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Abstract—With ultra-dense networks (UDN) becoming one of
the key technologies of the fifth generation (5G) cellular networks,
it is an important problem to evaluate the influence of user
mobility on UDN. However, studies that focus on this topic
are still not enough. In this paper, random way point mobility
models and the stochastic geometry theory are considered to
evaluate the performance of 5G UDN. We first derive the coverage
probability of UDN for macro-cell users and small-cell users
based on random small cell networks. Furthermore, the network
capacity and energy efficiency are evaluated for UDN considering
user mobility, respectively. Compared with the existed studies, we
provide a new kind of method to study the impact of user mobility
for the future 5G UDN.

Index Terms—User mobility, ultra-dense networks, 5G net-
works, random way point model.

I. INTRODUCTION

Recently, technologies of wireless cellular network have
been improved dramatically and successfully influenced our
lives in many aspects. Nowadays the 5G networks require
1000 times of the transmission rate compared with past cellular
network systems. To overcome the challenge researchers start
to consider the Ultra dense networks (UDN) should be one of
the key technologies to fit the demand of huge transmission
rate [1]. The UDN are mainly used to reduce the coverage
area of one single small cell base station (SBS) and further
improve the performance of the whole networks [2]. On the
other hand, the effect of user mobility is enlarged because of
the decline of the cell radius. Thus, it is an important problem
to evaluate the impact of the user mobility for 5G small cell
networks considering human activity habits [3].

From UDN first introduced till now, many kinds of works
have been done over this topic. The authors of [4] pointed out
that the UDN would be the main component of future networks
and gave us a brief answer of a basic question: how many
SBS do we need to build a 5G cellular system? The influence
of SBS density on network energy efficiency (EE) has also
been studied in [5] using stochastic geometry theory. Some
researchers focus on the combination of 5G key technologies,
reference [6] provided a framework to use Massive-MIMO and
mmWave for UDN backhaul transmission. MmWave was also
considered in [7] to study the coverage probability in UDN

with different network parameters. The authors of [8] found
that the differences between line of sight (Los) and non-Los
transmission would cause a crucial impact in UDN theoretic
models. There are also some researchers think that the way
to design the networks should be evolved in UDN designing,
like the authors of [9] introduced a concept of user-centric
UDN aim at using dynamic AP grouping technology to realize
allocating network resources more intelligently. Traditional
WIFI technologies were studied as a component of UDN in
[10] to establish a LTE-WIFI small-cell dense network, and
multi dimension Markov chain was used to study the network
performance in that paper. Other well-known technologies
could also be used in UDN like [11] gave us a joint research
between cognitive radio and USDN to study the impact of
different resource allocation algorithms on UDN. Cooperative
communication is similarly considered as a necessary part
of UDN, [12]has done a joint optimization between spectral
efficiency and EE of UDN using cooperative game theory.
Also some new technologies can be used in UDN, like energy
harvesting, reference [13] predicted there would be a trade-
off between EE and coverage probability if we adopt energy
harvesting devices in UDN.

From 5G standard was first introduced till now, so many
researches are focus on different topics of UDN, but the impact
of user mobility in UDN is still not well studied. Based on
this fact, the contributions and novelties of this paper are
summarized as follow:

1) Providing a way to evaluate user mobility in UDN by
utilizing the well-known Random way point (RWP) mo-
bility model together with stochastic geometry model.

2) Based on the proposed RWP model, we analyze the
network performance indexes like network capacity and
EE.

The rest of this paper is organized as follow. Section two
describes the system model of a downlink UDN with users mo-
bility follow RWP. In section three the network performance
indexes like coverage probability, network capacity and EE are
derived based on the proposed system model. Numerical and
simulation results are shown in section four. Finally, section
five concludes this paper.
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Fig. 1. System model. A PVT network including MBS, SBS and
one TU inside.

II. SYSTEM MODEL

A. Base Stations Distribution Model

Assume that both macro cell base stations (MBS) and small
cell base stations (SBS) are located on the two dimension plane
R2. The distribution processes of MBS and SBS follow two
independent homogeneous Poisson point processes (HPPP)
Φm and Φs with intensity λB m and λB s, respectively.
Consider the fact that the density of SBS is always larger
than that of MBS in a real cellular system, we assume that
λB s > λB m. Using Poisson-Voronoi Tessellation (PVT) on
Φm the plane is partitioned into a series of irregular polygons
that corresponding to different MBS coverage areas [14]. MBS
and SBS are assumed to transmit signal on different and
disjoint spectrums so that there is no cross tier interference
in our proposed UDN system. The users are uniformly and
independently located on the plane with intensity λu, so based
on the Slivnyaks theory, we can choose any one of the users as
the typical user (TU) to study and extend the analyze results
to all other users without loss of generality. An illustration of
users and BSs deployment is depicted in Fig. 1.

B. Interference Model

Assume that the user devices and base stations are all
equipped with single antenna, and the multiple access tech-
nology is OFDM. Because of the usage of OFDM technology,
there is no inter cell interference in our network model, and
the downlink interference come from other base stations on the
plane. The user mobility is evaluated by RWP model [15] and
explained in part C of this section. Due to the large density
of SBS we make the same assumption as [3] that the moving
users can only access the MBS and static users can access
the SBS in order to decrease the huge overhead caused by
cross cell movements. Because of the usage of PVT method,
TU will choose the closest base station to access, and TU can
successfully served only if the received signal-to-interference-
plus-noise ratio (SINR) of the downlink channel is beyond a
given threshold T .

The wireless channel is assumed to be Rayleigh fading
channel in this paper. Denote the transmit power of MBS and
SBS is pm and ps, respectively. According to the different
and disjoint working spectrum between MBS and SBS, the
users of MBS/SBS can only receive interference from other
MBS/SBS. So when the MBS bm0 try to cover a moving TU,
the received interference of TU can be expressed as:

Irm =
∑

i∈Φm/bm0

pmhimR−α
im

, (1)

where Rim is the distance between interfering MBS and
TU, him is an exponential random variable with expectation
equals to 1, α represents the path loss exponent.

And received interference of the downlink channel between
a static TU and its associated SBS bs0 is:

Irs =
∑

i∈Φs/bs0

pshisR
−α
is

, (2)

where Ris denotes the distance between interfering SBS and
TU.

C. User Mobility Model

The RWP model is used to evaluate the mobility of users
in this paper. In RWP model, users have two kinds of states,
one is moving and the other is static. A TU will keep static
for a certain waiting time tp, and when tp is ended the TU
will straightly move to a random destination ued which is uni-
formly distributed on the plane. The moving velocity v (n) of
this movement is choosing from [min velocity,max velocity]
uniformly, where n denotes the total number of movements
before. Notice when TU starts one movement, the velocity
will keep constant before the ending of this movement. We
use tm (n) to denote the duration of the n th movement, and
uex (n), uey (n) denote the x-coordinate and y-coordinate of
the destinations location of the n th movement. Also define
the distance between n−1 th destination and n th destination
as d (n), the angel between them is θ (n), then we have:


d (n) =

√
(uex (n)− uex (n− 1))

2
+ (uey (n)− uey (n− 1))

2

tm (n) = d(n)
v(n)

sin θ (n) =
uey(n)−uey(n−1)

d(n)

cos θ (n) = uex(n)−uex(n−1)
d(n)

.

(3)
And once the TU finishes a movement, he will keep static

for another tp again.

III. PERFORMANCE ANALYSIS

A. Coverage Probability

The definition of coverage probability is shown as follow
[16]:

pc(T, λ, α)
∆
= P [SINR > T ] , (4)

where λ is the density of the base stations.
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Due to the assumption that the MBS and SBS use different
and disjoint spectrums, so there is no cross tier interference
in the whole networks. Thus the coverage probability of MBS
and SBS are independent with each other. By denoting σ2

as the variance of the normal distributed additive Gaussian
white noise, p as the transmit power of the base station, r as
the distance between the associated base station and user, h
as the small scale fading of the wireless channel, if h is an
exponential distributed variable, the coverage probability can
be expressed as follow:

pc(T, λ, α) = πλ

∫ ∞

0

e−πλv(1+ρ(T,α))−µTσ2vα/2

dv , (5)

where:

ρ(T, α) = T 2/α

∫ ∞

T−2/α

1

1 + uα/2
du , (6)

with u =
(

v

rT
1
α

)2
. And notice that in our model the users

can be successfully covered if and only if the received SINR
between the moving users and the associated MBS are beyond
T , or the received SINR between the static users and the
associated SBS are beyond T . So by denoting pm c(T, λ, α)
and ps c(T, λ, α) as the coverage probability of moving and
static users respectively, when α = 4 formula (6) can be
further derived as (7)(8) and (9).

B. Network Capacity

According to the famous Shannon formula C = B ·log2(1+
SINR), where C is the channel capacity and B is the single
channel bandwidth, the stationary channel capacity of TU can
be expressed by:

Cu = lim
t→∞

E (Cs) ts + E (Cm) tm
t

, (10)

where E (Cs) and E (Cm) are the expectation channel capacity
of SBS and MBS, ts and tm denote the total time that SBS
and MBS can cover the TU, respectively. Notice that there
exists the situation that user cannot be covered because of the
poor received SINR, so we have tm + ts ≤ t.

Together with formula (8), E (Cs) and E (Cm) can be
expressed as (11)(12):

Where ρ(x, α) has been shown in (6).
Thus substitute (5) (6) into (10), the total network capacity

is expressed as (13):
Where S represents the area of the plane, ts and tm are

achieved through Monte-Carlo simulation.

C. Energy Efficiency

In this paper, the EE is defined as follow:

ϖ =
Ctotal

E
, (14)

where ϖ is the network EE, Ctotal is the total network
capacity, E stands for the total energy consumption.

In our model, four kinds of energy consumption is
considered, the first is MBS transmit energy consumption
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Fig. 2. Network capacity with respect to MBS density and SINR
threshold.

Pm trans = pmλuSpm c (T, λB m, α), second is SBS trans-
mit energy consumption Ps trans = psλuSps c (T, λB s, α),
third is MBS operating energy consumption Pm opr =
aPm trans + bm, the final one is SBS operating energy
consumption Ps opr = aPs trans + bs with a = 7.84, bm =
71.50W for MBS and a = 7.84, bs = 7.15W for SBS. So the
network energy efficiency can be evaluated as (15):

IV. SIMULATION RESULTS

This section is about the Monte-Carlo simulation results of
our proposed model. The simulation parameters are defined as
follow: S =

√
10×

√
10 km2, λu = 500 per square kilometer,

transmit power of SBS and MBS are ps = 0.05W and pm =
0.1W, path loss exponent α = 4, variance of Gaussian noise
σ2 = 0.001 and the bandwidth of one single channel B =
100Khz. For the parameters in RWP model, we set the waiting
time tp = 240 min, and moving velocity are uniformly and
randomly picked in [0.22, 1] km/min.

Fig. 2 shows the network capacity Ctotal with respect to
the MBS density λB m and SINR threshold T . An interesting
observation is that when the SINR threshold is fixed, the
network capacity λB m does not monotone increase with the
MBS density. As we can see in the figure, when λB m = 3
the corresponding Ctotal is larger than those of λB m = 5 and
λB m = 1 , and this result can also be seen in [4]. On the
other hand, the network capacity decreases with the increase
of SINR threshold, it’s similar to the well-known result in [14],
[16].

In Fig.3 the influence of SBS density λB s and SINR
threshold T on the network capacity Ctotal is evaluated. As the
SINR threshold is fixed, we can see that the network capacity
decreases with the increase of SBS density λB s. And if the
SBS density is fixed the Ctotal decreases with the increase of
SINR threshold T .

The effect of MBS density λB m and SINR threshold T
on the network energy efficiency ϖ is investigated in Fig.
4. We can see from the figure that when T is fixed, among



4

pm c(T, λ, 4) =
π

3
2√
T

SNRm

exp

(
(λB mπκ(T ))

2

4T
SNRm

)
Q

λB mπκ(T )√
2T

SNRm

 , (7)

ps c(T, λ, 4) =
π

3
2√
T

SNRs

exp

(
(λB sπκ(T ))

2

4T
SNRs

)
Q

λB sπκ(T )√
2T

SNRs

 , (8)

κ(T ) = 1 + ρ(T, 4) = 1 +
√
T (π/2− arctan(1/

√
T )) , (9a)

Q(x) =
1√
2π

∫ ∞

x

exp(−y2/2)dy , (9b)

SNRm =
pm
µσ2

, (9c)

SNRs =
ps
µσ2

. (9d)

E (Cs) =

∞∫
0

log2 (1 + x)

−x
d
(
π (λB s)

∫∞
0

e−π(λB s)v(1+ρ(x,α))−µxσ2vα/2

dv
)

dx

dx . (11)

E (Cm) =

∞∫
0

log2 (1 + x)

−x
d
(
π (λB m)

∫∞
0

e−π(λB m)v(1+ρ(x,α))−µxσ2vα/2

dv
)

dx

dx . (12)

Ctotal = SλuCu

= Sλu lim
t→∞

E(Cs)ts+E(Cm)tm
t

= lim
t→∞

Sλuts
∞∫
0

log2(1+x)

−x
d

(
π(λB s)

∫∞
0 e

−π(λB s)v(1+ρ(x,α))−µxσ2vα/2
dv

)
dx

dx

t +

lim
t→∞

Sλutm
∞∫
0

log2(1+x)

−x
d

(
π(λB m)

∫∞
0 e

−π(λB m)v(1+ρ(x,α))−µxσ2vα/2
dv

)
dx

dx

t .

(13)

ϖ = lim
t→∞

Sλuts
∞∫
0

log2(1+x)

−x
d

(
π(λB s)

∫∞
0 e

−π(λB s)v(1+ρ(x,α))−µxσ2vα/2
dv

)
dx

dx

(Pm trans+Ps trans+Pm opr+Ps opr)t
+

lim
t→∞

Sλutm
∞∫
0

log2(1+x)

−x
d

(
π(λB m)

∫∞
0 e

−π(λB m)v(1+ρ(x,α))−µxσ2vα/2
dv

)
dx

dx

(Pm trans+Ps trans+Pm opr+Ps opr)t
.

(15)

all the three couples of parameters λB m = 3 achieves the
largest energy efficiency, and when the MBS density is fixed,
the energy efficiency decreases with the increase of SINR
threshold T .

Finally, the impact of SBS density λB s and SINR threshold
T for the network energy efficiency ϖ is shown in Fig. 5. The
simulation result shows that when T is fixed, energy efficiency
ϖ decreases with the increase of λB s. Similarly, when λB s

is fixed, energy efficiency ϖ decreases with the increase of

SINR threshold T .

V. CONCLUSION

Based on the RWP model and stochastic geometry theory,
the impact of user mobility performance on 5G UDN is studied
in this paper. The simulation results indicate that when we
take user mobility into consideration, the network capacity
still does not monotone increase with base station density. This
paper has established a brief but effective way to evaluate the
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Fig. 3. Network capacity with respect to SBS density and SINR
threshold.
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impact of user mobility on the performance of UDN, and we
will further extend our proposed model in the future work.
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