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Abstract—Key Management protocol is one of the most 

important mechanisms for communication security, whereas its 

security analysis is critical to evaluate the information security. 

In this paper, we study a kind of group key management schemes 

which use key calculation in rekeying. At first, the security 

vulnerability in Code for Key Calculation (CKC) is analyzed. 

The codes in the key tree can be exposed to the user who should 

not get them. Thus, the user can get additional key information 

in group key updating process. Moreover, the user can continue 

to get the communication contents after he/she leaves the group. 

Sequentially, we construct two effective attacks and discuss the 

condition of successful attack. We analyze similar problems in 

other schemes. Finally, we propose an improved scheme to CKC, 

named Non-Code-aided Key Calculation (NCKC). Performance 

analysis and simulation results show that NCKC can fulfill 

forward and backward security at the cost of a little increase in 

communication overhead. 

Keywords—multicast security; group key management scheme; 

code for key calculation; vulnerability analysis 

I. INTRODUCTION 

In recent years, group communication is widely used in 
video conference, multi-user games, recommender systems [1], 
healthcare systems [2] and science discussion, etc. It is 
characterized by one sender to multiple receivers or multiple 
senders to multiple receivers with cost reduction during 
message forwarding. But, since the internet is open, anyone 
can join the group at any moment. Thus, the contents can be 
utilized by malicious users easily. In order to ensure the 
confidentiality of the contents, security should be provided. To 
ensure that only the legal users can get the contents in group 
communication, the common way is to encrypt the contents 
with keys. Then the keys will be distributed to the legal users. 
Key management is the process of management, distribution, 
update of the keys. When a group key management scheme is 
designed, a good many factors should be considered. They 

mainly include the following aspects： 

 Forward and backward security: Backward security 
ensures a new user cannot obtain the contents sent 
before he joins the group. Forward security ensures a 
user cannot get the contents after he leaves the group. 

 Scalability: Scalability should be considered so that the 
scheme can be used in different applications. 

 Overhead: To improve efficiency, the storage overhead, 
the communication overhead, and the computational 
cost should be small as far as possible. 

The current group key management schemes can be divided 
into three categories: centralized, decentralized, and distributed. 
In centralized group key management, there is a group 
manager which manages and updates the keys used in the 
group. In distributed group key management, all or part of 
members participate in key update. When key update happens, 
every member who participates in key update contributes its 
secret part. Group key will be generated by using all the parts. 
In decentralized group key management, the group is divided 
into different subgroups. In every subgroup, a manager is set to 
manage the key update in the subgroup. All the managers form 
an upper layer which is managed by an upper center.  

With the development of communication, new group key 
management schemes come forth continuously. In [3], the 
author used group key management in Internet of Things (IOT) 
and proposed a scheme which is aware of the departing time of 
users. Besides, security is also an important issue for Vehicular 
Ad Hoc Networks (VANTES) [4]. In [5], the author applied 
group key management to VANET. Group key is updated 
according to the leaving time of users. The big overhead 
caused by user’s frequent joining or leaving is reduced. In [6], 
the author combines group key management with route control 
and proposed the group key management scheme in 5G. 

Among the proposed schemes, there is a kind of schemes 
which use key tree structure and use key calculation to improve 
the performance. For example, the Code for Key Calculation 
(CKC) proposed in [7] combines the merit of GKMP [8] and 
LKH [9]. It tries to keep the communication overhead same as 
GKMP when a user joins and reduce the overhead when a user 
leaves. The other two schemes are in [10] and [11].  

In this paper, we present there has vulnerability in CKC. It 
cannot fulfill forward security. We give out two effective 
attacks. The attacker can continue to obtain the new group key 
after he leaves. We discuss the condition of successful attack 
and analyze similar problems in other schemes. Finally, we 
give out the improved scheme named Non-Code-aided Key 
Calculation (NCKC). Performance analysis and simulation 
show that NCKC solve the security problem of CKC at the cost 
of a little increase in communication overhead. 



The rest of the paper is organized as follows. Section II 
gives out the related work. Section III introduces CKC. Section 
IV gives out the vulnerability in CKC and two active attacks. 
Section V gives out the attacks of the other two schemes. 
Section VI gives out an improved scheme NCKC. Section VII 
analyzes the performance of NCKC. Simulations are presented 
in Section VIII. Conclusion is in Section IX. 

II. RELATED WORK 

At present, the typical centralized group key management 
schemes include GKMP and LKH. GKMP uses star structure 
in group key management. Each user stores a group key and an 
individual key shared with the group manager. When a user 
joins, the group manager only needs to send two messages to 
distribute the new group key to the users. But, when a user 
leaves, the group manager needs to send the new group key to 
the remaining users one by one. To improve the scalability of 
key management, LKH is proposed in [9]. LKH is based on the 
hierarchical arrangement of a set of keys and the key 
management structure is a tree. Every user stores the keys in 
the path from the node to the root. In rekeying, the 
communication overhead of GKMP is O(N) and the overhead 
of LKH is O(logN), where N is the number of users in the 
group. Besides the key management for single group, recently, 
many scholars propose group key management schemes for 
multiple groups. In [11], the author proposes hierarchical 
scheme to reduce the overhead of rekeying in multiple groups. 

III. CKC SCHEME 

In [7], the author proposed CKC based on LKH. CKC 
manages the keys of the group by using key tree. Every 
internal node is an auxiliary key. The root node is the group 
key. Every user is at a leaf node and stores the keys in the path 
from the node to the root. For example, in Fig. 1, u1 stores K1, 
K1,2, K1,4, and KG. KG is the group key. K1 is the individual key 
of u1 and is shared with the group manager. To improve 
efficiency, each user needs to store a code. 

A. Code Generation 

When a user joins, the group manager allocates a position 
in the key tree for him and generates a new code. The rule of 
generating a new code is to add a random number to the right 
side of his parent’s code. The root has no code. As shown in 
Fig. 1, the parent of K1 is K1,2 and the code of K1,2 is 02. The 
code of K1 is 023. For simplicity, we do not distinguish 
between the key assigned to the node and the name of the node. 

B. Users Joining 

When a user joins, he will be allocated to a position in the 
key tree and an individual key will be sent to him. The group 
manager generates a code for him. To ensure backward 
security, the keys need to be updated. As shown in Fig. 1, 
assume u1 joins in the group. The process is as follows. 

1) The group manager computes the new group key 
'

GK  

by using one-way function and the old group key KG. 

In (1), f() is a one-way function. Then the code and 
'

GK  are 

encrypted by u1’s individual key and sent to u1 by unicast. 
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Fig. 1. CKC scheme with 8 users 

 '

G G
( )K f K  

2) The other users are notified a new user joins. The users 

compute the 
'

GK  according to (1). 

3) The group manger updates the auxiliary keys from the 
new user to the root. All the users compute the new auxiliary 
keys according to (2). 


' '

internal_node G internal_node_code
( )K f K C   

In (2), Cinternal_node_code is the code of the internal node. The 
computation of users is as follows. 
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C. User Leaving 

When a user leaves, the node of the user will be deleted. 
The keys need to be updated to ensure forward security. As 
shown in Fig. 1, assume u6 leaves. The process is as follows. 

1) When u6 leaves, the parent of u6 is replaced by his 
sibling. In Fig. 1, K5,6 is replaced by K5. 

2) The group manager generates a new group key 
'

GK . 

3) In order to distribute 
'

GK  to the remaining users, the 

group manager does as follows. Divide the key tree into two 
equal parts. The leaving user belongs to one part of them. 
Divide the part with the leaving user into two equal parts again. 

Divide until there only remains the leaving user. Encrypt 
'

GK  

with the keys on the top of each part and broadcast to the users. 
The above method is equivalent to delete all the keys from the 

leaving user to the root and encrypt 
'

GK  with the root of every 

remaining subtrees. The results is as follows. 
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EX(Y)denotes Y is encrypted with key X. 



4) The group manger updates the auxiliary keys from the 
leaving user to the root. All the remaining users in the group 
compute the new auxiliary keys according to (2) as follows. 

' '

5 7 8 5,8, , : ( 1)Gu u u K f K   

IV. ATTACKS TO CKC 

A. Vulnerability Analysis of CKC 

In [7], the author concludes CKC can fulfill forward and 
backward security. However, we find CKC cannot ensure 
forward security. Because the code of a node is generated by 
adding a random number to the right side of his parent’s code, 
a user in the group can get all the codes from his parent to the 
root. With these codes, he can guess the codes of the siblings in 
the path from his parent to the root. In other words, if ui is in 
the group and his code is a1a2...am-3am-2am-1am where ai 
represents a decimal number, the code of his parent is a1a2...am-

3am-2am-1 and the code of his grandparent is a1a2...am-3am-2. 
Therefore, if the sibling of his grandparent exists, the code 
should be a1a2...am-3b where b represents a decimal number. ui 
can get a1a2...am-3 from his own code. b only represents a 
decimal number. It only can be a number from 0 to 9. So, ui 
can guess the value of b.  

Besides the sibling of its grandparent, ui can guess the 
codes of the siblings in the path from ui to the root. On the 
other hand, because the updated auxiliary keys is computed 
with the codes and the new group key as in (2), ui can compute 
the guessed auxiliary keys and with the guessed codes. In the 
subsequent communication, if ui leaves, he can get the new 
group key with the guessed auxiliary keys. 

B. Brute Force Attack 

As shown in Fig. 2, u1 is the attacker. 

1) According to his code 023, u1 can obtain that the code of 
K1,4 which is 0. 

2) u1 guesses the code of K5,8. The guessed value is b. 

3) Next, when a user in the subtree rooted at K5,8 leaves, it 
should be deleted. Assume the leaving user is u6. Then, u6 is 
deleted and K5 replaces K5,6. The key tree is divided into 3 parts. 
The keys at the top of every part are K5, K7,8, and K1,4. Next, the 

group manager generates a new group key 
'

GK  and encrypts it 

with K5, K7,8, and K1,4. All the users in the group can decrypt 

the rekeying messages and get 
'

GK  but u6. So, u1 can get 
'

GK . 

The auxiliary keys in the path from u6 to the root should be 
updated. u5, u7, and u8 compute the new key of K5,8 according 

to (2) as 
' '

5,8 G
( 1)K f K  . 
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Fig. 2. Brute force attack to CKC 

4) By using b, u1 computes the guessed value of 
'

5,8K  as 

'

X G
( )K f K b  . Since b can only be a number from 0 to 9, 

the total number of KX is only 10. 

5) Next, u1 leaves. K2 replaces K1,2. The remaining users are 
divided in to 3 parts. The keys at the top of every part are K2, 

K3,4, and 
'

5,8K . The group manager generates a new group key 

''

GK  and encrypts it with K2, K3,4, and 
'

5,8K . 

6) Now, u1 can use KX to decrypt the rekeying messages. 

He can get 10 guessed values of 
''

GK  which is 
''

xK . 

7) In the subsequent communication, u1 can use 
''

xK  to 

decrypt the communication contents and eliminate the 9 error 
''

xK . Thus, he can obtain 
''

GK .  

u1 has left the group, but he can still obtain the new group 
key. Therefore, CKC cannot fulfill forward security. It is worth 

mentioning that, after u1 leaves, he uses 
''

xK  to obtain 
''

GK . 

Then, the code of 
'

5,8K  is obtained and 
'

5,8K  is known by u1. In 

the subsequent communication, every time a user in the subtree 
rooted at K1,4 leaves and there is at least one user left in the 
subtree after he leaves the group, u1 can still obtain the new 

group key with 
'

5,8K  until 
'

5,8K  is updated. 

What is worse is when u1 is in the group, as long as the 
calculation is feasible, he can guess all the codes in the key tree. 
He can compute the guessed values of the updated auxiliary 
keys with the guessed codes when a user leaves. After u1 
leaves, every time a user leaves, u1 can decrypt the rekeying 
messages with the guessed keys to get the new group key. 

C. Collusion Attack 

CKC can also be compromised by collusion. As shown in 
Fig. 3, the attackers are u1 and u8. 
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Fig. 3. Collusion attack to CKC 

 

1) u1 leaves and sends his code 023 to u8. Then, u8 obtains 
the code of K1,4 ,0, by using the code of u1. 

2) The group manager updates the keys in the tree. Since u8 

is in the group, he can obtain the new group key 
'

GK . 

3) u8 computes the updated key of K1,4, 
'

1,4K , according to  



 (2) as 
' '

1,4 G( 0)K f K  . 

4) u8 leaves. The group manager updates the keys and 

encrypts the new group key 
''

GK  with K7, K5,6, and 
'

1,4K . 

5) u8 knows 
'

1,4K , so he can decrypt the rekeying messages 

to get 
''

GK .  

D. Attack Analysis 

For the attacker ui, the success of the attack requires to 
meet two conditions. 1) Before ui leaves, he should obtain any 
key of the siblings in the path from ui to the root or the guessed 
value of it. 2) When ui leaves, he is not a child of the root. For 
example, in Fig. 2, assume u1 is the attacker. He should obtain 
any one of K2, K3,4 and K5,8 before he leaves because after u1 
leaves, the new group key will be encrypted with K2, K3,4, and 
K5,8. Since K2 is the individual key of u2, u1 is unable to obtain 
it. So, u1 needs to obtain any one of K3,4 and K5,8. 

To obtain K3,4 or K5,8 and obtain the new group key after u1 
leaves, three conditions need to be met. 1) When u1 is in the 
group, guessing the code of K3,4 or K5,8 is computationally 
feasible to him. 2) When u1 is in the group, K3,4 or K5,8 is 
updated at least once. 3) From the last updating to u1’s leaving, 
K3,4 or K5,8 has always been the root of a subtree and has not 
turned to a leaf. Meet conditions 1 and 2 allows u1 to obtain the 
guessed value of K3,4 or K5,8 by (2). However, after the guessed 
key is obtained, if the node becomes a leaf due to the leaving 
of other users, the attack will fail since the key will not be used. 
For example, in Fig. 2, assume u1 has already gotten the 
guessed value of K3,4. If u3 leaves before u1, K3,4 will be 
replaced by K4. Therefore, K3,4 will not be used to encrypt the 
rekeying message. The attack will fail.  

V. SECURITY ANALYSIS OF OTHER SCHEMES 

A. Analysis of the Scheme Using Gray Code 

In [10], gray code is used for rekeying. We find the scheme 
can be broken by collusion attack. As shown in Fig. 4, when u3 
and u7 leaves at the same time, the group manager updates the 

group key and encrypt the new group key 
'

GK  as follows. 
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u3 knows K1,4. u7 knows K2. So, they can send the keys to 

each other. Thus, they can obtain K2⊕K1,4 and obtain 
'

GK  sent 

to u2. Therefore, the scheme cannot fulfill forward security. 

In addition, there is another collusion attack. Assume u3 
acts in collusion with u7. At first, u3 leaves. The group manager 
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Fig. 4. Gray code scheme with 16 users 

updates the keys and broadcast 
'

GK  to the remaining users. The 

users compute the updated auxiliary keys according to (3). 


' '

internal_node internal_node G
( )K f K K   

Now, u7 is in the group, so he can get 
'

GK . u3 sends K1,4 to 

u7. Then u7 can compute the updated key of K1,4, 
'

1,4K  by (3). 

Next, assume u7 and u8 leave at the same time. The group 

manager encrypts the new group key 
''

GK  with different keys. 

Consider the following encryption. 

 '

1,4

"

1 2 4
, , : ( )

GK
u u u E K  

Now, u7 has already known 
'

1,4K , so he can obtain 
''

GK  by 

decrypting the above rekeying message. 

B. Analysis of the Multiple Group Key Management Scheme 

In [9], calculation is used in rekeying. In the scheme, 
multiple group key management is divided into two layers. In 
data group layer, the session key (SK) is managed. The data 
sources are encrypted with different SKs. The users in this 
layer are servers in the server group (SG) and are managed by 
the group manager. In SG layer, the users are the users of the 
communication and are managed by the SG servers. Different 
SG has different access ability to the data sources as shown in 
Table I. The subscript of SK is composed of (x,y), where x 
denotes the products of the subscript of SGs who can access to 
the source and y denotes the source which is encrypted by the 
SK. For example, SG2 and SG3 can access to D1, so the session 
key of D1 is SK(6,1). SG2 can access to resource D1, D3 ,and D4. 
So, he has SK(6,1), SK(110,3), and SK(330,4).  

When a user leaves from SGi, the server of SGi sends a 
leaving request. The SGs who has the affected SKs join the 
process of key update. For example, when u1 leaves from SG3, 

SK(6,1) and SK(330,4) are affected. Then, SG2，SG3，SG5, and 

SG11 join the process of key update. At first, SG2, SG3,SG5, and 
SG11 compute a key material R corportately. Then, the new SK 
is computed according to (4). 


'

( , ) ( , )
( )

x y x y
SK f SK R   

Since u1 knows SK(6,1), he can collude with SG5 server. 
After he leaves, u1 sends SK(6,1) to SG5 server. Since SG5 server 



joins the process of key update, he can obtain R. Thus, SG5 

server can compute the new key 
'

(6,1)SK  which is used to 

encrypt resource D1 as 
'

(6,1) (6,1)( )SK f SK R  . When SG5 

server leaves, as long as 
'

(6,1)SK  is not changed, he can still 

access to D1. 

TABLE I.  RELATIONSHIP BETWEEN SKS AND SGS 

Data 

Source 

The SKs belonging to different SGs 

SG2 SG3 SG5 SG7 SG11 

D1 SK(6,1) SK(6,1)    

D2    SK(77,2) SK(77,2) 

D3 SK(110,3)  SK(110,3)  SK(110,3) 

D4 SK(330,4) SK(330,4) SK(330,4)  SK(330,4) 

 

As mentioned above, the schemes in [7], [10], [11] cannot 
fulfill forward security. The reason is that the updated keys are 
calculated with the old key information which is known by the 
leaving user and the new key information which is known to 
the users in the group who should not know the updated keys. 

VI. IMPROVED SCHEME OF CKC 

In this section, we proposed an improved scheme of CKC, 
named NCKC. In the scheme, code is not required. 

As in Fig. 5, when u8 joins, the group manager 
authenticates u8 and generates an individual key K8 for u8. 
Then, the group manager allocates a position in the key tree for 
u8 and broadcasts a new user joins. To keep the key tree 
balanced, the group manager selects the lowest node as the 
joining position. The group manager generates a new node K7,8. 
K7 and K8 become the left and right child of K7,8 respectively. 

The group manager and the users in the group compute K7,8 
by using one-way function with K7 and the old group key. 
Then the group manager and the users update the keys in the 
path from u8 to the root. The update is as follows. 
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KG is the group key before u8 joins. 
'

GK  is the new group 

key after u8 joins. Then, the group manager unicasts K7,8, K5,8 

and 
'

GK  to u8. 

As in Fig. 5, when u8 leaves, the group manager replaces 
K7,8 by K7, the sibling of K8. Then, the group manager, u5, and 
u6 compute K5,7 with K5,6 and the old group key KG as follows. 

5,7 5.65 6, : ( )Gu u K f K K  

    The group manager unicasts K5,7 to u7. The group manager, 
u5, u6, and u7 compute the keys from the parent of K5,7 to the 
root using one-way function with the key of the child node. 

'

5.75 6 7, , : ( )
G

u u u K f K
 

Then, the group manager uses K1,4, the sibling keys of K5,7, 
to encrypt the rekeying message and broadcasts to the others. 
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Fig. 5. Key update of NCKC 

VII. ANALYSIS OF NCKC 

A. Security Analysis of NCKC 

First, when a user joins, the group key and the internal keys 
in the path from the user to the root have been updated. The 
user cannot obtain the previous keys. So, NCKC fulfill 
backward security. Second, when a user leaves, the old group 
key and the old internal keys which the user knows are updated. 
So, NCKC fulfill forward security. Third, for the users in the 
group, they can obtain the updated keys either by computation 
or decryption. For the users who obtain the keys by 
computation, they compute the keys with the keys known to 
them. For the users who obtain the keys by decryption, the 
keys which they obtain is the results by using one-way 
functions. The keys equals to new ones. The users in the group 
cannot obtain the keys which should not be known by them. 

B. Performance Analysis of NCKC 

Table II shows the comparison of the schemes. SU, CJ , CL, 
PJ, PL represent the storage overhead of the user , the 
communication overhead when a user joins, the 
communication overhead when a user leaves, the 
computational cost when a user joins, and the computational 
cost when a user leaves, respectively.  

TABLE II.  COMPARISON OF NCKC WITH OTHER SCHEMES 

 LKH CKC NCKC 

CJ 2log2N 1 log2N 

CL 2log2N-1 log2N log2N-1 

PJ 2log2N *CE CE log2N*CE 

PL (2log2N-1)*CE log2N*CE (log2N-1)*CE  

SU log2N+1 log2N+2 log2N+1 

 

N is the number of users in the group. CE is the 
computational cost of one encryption. From Table II, we can 
see compared with CKC, NCKC increases the group 
manager’s communication overhead when a user joins and the 
group manager’s computational cost when a user joins. But, 
NCKC decreases the group manager’s communication 



overhead when a user leaves and the group manager’s 
computational cost when a user leaves. 
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Fig. 6. Group manager’s communication overhead of NCKC 

VIII. SIMULATIONS 

With the development of computer technology, 
computation and storage ability of computers increase 
continuously. Therefore, the communication overhead 
becomes the main aspect for the performance of group key 
management. 

In the below, we will show the experiments. The hardware 
for the experiments includes: a personal computer with Inter 
Pentium CPU G630 2.7GHz and 8GB RAM. The hard disk of 
the computer is over 2GB. The software for the experiments is 
Windows 7 64bit operation system and Matlab 2012b. In the 
experiments, AES is taken for encryption. The length of the 
keys used in the group is 256 bits. SHA-256 is taken as one-
way function. The bandwidth of network is 20 Mbps.  

Every experiment is done for 1000 times and the average 
values are taken as the results. The operations of the users 
include joining and leaving. The probabilities of joining and 
leaving are both 0.5. The number of the operations is 2000. 

A. Communication Overhead 

Fig. 6 describes the group manager’s total communication 
overheads when users join or leave. We can see the 
communication overhead of NCKC is about 1.86 of CKC and 
is about 49.8% of LKH. Compared with CKC, the Group 
manager’s communication overhead of NCKC is acceptable. 

B. Computational Cost 

In Fig. 7, we use the group manager’s total encryption 
times to describe the computational cost. We can see the 
encryption times of NCKC is about 1.8 of CKC and is about 
49.2% of LKH. 
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Fig. 7. Group manager’s encryption times of NCKC 

IX. CONCLUSION 

In this paper, the security of a kind of group key 
management schemes which use calculation was studied. First, 
we gave out the vulnerability in CKC and designed two attacks 
by which a user can continue to obtain communication contents 
after he leaves. The condition of successful attack was 
discussed. Second, we presented that the other two schemes 
had similar vulnerabilities and can be compromised by the 
similar attacks. Finally, we presented the improved scheme 
NCKC. Performance analysis and simulation results showed 
that NCKC can fulfill backward and forward security at a little 
increase in communication overhead and computational cost.  

ACKNOWLEDGMENT 

This study is supported by The Energy Saving technology 
Research in WSN of The Scientific Research Foundation of the 
Young and Middle-aged (2014-QGY-18). The work is also 
supported by the Science and Technology Program of 
Guangdong Province under Grant no. 2013B091100014. 

REFERENCES 

[1] Yin Zhang, et al., “CADRE: Cloud-Assisted Drug REcommendation 
Service for Online Pharmacies”, ACM/Springer Mobile Networks and 
Applications, Vol. 20, No. 3, pp. 348-355, 2015. 

[2] Yin Zhang, et al., “Health-CPS: Healthcare Cyber-Physical System 
Assisted by Cloud and Big Data”, IEEE Systems Journal, doi: 
10.1109/JSYST.2015.2460747, 2015. 

[3] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A novel batch-based 
group key management protocol applied to the internet of things,” Ad 
Hoc Networks, vol. 11, pp. 2724-2737, November 2013. 

[4] Daxin Tian, Yunpeng Wang, He Liu, Xianghong Zhang. “A Trusted 
Multi-hop Broadcasting Protocol for Vehicular Ad Hoc Networks.” 
Proceedings of the International Conference on Connected Vehicles and 
Expo, December 12, 2012, pp.18-22. 

[5] D. Je, Y. H. Choi, and S. W. Seo, “Subscription-period-aware key 
management for secure vehicular multicast communications,” IEEE 
Transactions on Vehicular Technology, vol. 62, pp. 4213-4227, October 
2013. 

[6] Y. Jung, E. Festijo, and M. Peradilla, “Joint operation of routing control 
and group key management for 5G ad hoc D2D networks,” IEEE 
International Conference on Privacy and Security in Mobile Systems, 
2014, pp. 1-8. 

[7] M. Hajyvahabzadeh, E. Eidkhani, S. A. Mortazavi, and A. N. Pour, “A 
new group key management protocol using code for key calculation: 
CKC,” IEEE International Conference on Information Science and 
Applications, 2010, pp. 1-6. 

[8] H. Harney and C. Muckenhirn, “Group key management protocol 
(GKMP) specifications,” RFC 2093, Internet Engineering Task Force, 
1997. 

[9] D. Wallner, E. Harder, and R. Agee, “Key management for multicast: 
issues and architectures,” RFC 2627, Internet Engineering Task Force, 
1999. 

[10] R. Varalakshmi and V. R. Uthariaraj, “A new secure multicast group 
key management using gray code,” IEEE International Conference on 
Recent Trends in Information Technology, 2011, pp. 85-90. 

[11] W. Zhou, Y. Xu, and G. Wang, “Distributed group key management 
using multilinear forms for multi-privileged group communications,” 
12th IEEE International Conference on Trust, Security and Privacy in 
Computing and Communications, 2013, pp. 644-650. 

 


