to avoid downloading the re-stored PF and PD. Workload can
be reduced by using this model without increasing networking
traffics.

Page Separation: we separate the page contents into two parts,
PF and PD. The purpose of page separation is that the mobile apps
can respectively download and cache the two parts to the local
device when running apps. Two parts are combed into a complete

768 H. Zhao et al. / Future Generation Computer Systems 56 (2016) 766-772

Version
Version Flags

Flags

Vemm Get Version
(— \ Flags Flags

Pagc Data ” — Page Data
—] T Get Page =
D Componems
LU Page Mobile
Server Device
Page
Frameworks Frameworks

Fig. 1. Architecture of PrecAche Technology of Android System (PATAS).

page and the apps use WebKit to load and display the page. This
approach enables separate downloads that can lead to reducing
network traffics.

Version Flags: A set of version flags is a middleware service that
can determine whether PF and PD stored in local mobile devices
match that of in remote servers. Both servers and mobile devices
maintain a set of version flags. Mobile apps download this set
of version flags from server while mobile apps start. Comparing
version flags local cached with version flags downloaded, the apps
can select to just download the contents that need updating from
servers.

Data Format: We select JavaScript Object Notation (JSON) as the
data interchange format. JSON is a text format that is completely
language independent. Version flags can define flexibly according
to the needs of applications. For example, we define version flag
format of a page in our system coarse-grained like this:

{

“frameVersion” : “12”,
“dataVersion” : “123".

}

The requests and responses of data is also encapsulated to JSON
string while they are uploaded and downloaded. The data format
can define flexibly according to the needs of apps.

Compression: The servers compress the page components
that need to be downloaded to further reduce network traffics.
As the data which is transported between server and mobile
terminal is basically character string, there is enough compression
space. The compression can reduce the networking traffic,
even though it increases the workload of compression and
decompression, Compressing data increases the performance in
wireless communications.

4. Motivational example

A motivational example is given in this section to describe the
implementation of PATAS. We use a map Map{pName, vMapCached)
flags to store version flags, which are information pairs pName and
vMapCached. Here pName refers to a Page Name. vMapCached refers
to another map Map(vName, vValue). In vMapCached, vName
refers to a version flag name such as “framVersion” and “dataVer-
sion”. vValue refers to a version flag value that is an integer. We
assume that there is an app using PATAS algorithm running on a
mobile device. The server is ready and the app has been installed
into a mobile device.

The app cache is empty at the initial stage. When the app tries
to display a page as user interface and searches the version flags
vMapCached in version flags cache flage. It cannot find version flags

Update Version Flags

App
Page

| I ——¥| Version Flags
-

Get

Get PF|
Version Page ¢ £
Flags Framework Page

e "
Data Getl;? _J

Page Server

By

Version Flags

Combine
+ HTML Page

HTML Page File

Fig. 2. Framework of the motivational example.

corresponding the page now at the initial status. Thus, the app
sends the request to the server and downloads all components of
the page, including PF, PD, and version flags as vMap, which has
the same data type as vMapCached. Mobile apps store all these
components into the local caches. This is the process of initializing
page. After this, the app combines PF and PD into a HTML file and
cache it as well. Finally, the app calls Webkit to load and show the
page to users.

Fig. 2 exhibits a framework of the motivational example. As
shown in the figure, Compress refers to reducing the data storage
requirement for saving the networking traffics. Uncompressed is
an opposite process to the Compress. Encapsulate means a process
converting the version flags into J[SON strings, and Decapsulate
is an opposite process to the Encapasulate. Version flags play a
middleware role who check the status of PF and PD. The app tries
to show the page that is initialized again after a short period. It
searches and gets the version flags vMapCached in local cache flags.
Then, the app sends the request for the newest version flags vMap
of the page from the server. After downloading the newest version
flags, the app compares the version flags from server vMap and the
version flags stored in local cache vMapCached. We assume they
are all same at this time. This means all the page components are
ready. Thus, the app calls Webkit to load HTML file in the cache and
shows it to users.

The app tries to show this page once again after a longer period.
First, the app searches and gets the version flags vMapCached
in local cache. After getting the version flags, the app sends the
request for the newest version flags of the page vMap from the
server. Then the app compares the version flags from server vMap
and the version flags stored in local cache vMapCached. We assume
there are some different version flags at this stage, which means
some page components are expired.

In this case, the app download expired page components that
the version flags indicated and update this part components in
local cache. Then, the app update the vMapCached. After doing this,
the app combines PF and PD into a HTML file and update it in local
cache. Thus, all components of the page store in local cache are up
to date now. Finally, the app calls Webkit to load and show the page
to users. The above is the process of using PATAS algorithm, which
can reduce network traffics effectively.

5. Algorithms

We detail our proposed algorithms that are designed to save
total network traffic costs and power costs with using a pre-cache
technique. The algorithms support activities on the server-end and
mobile devices respectively. Notations used in this paper are listed
in Table 1.

The first proposed algorithm is 2SEPA that is shown in
Algorithm 1. The algorithm runs on the server end, which is
designed to maintain all materials of the pages, such as version
flags, PF, and PD. Applying Algorithm 1 can provide all materials
of the page for mobile devices. As shown in the pseudo algorithm,

H. Zhao et al. / Future Generation Computer Systems 56 (2016) 766-772 769

Table 1
Main notations and definitions.

Notations Definitions

© Operator for accomplishing a “compress” activity

O Operator for accomplishing an “uncompress” activity
[©) Operator for accomplishing a “decapsulate” activity
® Operator for accomplishing an “encapsulate” activity
® Operator for accomplishing an “update” activity

j;‘m-ng Represents a JSON string before compressed

S"m-ng Represents a JSON string after compressed

PF¢ Compressed Page Framework

DC Data Cache

FC Framework Cache

web A new HTML page file

vValue A version flag value that is an integer

vValuepgq The corresponding data version vValue

vValuepgmework ~ The corresponding framework version vValue

vName Version flag name

vMap A map including a pair of information (vName, vValue)

vMapChached A local version flag map of a page with the same data type of
vMap

pName A page name

flags A map including a pair of information (pName, vMap)

flagsChached A local version flag map of some pages with the same data
type of flags

changed A Boolean indicating whether the page needs an update

Algorithm 1 Server-Side Execution Procedure Algorithm (2SEPA)

Require: flags, PD, PF

Ensure: New Page Components, /g,

1: start server, listen to a specific port

2: IF V received the request of the version flags THEN [*When
receiving a request of flag version*/

DO & Map(vPName, vVMap)flags tojs"m-ng;
© a

string

RETURNJ}, ;.

: ENDIF

: IF Y received PD requests THEN [*When receiving a request of

PD*/

: PD D satn'ng

. © satring

10: RETURNJ{, ;..

11: ENDIF

12: IF Vreceived PF requests THEN /*When receiving a request of
PF*/

13: © PF

14: RETURN PF¢

15: ENDIF

16: IF Vreceived PD update requests THEN /*When receiving a
request of PD update*/

17: ® the PD

18: adds 1 to vValuepg, in Map{vPName, vVMap)flags;

19: ENDIF

20: IF V received PF update requests THEN [*When receiving a
request of PF update*/

21: ® the PF

22: adds 1 to vValueggmework in Map{vPName, vVMap)flags;

23: ENDIF

Nou ohw

Algorithm 1, there are a number of phrases that are given as
follows.

1. On the server side, we start server program. Let server program
listen to a specific port and wait for the access request of the
mobile devices.

2. The server encapsulates the version flags to JSON string,
compresses and sends it back to mobile device after receiving
the request of the version flags from the mobile device.

3. According to the data flags provided by the mobile device, the
server encapsulates the recorded data to JSON string, compress
and send it back after receiving the request of the data from the
mobile terminal.

4. The server compresses the stored PF contents, compress them
and then send them back after receiving the request of PF from
the mobile device.

5. The server updates the PD of a page, and then let middleware
add 1 to the PD version flag of the page after receiving the
request of the page’s PD update.

6. The server updates the PF of a page stored by the server, and
then let middleware add 1 to the PF version flag of the page
after receiving the request of the page’s PF update.

Mobile device also keeps a set of version flags flagsChached on-
premise. Mobile apps use these version flags to decide whether it
needs to download page components from server when the apps
try to load a page. Algorithm 2 describe the algorithm of loading

pages.

Algorithm 2 On-Premise Load Page Algorithm (OPLPA)
Require: flagsCached, pName
Ensure: web

1: IF flagsCahched.get(pName) == NULL THEN

2: download J¢ . of version flags of the page from server

string
3: O satring
4: vMapCached.add(® J3 ;)
5: versionFlags.put (pName, vVMapCached);
6: download PF from server
7: download PD from server
8: combine DC and FC
9: generate a new HTML page file web;
10: cache the HTML page
11: ELSE
12: synchronize the page
13: ENDIF

14: call WebKit to load the HTML page

On mobile devices, a mobile app searches the version flags of
a page when the app tries to display the page. The page will be
initialized if the page’s version flags cannot be found. When a
page is initialized, all materials of this page are downloaded and
cached to mobile devices, such as version flags, PF, and PD. Then the
mobile app combines Data Cache (DC) and Framework Cache (FC) to
generate anew HTML page file and store the HTML page in the local
cache. If the version flags of this page are found, the mobile app
synchronizes the page using version flags. Finally, the app loads
the page when the page is ready. For each time of initializing page,
it must be synchronized with server before mobile app loads it.
Algorithm 3 describes the algorithm of synchronizing a page.

Considering the combination, we generate an algorithm to
synchronize pages. As shown in Algorithm 3, the main phrases
include:

1. Download and uncompress the page’s version flags.

2. Compare downloaded version flags with the corresponding
version flags stored in on-premise cache.

3. If downloaded version flags are not as same as the local cached
version flags, the app download the components that version
flags indicate and update page component cache and version
flags.

4. The mobile app combines DC and FC to generate a new HTML
page file, and store the HTML page in local cache if any page
component is updated.

5. The page is ready for apps.

770 H. Zhao et al. / Future Generation Computer Systems 56 (2016) 766-772

Algorithm 3 Page Synchronization Algorithm (PSA)

Require: flagsCached, pName
Ensure: web
1: changed < false
: download]gdng of version flags of the page from server;
. O-’sbm'ng
satring
vMap.add(Q J§ing
Map(vName, vValue)vMapCached < flags.get (pName)
: For EACH vName IN vMap
IF vValue! = vMapCached.get (vName) THEN
download compressed page component represent by
vName
10: (O downloaded component and update cache
11: vMapCached.put (vName, vValue)
12: changed < true
13: ENDIF
14: ENDFOR
15: IF changed == true THEN
16: combine DC and FC

O 0 N O U A W N

17: generate a new HTML page file web
18: cache the HTML page
19: ENDIF

6. Experiment and results

The PATAS approach is the improvement of the HWK model.
Using our algorithm can assist mobile apps to avoid downloading
lots of components that are already stored in the local cache,
which can reduce networking traffics. The energy consumption can
be reduced when the networking traffics are lowered down. The
latency of loading pages can be reduced at the same time. This can
improve the user experience and increase the durations of mobile
devices.

Our experiment accomplished comparisons between HWK
model and our proposed schemas. The comparisons focused
on comparing the energy consumptions and execution latency
for each app. The outcomes of the experiment indicated that
our algorithm has a better performance than HWK model. The
examined apps are listed in Table 2. We compare a variety of
parameters, including functions, Data Update Frequency (DUF), PF,
and PD. Three devices used in our experiments are as shown in
Table 3.

The first experimental device is HUAWEI U8860 Smartphone
with Android OS v2.3 (Gingerbread), Qualcomm MSM8255T
Snapdragon Chipset, 1.4 GHz Scorpion (one core) CPU, Adreno
205 GPU, 512 MB RAM, 1 GB Storage. The second experimental
device is Samsung Galaxy S5 Smartphone with Android OS v4.4.2
(KitKat), Qualcomm MSM8974AC Snapdragon 801 Chipset, Quad-
core 2.5 GHz Krait 400 CPU, Adreno 330 GPU, 2 GB RAM, 32 GB
Storage. The Third experimental device is Android Virtual Device
(AVD) in Android SDK with Android OS v5.0.1 (Lollipop), armeabi-
v7a CPU, 343 MB RAM, 512 MB Storage. The AVD was running on
a Host with Windows 8 64 bit OS, Intel Core i5-4210U CPU, 8.0 GB
RAM, Intel HD Graphics Family GPU.

6.1. Energy consumption

Energy consumption is related to many factors, such as
execution time, signal frequency of channel, compressing strategy,
data amount, and network traffic. Network traffics have a positive
relationship with energy consumptions. In our experimental
environment, most parameters are constants except the network
traffics. Thus, we use the network traffic to analyze the energy
consumptions.

Table 2

The attributes of apps.
App name Function DUF PF PD Total
App1 Email Medium 1.25MB 42kB 1.29 MB
App2 MSG Medium 832 kB 30 kB 862 kB
App3 Notification Low 1.3 MB 1kB 1.3 MB
App4 Social Networks ~ High 523 kB 1.6 MB 2.11MB
App5 Real-Time Price High 3.4MB 1kB 3.4 MB

Real-Time Price qua i i iE i R R R R IR UE NN NNRENENERY
Social Networks N ooy

Notification RESSSSIIRIRRRRRIRSESY

MSG Saaooeseosss
Email {xeeurureieesy
0 500 1000 1500 2000 2500 3000 3500
B Apps use PATAS S Apps use HWK

Fig. 3. Comparisons of network traffics between PATAS and HWK.

Real-Time Price " oo
Social Networks ..
Notification WEEERELL0
MSG N —%

Email S
0 2 4 6 8 10
mApps use PATAS ®Apps use HWK

Fig. 4. Comparison of execution latency on HUAWEI U8860.

Real-Time Price " {8 ooy
Social Networks " ———"_ 3%
Notification "R IE
MSG ——"3%

Emai] MRS

0 2 4 6 8
mAppsuse PATAS RAppsuse HWK

Fig. 5. Comparison of execution latency on Samsung Galaxy S5.

Fig. 3 shows the comparison result of the energy consumptions
for two apps using two corresponding algorithms, PATAS and
HWK. According to Fig. 3, we find that our algorithm can reduce
network traffics effectively, especial the apps that have less PD,
such as notification apps and real-time price apps. Therefore, our
algorithm can increase the duration of mobile devices.

6.2. Execution latency

Execution latency can be influenced by various factors, such
as the CPU frequency, memory usage, communication technology,
network traffic,c and network bandwidth. In our experiment,
we reboot the devices before running every app to reduce the
environmental interference. Based on this operation, we can
guarantee that each app runs under the same experimental
environment.

We run the apps on HUAWEI U8860 Smartphone as the first
examined device. Fig. 4 shows the comparison results of the
execution latency for two apps with using two corresponding
algorithms. The figure represents our approach has low latencies
than HWK model. Next, we run the apps on Samsung Galaxy S5
Smartphone. Fig. 5 shows the comparison results of the execution

H. Zhao et al. / Future Generation Computer Systems 56 (2016) 766-772 771

Table 3
Experiment devices.
Device HUAWEI U8860 Samsung Galaxy S5 AVD
oS Android OS v2.3 (Gingerbread) Android OS v4.4.2 (KitKat) Android OS v5.0.1 (Lollipop)
Chipset Qualcomm MSM8255T Snapdragon Qualcomm MSM8974AC Snapdragon 801 N/A
CPU 1.4 GHz Scorpion (one core) Quad-core 2.5 GHz Krait 400 armeabi-v7a (Intel Core i5-4210U Host CPU)
GPU Adreno 205 Adreno 330 Intel HD Graphics Family Host GPU
RAM 512 MB 2GB 343 MB (8.0 GB Host RAM)
Storage 1GB 32GB 512 MB
Real-Time Price NS00 Foundation (No. 1359557)”, and the Open Research Project of the
. 0 Key Laboratory of Industrial Control Technology, Zhejiang
Social Networks S . % state Key Labo ! '
o ““““““‘“‘““““““ University, China ICT1535 (Prof. M. Qiu). Prof. M. Chen was
Notification SRR % supported in part by China National Natural Science Foundation
MSG NE—_———55% under Grant 61300224, the International Science and Technology
Fmail N— 2% Collaboration Program (2014DFT10070) funded by China Ministry
: 5 " s of Science and Technology (MOST), Hubei Provincial Key Project
u Apps use PATAS & Apps use HWK under grant 2013CFA051, and Program for New Century Excellent

Fig. 6. Comparison of execution latency on AVD.

latency for two apps with using two corresponding algorithms.
The result exhibits that our proposed schema even performs much
better than HWK model.

Finally, we run the apps on AVD. Fig. 6 shows the comparison
results of execution latency for two apps with using two
corresponding algorithms. The figure shows a similar result to
Figs. 4 and 5. According to Figs. 4, 5, and 6, we find that apps
using PATAS algorithm have lower execution latencies than others
on each device. It implies that the level of device specifications
has a positive relationship with the declining proportion of the
execution latency. For example, Samsung Galaxy S5 Smartphone
has the highest computation capability among the examined
mobile devices. Our approach has the greatest advantage by using
this Samsung device.

In summary, our algorithm has provided an approach for
generating apps user interface with using HTML. It can efficiently
integrate traditional PC with mobile access into one system, which
results in an efficient Android system. The experimental results
show that our proposed mechanism can enhance the performances
in network traffic control, power management, and executive
latency. The reasons causing this result are that PATAS can avoid
unnecessary network traffics and the capability of the device has a
positive relationship with the computation speed under the same
networking environment. The portion of latency in runtime will
become greater while the computation time becomes shorter.

7. Conclusions

This paper presents a novel schema for high performance An-
droid systems with using pre-cache technologies, which is PATAS.
The proposed mechanism mainly consists of three algorithms, in-
cluding 2SEPA, OPLPA, and PSA. The key part of our approach is that
we introduce a middleware component in web pages for reducing
network traffics. Our method can be broadly applied for increas-
ing the capability of mobile systems in heterogeneous distributed
computing systems. The experimental results show that our pro-
posed approach has better performances in saving energy, lower-
ing latency, and reducing networking traffics.

Acknowledgments

This work has been partially supported by the projects
“National Science Foundation (No. 1457506)”, “National Science

Talents in University (NCET).

References

[1] J. Aratjo, M. Mazo, A. Anta, P. Tabuada, K. Johansson, System architectures,
protocols and algorithms for aperiodic wireless control systems, IEEE Trans.
Ind. Inf. 10 (1) (2014) 175-184.

[2] L.Zhang, D. Bild, R. Dick, Z. Mao, P. Dinda, Panappticon: event-based tracing to
measure mobile application and platform performance. in: IEEE International
Conference on Hardware/Software Codesign and System Synthesis, Montreal,
QC, Canada, 2013, pp. 1-10.

[3] P. Rost, C. Bernardos, A. Domenico, M. Girolamo, M. Lalam, A. Maeder, D.
Sabella, et al., Cloud technologies for flexible 5G radio access networks, IEEE
Commun. Mag. 52 (5) (2014) 68-76.

[4] X.Zhang, W. Cheng, H. Zhang, Heterogeneous statistical QoS provisioning over
5G mobile wireless networks, IEEE Netw. 28 (6) (2014) 46-53.

[5] M.Qiu, Z.Chen, L. Yang, X. Qin, B. Wang, Towards power-efficient smartphones
by energy-aware dynamic task scheduling, in: IEEE 14th International
Conference on High Performance Computing and Communication & IEEE 9th
International Conference on Embedded Software and Systems, Liverpool, UK,
2012, pp. 1466-1472.

[6] J. Li, M. Qiu, J. Niu, Y. Zhu, M. Liu, T. Chen, Three-phase algorithms for task
scheduling in distributed mobile DSP system with lifetime constraints, J. Signal
Process. Syst. 67 (3) (2012) 239-253.

[7] C. Wang, Y. Zhu, S. Zhou, X. Gu,]. Jiang, M. Qiu, A scalable embedded system
for massive medical signal processing, in: IEEE 12th International New Circuits
and Systems Conference, Trois-Rivieres, QC, Canada, 2014, pp. 432-435.

[8] X. Zhang, Z. Yang, L. Shangguan, Y. Liu, L. Chen, Boosting mobile apps under
imbalanced sensing data, IEEE Trans. Mob. Comput. PP (99) (2014) 1-12.

[9] D. Wubben, P. Rost,]. Bartelt, M. Lalam, V. Savin, M. Gorgoglione, A. Dekorsy,
G. Fettweis, Benefits and impact of cloud computing on 5G signal processing:
Flexible centralization through cloud-RAN, IEEE Signal Process. Mag. 31 (6)
(2014) 35-44.

[10] M. Chen, A. Ksentini, Cache in the air: exploiting content caching and delivery
techniques for 5G systems, [EEE Commun. Mag. 52 (2) (2014) 131-139.

[11] J. Li, M. Qiu, J. Niu, Y. Chen, Z. Ming, Adaptive resource allocation for
preemptable jobs in cloud systems, in: 10th International Conference on
Intelligent Systems Design and Applications, Cairo, Egypt, 2010, pp. 31-36.

[12] W. Shi, M. Wu, S. Wang, M. Guo, B. Peng, B. Ouyang, T. Chen, Local resource
accessing mechanism on multiple mobile platform, in: IEEE 14th International
Conference on High Performance Computing and Communication & IEEE 9th
International Conference on Embedded Software and Systems, IEEE, Liverpool,
UK, 2012, pp. 1716-1721.

[13] M. Qiu, E. Sha, Cost minimization while satisfying hard/soft timing constraints
for heterogeneous embedded systems, ACM Trans. Des. Autom. Electron. Syst.
14 (2) (2009) 25.

[14] J.Li, M. Qiu, Z. Ming, G. Quan, X. Qin, Z. Gu, Online optimization for scheduling
preemptable tasks on laaS cloud systems, J. Parallel Distrib. Comput. 72 (5)
(2012) 666-677.

[15] K. Gai, S. Li, Towards cloud computing: a literature review on cloud
computing and its development trends, in: IEEE 4th International Conference
on Multimedia Information Networking and Security, 2012, pp. 142-146.

[16] M. Qiuy,]. Niu, L. Yang, X. Qin, S. Zhang, B. Wang, Energy-aware loop parallelism
maximization for multi-core DSP architectures, in: Proceedings of the 2010
IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l
Conference on Cyber, Physical and Social Computing, 2010, pp. 205-212.

[17] Z. Sanaei, S. Abolfazli, A. Gani, R. Buyya, Heterogeneity in mobile cloud
computing: taxonomy and open challenges, IEEE Commun. Surv. Tutor. 16 (1)
(2014) 369-392.

http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref1
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref3
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref4
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref6
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref8
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref9
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref10
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref12
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref13
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref14
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref17

772 H. Zhao et al. / Future Generation Computer Systems 56 (2016) 766-772

[18] J.Li, C. Liu, J. Yu, Context-based diversification for keyword queries over XML
data, IEEE Trans. Knowl. Data Eng. 27 (99) (2014) 1-14.

[19]]. Ohrt, V. Turau, Cross-platform development tools for smartphone applica-
tions, Computer 45 (9) (2012) 72-79.

[20] P. Samadi, H. Mohsenian-Rad, V. Wong, R. Schober, Real-time pricing for
demand response based on stochastic approximation, [EEE Trans. Smart Grid
5(2)(2014) 789-798.

[21] A. Forkan, I. Khalil, Z. Tari, CoCaMAAL: A cloud-oriented context-aware
middleware in ambient assisted living, Future Gener. Comput. Syst. 35 (2014)

114-127.
[22] W. He, D. Xu, Integration of distributed enterprise applications: a survey, [EEE
Trans. Ind. Inf. 10 (1) (2014) 35-42.

Hui Zhao received the B.E. and M.S. degrees from Xi'an
Technology University, Shanxi and Henan University,
Henan, China, in 2000 and 2008, respectively. He is a Ph.D.
student at the Seidenberg School of Computer Science and
Information Systems of Pace University. He is currently
an associate professor in the Software school of Henan
University.

Min Chen is a professor in School of Computer Science
and Technology at Huazhong University of Science and
Technology (HUST). He is the Chair of IEEE Computer
Society (CS) Special Technical Communities (STC) on Big
Data. He was an assistant professor in School of Computer
Science and Engineering at Seoul National University
(SNU) from September 2009 to February 2012. He was
R&D director at Confederal Network Inc. from 2008 to
2009. He worked as a Post-Doctoral Fellow in Department
of Electrical and Computer Engineering at University of
British Columbia (UBC) for three years. Before joining UBC,
he was a Post-Doctoral Fellow at SNU for one and half years. He received Best Paper
Award from IEEE ICC 2012, and Best Paper Runner-up Award from QShine 2008.
He has more than 180 paper publications, including 85 SCI papers. He serves as
editor or associate editor for Information Sciences, Wireless Communications and
Mobile Computing, IET Communications, IET Networks, Wiley 1.]. of Security and
Communication Networks, Journal of Internet Technology, KSII Trans. Internet and
Information Systems, International Journal of Sensor Networks. He is managing
editor for [JAACS and IJART. He is a Guest Editor for IEEE Network, I[EEE Wireless
Communications Magazine, etc. He is Co-Chair of IEEE ICC 2012-Communications
Theory Symposium, and Co-Chair of IEEE ICC 2013-Wireless Networks Symposium.
He is General Co-Chair for IEEE CIT-2012 and Mobimedia 2015. He is General Vice
Chair for Tridentcom 2014. He is Keynote Speaker for CyberC 2012 and Mobiquitous
2012. He is a TPC member for IEEE INFOCOM 2013 and INFOCOM 2014. His research
focuses on Internet of Things, Big Data, Machine to Machine Communications, Body
Area Networks, E-healthcare, Mobile Cloud Computing, Ad Hoc Cloudlet, Cloud-
Assisted Mobile Computing, Ubiquitous Network and Services, and Multimedia
Transmission over Wireless Network, etc.

Meikang Qiu (SM’'07) received the BE and ME degrees
from Shanghai Jiao Tong University, China. He received the
M.S. and Ph.D. degree in Computer Science from University
of Texas at Dallas in 2003 and 2007, respectively.
Currently, he is an associate professor of Computer
Engineering at Pace University. He has worked at Chinese
Helicopter R&D Institute, IBM, etc. Currently, he is an [EEE
Senior member and ACM Senior member. His research
interests include cyber security, embedded systems, cloud
computing, smart grid, microprocessor, data analytics, etc.
Alot of novel results have been produced and most of them
have already been reported to research community through high-quality journal
(such as [EEE Trans. on Computer, ACM Trans. on Design Automation, [EEE Trans.
on VLSI, and JPDC) and conference papers (ACM/IEEE DATE, ISSS+CODES and DAC).
He has published 4 books, 200+ peer-reviewed journal and conference papers
(including 100+ journal articles, 100+ conference papers), and 3 patents. He has
won ACM Transactions on Design Automation of Electrical Systems (TODAES) 2011
Best Paper Award. His paper about cloud computing has been published in JPDC
(Journal of Parallel and Distributed Computing, Elsevier) and ranked #1 in 2012
Most Downloaded Paper of JPDC. He has won another 4 Conference Best Paper
Award (IEEE/ACM ICESS’12, IEEE GreenCom'10, IEEE EUC'10, IEEE CSE'09) in recent
four years. Currently he is an Associate Editor of IEEE Transactions on Computers
and IEEE Transactions on Cloud Computing. He is the General Chair of the IEEE
HPCC/ICESS?CSS 2015, the General Chair of IEEE CSCloud’15 and NSS’15, Steering
Committee Chair of IEEE BigDataSecurity 2015. He was also a recipient of the Navy
Summer Faculty Award in 2012 and Air Force Summer Faculty Award in 2009. His
research is supported by NSF and Industrial such as Nokia, TCL, and Cavium.

Keke Gai is a Ph.D. student in Computer Science depart-
ment at Pace University, New York, USA. He holds de-
grees from Nanjing University of Science and Technology
(B.Eng.), the University of British Columbia (M.E.T.) and
Lawrence Technological University (M.B.A. and M.S.). His
research interests include mobile cloud computing, cy-
ber security, combinatorial optimization, business process
modeling, enterprise architecture, and Internet comput-
ing.

Meiqin Liu received the B.E. and Ph.D. degrees in
Control Theory and Control Engineering from Central
South University, Changsha, China, in 1994 and 1999,
respectively. She was a Post-Doctoral Research Fellow
with the Huazhong University of Science and Technology,
Wubhan, China, from 1999 to 2001. She was a Visiting
Scholar with the University of New Orleans, New Orleans,
LA, USA, from 2008 to 2009. She is currently a Professor
with the College of Electrical Engineering, Zhejiang
University, Hangzhou, China. She is a senior member

‘ ' * of IEEE and has participated in organizing several IEEE
international conferences. She has authored more than 90 peer reviewed papers,
including 48 journal papers. Her current research interests include intelligent
systems, information fusion, and nonlinear control.

http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref18
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref19
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref20
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref21
http://refhub.elsevier.com/S0167-739X(15)00180-6/sbref22

	A novel pre-cache schema for high performance Android system
	Introduction
	Related works
	Models and concepts
	Motivational example
	Algorithms
	Experiment and results
	Energy consumption
	Execution latency

	Conclusions
	Acknowledgments
	References

