
NCKC: Non-Code-aided Key Calculation for Group

Key Management

Yanming Sun, Yongfeng Qian, Jeungeun Song, Yiming Miao, Min Chen

School of Computer Science and Technology

Huazhong University of Science and Technology

Wuhan, China

yanming.epic@gmail.com, yongfeng@hust.edu.cn, jsong@hust.edu.cn, yiming.epic@qq.com, minchen2012@hust.edu.cn

Abstract—Key Management protocol is one of the most

important mechanisms for communication security, whereas its

security analysis is critical to evaluate the information security.

In this paper, we study a kind of group key management schemes

which use key calculation in rekeying. At first, the security

vulnerability in Code for Key Calculation (CKC) is analyzed.

The codes in the key tree can be exposed to the user who should

not get them. Thus, the user can get additional key information

in group key updating process. Moreover, the user can continue

to get the communication contents after he/she leaves the group.

Sequentially, we construct two effective attacks and discuss the

condition of successful attack. We analyze similar problems in

other schemes. Finally, we propose an improved scheme to CKC,

named Non-Code-aided Key Calculation (NCKC). Performance

analysis and simulation results show that NCKC can fulfill

forward and backward security at the cost of a little increase in

communication overhead.

Keywords—multicast security; group key management scheme;

code for key calculation; vulnerability analysis

I. INTRODUCTION

In recent years, group communication is widely used in
video conference, multi-user games, recommender systems [1],
healthcare systems [2] and science discussion, etc. It is
characterized by one sender to multiple receivers or multiple
senders to multiple receivers with cost reduction during
message forwarding. But, since the internet is open, anyone
can join the group at any moment. Thus, the contents can be
utilized by malicious users easily. In order to ensure the
confidentiality of the contents, security should be provided. To
ensure that only the legal users can get the contents in group
communication, the common way is to encrypt the contents
with keys. Then the keys will be distributed to the legal users.
Key management is the process of management, distribution,
update of the keys. When a group key management scheme is
designed, a good many factors should be considered. They

mainly include the following aspects：

 Forward and backward security: Backward security
ensures a new user cannot obtain the contents sent
before he joins the group. Forward security ensures a
user cannot get the contents after he leaves the group.

 Scalability: Scalability should be considered so that the
scheme can be used in different applications.

 Overhead: To improve efficiency, the storage overhead,
the communication overhead, and the computational
cost should be small as far as possible.

The current group key management schemes can be divided
into three categories: centralized, decentralized, and distributed.
In centralized group key management, there is a group
manager which manages and updates the keys used in the
group. In distributed group key management, all or part of
members participate in key update. When key update happens,
every member who participates in key update contributes its
secret part. Group key will be generated by using all the parts.
In decentralized group key management, the group is divided
into different subgroups. In every subgroup, a manager is set to
manage the key update in the subgroup. All the managers form
an upper layer which is managed by an upper center.

With the development of communication, new group key
management schemes come forth continuously. In [3], the
author used group key management in Internet of Things (IOT)
and proposed a scheme which is aware of the departing time of
users. Besides, security is also an important issue for Vehicular
Ad Hoc Networks (VANTES) [4]. In [5], the author applied
group key management to VANET. Group key is updated
according to the leaving time of users. The big overhead
caused by user’s frequent joining or leaving is reduced. In [6],
the author combines group key management with route control
and proposed the group key management scheme in 5G.

Among the proposed schemes, there is a kind of schemes
which use key tree structure and use key calculation to improve
the performance. For example, the Code for Key Calculation
(CKC) proposed in [7] combines the merit of GKMP [8] and
LKH [9]. It tries to keep the communication overhead same as
GKMP when a user joins and reduce the overhead when a user
leaves. The other two schemes are in [10] and [11].

In this paper, we present there has vulnerability in CKC. It
cannot fulfill forward security. We give out two effective
attacks. The attacker can continue to obtain the new group key
after he leaves. We discuss the condition of successful attack
and analyze similar problems in other schemes. Finally, we
give out the improved scheme named Non-Code-aided Key
Calculation (NCKC). Performance analysis and simulation
show that NCKC solve the security problem of CKC at the cost
of a little increase in communication overhead.

The rest of the paper is organized as follows. Section II
gives out the related work. Section III introduces CKC. Section
IV gives out the vulnerability in CKC and two active attacks.
Section V gives out the attacks of the other two schemes.
Section VI gives out an improved scheme NCKC. Section VII
analyzes the performance of NCKC. Simulations are presented
in Section VIII. Conclusion is in Section IX.

II. RELATED WORK

At present, the typical centralized group key management
schemes include GKMP and LKH. GKMP uses star structure
in group key management. Each user stores a group key and an
individual key shared with the group manager. When a user
joins, the group manager only needs to send two messages to
distribute the new group key to the users. But, when a user
leaves, the group manager needs to send the new group key to
the remaining users one by one. To improve the scalability of
key management, LKH is proposed in [9]. LKH is based on the
hierarchical arrangement of a set of keys and the key
management structure is a tree. Every user stores the keys in
the path from the node to the root. In rekeying, the
communication overhead of GKMP is O(N) and the overhead
of LKH is O(logN), where N is the number of users in the
group. Besides the key management for single group, recently,
many scholars propose group key management schemes for
multiple groups. In [11], the author proposes hierarchical
scheme to reduce the overhead of rekeying in multiple groups.

III. CKC SCHEME

In [7], the author proposed CKC based on LKH. CKC
manages the keys of the group by using key tree. Every
internal node is an auxiliary key. The root node is the group
key. Every user is at a leaf node and stores the keys in the path
from the node to the root. For example, in Fig. 1, u1 stores K1,
K1,2, K1,4, and KG. KG is the group key. K1 is the individual key
of u1 and is shared with the group manager. To improve
efficiency, each user needs to store a code.

A. Code Generation

When a user joins, the group manager allocates a position
in the key tree for him and generates a new code. The rule of
generating a new code is to add a random number to the right
side of his parent’s code. The root has no code. As shown in
Fig. 1, the parent of K1 is K1,2 and the code of K1,2 is 02. The
code of K1 is 023. For simplicity, we do not distinguish
between the key assigned to the node and the name of the node.

B. Users Joining

When a user joins, he will be allocated to a position in the
key tree and an individual key will be sent to him. The group
manager generates a code for him. To ensure backward
security, the keys need to be updated. As shown in Fig. 1,
assume u1 joins in the group. The process is as follows.

1) The group manager computes the new group key
'

GK

by using one-way function and the old group key KG.

In (1), f() is a one-way function. Then the code and
'

GK are

encrypted by u1’s individual key and sent to u1 by unicast.

GK

4,1K 8.5K

2,1K
4,3K 6,5K 8,7K

1K
2K 3K

4K 5K 6K
7K 8K

0 1

02 09 12 15

023 028 093 096 123 128 153 157

1u
2u 3u

4u 5u 6u
7u 8u

Fig. 1. CKC scheme with 8 users

 '

G G
()K f K  

2) The other users are notified a new user joins. The users

compute the
'

GK according to (1).

3) The group manger updates the auxiliary keys from the
new user to the root. All the users compute the new auxiliary
keys according to (2).


' '

internal_node G internal_node_code
()K f K C   

In (2), Cinternal_node_code is the code of the internal node. The
computation of users is as follows.

' '

1,2

' '

1,4

1 2

1 4

, :

:

(02)

,..., (0)

G

G

u u K f K

u u K f K





 

 

C. User Leaving

When a user leaves, the node of the user will be deleted.
The keys need to be updated to ensure forward security. As
shown in Fig. 1, assume u6 leaves. The process is as follows.

1) When u6 leaves, the parent of u6 is replaced by his
sibling. In Fig. 1, K5,6 is replaced by K5.

2) The group manager generates a new group key
'

GK .

3) In order to distribute
'

GK to the remaining users, the

group manager does as follows. Divide the key tree into two
equal parts. The leaving user belongs to one part of them.
Divide the part with the leaving user into two equal parts again.

Divide until there only remains the leaving user. Encrypt
'

GK

with the keys on the top of each part and broadcast to the users.
The above method is equivalent to delete all the keys from the

leaving user to the root and encrypt
'

GK with the root of every

remaining subtrees. The results is as follows.

 

 
 

1,4

7,8

5

'
1 4

'
7 8

'
5

,..., : ()

, : ()

: ()

K G

K G

K G

u u E K

u u E K

u E K









EX(Y)denotes Y is encrypted with key X.

4) The group manger updates the auxiliary keys from the
leaving user to the root. All the remaining users in the group
compute the new auxiliary keys according to (2) as follows.

' '

5 7 8 5,8, , : (1)Gu u u K f K 

IV. ATTACKS TO CKC

A. Vulnerability Analysis of CKC

In [7], the author concludes CKC can fulfill forward and
backward security. However, we find CKC cannot ensure
forward security. Because the code of a node is generated by
adding a random number to the right side of his parent’s code,
a user in the group can get all the codes from his parent to the
root. With these codes, he can guess the codes of the siblings in
the path from his parent to the root. In other words, if ui is in
the group and his code is a1a2...am-3am-2am-1am where ai
represents a decimal number, the code of his parent is a1a2...am-

3am-2am-1 and the code of his grandparent is a1a2...am-3am-2.
Therefore, if the sibling of his grandparent exists, the code
should be a1a2...am-3b where b represents a decimal number. ui
can get a1a2...am-3 from his own code. b only represents a
decimal number. It only can be a number from 0 to 9. So, ui
can guess the value of b.

Besides the sibling of its grandparent, ui can guess the
codes of the siblings in the path from ui to the root. On the
other hand, because the updated auxiliary keys is computed
with the codes and the new group key as in (2), ui can compute
the guessed auxiliary keys and with the guessed codes. In the
subsequent communication, if ui leaves, he can get the new
group key with the guessed auxiliary keys.

B. Brute Force Attack

As shown in Fig. 2, u1 is the attacker.

1) According to his code 023, u1 can obtain that the code of
K1,4 which is 0.

2) u1 guesses the code of K5,8. The guessed value is b.

3) Next, when a user in the subtree rooted at K5,8 leaves, it
should be deleted. Assume the leaving user is u6. Then, u6 is
deleted and K5 replaces K5,6. The key tree is divided into 3 parts.
The keys at the top of every part are K5, K7,8, and K1,4. Next, the

group manager generates a new group key
'

GK and encrypts it

with K5, K7,8, and K1,4. All the users in the group can decrypt

the rekeying messages and get
'

GK but u6. So, u1 can get
'

GK .

The auxiliary keys in the path from u6 to the root should be
updated. u5, u7, and u8 compute the new key of K5,8 according

to (2) as
' '

5,8 G
(1)K f K  .

GK

4,1K 5,8K

2,1K
4,3K 6,5K 8,7K

1K
2K 3K

4K 5K 6K
7K 8K

0 1

02 09 12 15

023 028 093 096 123 128 153 157

1u 2u
3u

4u 5u 6u 7u 8u

Leave
'

GK "

GK

'

5,8K

Fig. 2. Brute force attack to CKC

4) By using b, u1 computes the guessed value of
'

5,8K as

'

X G
()K f K b  . Since b can only be a number from 0 to 9,

the total number of KX is only 10.

5) Next, u1 leaves. K2 replaces K1,2. The remaining users are
divided in to 3 parts. The keys at the top of every part are K2,

K3,4, and
'

5,8K . The group manager generates a new group key

''

GK and encrypts it with K2, K3,4, and
'

5,8K .

6) Now, u1 can use KX to decrypt the rekeying messages.

He can get 10 guessed values of
''

GK which is
''

xK .

7) In the subsequent communication, u1 can use
''

xK to

decrypt the communication contents and eliminate the 9 error
''

xK . Thus, he can obtain
''

GK .

u1 has left the group, but he can still obtain the new group
key. Therefore, CKC cannot fulfill forward security. It is worth

mentioning that, after u1 leaves, he uses
''

xK to obtain
''

GK .

Then, the code of
'

5,8K is obtained and
'

5,8K is known by u1. In

the subsequent communication, every time a user in the subtree
rooted at K1,4 leaves and there is at least one user left in the
subtree after he leaves the group, u1 can still obtain the new

group key with
'

5,8K until
'

5,8K is updated.

What is worse is when u1 is in the group, as long as the
calculation is feasible, he can guess all the codes in the key tree.
He can compute the guessed values of the updated auxiliary
keys with the guessed codes when a user leaves. After u1
leaves, every time a user leaves, u1 can decrypt the rekeying
messages with the guessed keys to get the new group key.

C. Collusion Attack

CKC can also be compromised by collusion. As shown in
Fig. 3, the attackers are u1 and u8.

GK

4,1K 5,8K

2,1K
4,3K 6,5K 8,7K

1K
2K 3K

4K 5K 6K
7K 8K

0 1

02 09 12 15

023 028 093 096 123 128 153 157

1u 2u
3u

4u 5u 6u 7u 8u

Leave
'

GK "

GK

'

1,4K

Fig. 3. Collusion attack to CKC

1) u1 leaves and sends his code 023 to u8. Then, u8 obtains
the code of K1,4 ,0, by using the code of u1.

2) The group manager updates the keys in the tree. Since u8

is in the group, he can obtain the new group key
'

GK .

3) u8 computes the updated key of K1,4,
'

1,4K , according to

 (2) as
' '

1,4 G(0)K f K  .

4) u8 leaves. The group manager updates the keys and

encrypts the new group key
''

GK with K7, K5,6, and
'

1,4K .

5) u8 knows
'

1,4K , so he can decrypt the rekeying messages

to get
''

GK .

D. Attack Analysis

For the attacker ui, the success of the attack requires to
meet two conditions. 1) Before ui leaves, he should obtain any
key of the siblings in the path from ui to the root or the guessed
value of it. 2) When ui leaves, he is not a child of the root. For
example, in Fig. 2, assume u1 is the attacker. He should obtain
any one of K2, K3,4 and K5,8 before he leaves because after u1
leaves, the new group key will be encrypted with K2, K3,4, and
K5,8. Since K2 is the individual key of u2, u1 is unable to obtain
it. So, u1 needs to obtain any one of K3,4 and K5,8.

To obtain K3,4 or K5,8 and obtain the new group key after u1
leaves, three conditions need to be met. 1) When u1 is in the
group, guessing the code of K3,4 or K5,8 is computationally
feasible to him. 2) When u1 is in the group, K3,4 or K5,8 is
updated at least once. 3) From the last updating to u1’s leaving,
K3,4 or K5,8 has always been the root of a subtree and has not
turned to a leaf. Meet conditions 1 and 2 allows u1 to obtain the
guessed value of K3,4 or K5,8 by (2). However, after the guessed
key is obtained, if the node becomes a leaf due to the leaving
of other users, the attack will fail since the key will not be used.
For example, in Fig. 2, assume u1 has already gotten the
guessed value of K3,4. If u3 leaves before u1, K3,4 will be
replaced by K4. Therefore, K3,4 will not be used to encrypt the
rekeying message. The attack will fail.

V. SECURITY ANALYSIS OF OTHER SCHEMES

A. Analysis of the Scheme Using Gray Code

In [10], gray code is used for rekeying. We find the scheme
can be broken by collusion attack. As shown in Fig. 4, when u3
and u7 leaves at the same time, the group manager updates the

group key and encrypt the new group key
'

GK as follows.

 

 

 

 

 

 

9 ,12

13,16

1

4

2 1,4

3 5 ,8

'

9 12

'

13 16

'

1 8

'

4 5

'

2

'

6

,..., : ()

,..., : ()

, : ()

, : ()

: ()

: ()

K G

K G

K G

K G

K K G

K K G

u u E K

u u E K

u u E K

u u E K

u E K

u E K


















u3 knows K1,4. u7 knows K2. So, they can send the keys to

each other. Thus, they can obtain K2⊕K1,4 and obtain
'

GK sent

to u2. Therefore, the scheme cannot fulfill forward security.

In addition, there is another collusion attack. Assume u3
acts in collusion with u7. At first, u3 leaves. The group manager

4,1K 5,8K
12,9K

16,13K

1K 2K 3K

1u 2u 3u
4u 5u 6u 7u 8u

9u 10u 11u 12u 13u 14u
15u

3K 3K1K
1K 1K2K

2K 2K

16u

GK

4K 4K
3K

4K 4K

Fig. 4. Gray code scheme with 16 users

updates the keys and broadcast
'

GK to the remaining users. The

users compute the updated auxiliary keys according to (3).


' '

internal_node internal_node G
()K f K K   

Now, u7 is in the group, so he can get
'

GK . u3 sends K1,4 to

u7. Then u7 can compute the updated key of K1,4,
'

1,4K by (3).

Next, assume u7 and u8 leave at the same time. The group

manager encrypts the new group key
''

GK with different keys.

Consider the following encryption.

 '

1,4

"

1 2 4
, , : ()

GK
u u u E K

Now, u7 has already known
'

1,4K , so he can obtain
''

GK by

decrypting the above rekeying message.

B. Analysis of the Multiple Group Key Management Scheme

In [9], calculation is used in rekeying. In the scheme,
multiple group key management is divided into two layers. In
data group layer, the session key (SK) is managed. The data
sources are encrypted with different SKs. The users in this
layer are servers in the server group (SG) and are managed by
the group manager. In SG layer, the users are the users of the
communication and are managed by the SG servers. Different
SG has different access ability to the data sources as shown in
Table I. The subscript of SK is composed of (x,y), where x
denotes the products of the subscript of SGs who can access to
the source and y denotes the source which is encrypted by the
SK. For example, SG2 and SG3 can access to D1, so the session
key of D1 is SK(6,1). SG2 can access to resource D1, D3 ,and D4.
So, he has SK(6,1), SK(110,3), and SK(330,4).

When a user leaves from SGi, the server of SGi sends a
leaving request. The SGs who has the affected SKs join the
process of key update. For example, when u1 leaves from SG3,

SK(6,1) and SK(330,4) are affected. Then, SG2，SG3，SG5, and

SG11 join the process of key update. At first, SG2, SG3,SG5, and
SG11 compute a key material R corportately. Then, the new SK
is computed according to (4).


'

(,) (,)
()

x y x y
SK f SK R   

Since u1 knows SK(6,1), he can collude with SG5 server.
After he leaves, u1 sends SK(6,1) to SG5 server. Since SG5 server

joins the process of key update, he can obtain R. Thus, SG5

server can compute the new key
'

(6,1)SK which is used to

encrypt resource D1 as
'

(6,1) (6,1)()SK f SK R  . When SG5

server leaves, as long as
'

(6,1)SK is not changed, he can still

access to D1.

TABLE I. RELATIONSHIP BETWEEN SKS AND SGS

Data

Source

The SKs belonging to different SGs

SG2 SG3 SG5 SG7 SG11

D1 SK(6,1) SK(6,1)

D2 SK(77,2) SK(77,2)

D3 SK(110,3) SK(110,3) SK(110,3)

D4 SK(330,4) SK(330,4) SK(330,4) SK(330,4)

As mentioned above, the schemes in [7], [10], [11] cannot
fulfill forward security. The reason is that the updated keys are
calculated with the old key information which is known by the
leaving user and the new key information which is known to
the users in the group who should not know the updated keys.

VI. IMPROVED SCHEME OF CKC

In this section, we proposed an improved scheme of CKC,
named NCKC. In the scheme, code is not required.

As in Fig. 5, when u8 joins, the group manager
authenticates u8 and generates an individual key K8 for u8.
Then, the group manager allocates a position in the key tree for
u8 and broadcasts a new user joins. To keep the key tree
balanced, the group manager selects the lowest node as the
joining position. The group manager generates a new node K7,8.
K7 and K8 become the left and right child of K7,8 respectively.

The group manager and the users in the group compute K7,8
by using one-way function with K7 and the old group key.
Then the group manager and the users update the keys in the
path from u8 to the root. The update is as follows.

7 7,8 7

5,8 5.7

'

5 76

71

: ()

, , : ()

,..., : ()

G

G G

u K f K K

u u u K f K

u u K f K







 





KG is the group key before u8 joins.
'

GK is the new group

key after u8 joins. Then, the group manager unicasts K7,8, K5,8

and
'

GK to u8.

As in Fig. 5, when u8 leaves, the group manager replaces
K7,8 by K7, the sibling of K8. Then, the group manager, u5, and
u6 compute K5,7 with K5,6 and the old group key KG as follows.

5,7 5.65 6, : ()Gu u K f K K

 The group manager unicasts K5,7 to u7. The group manager,
u5, u6, and u7 compute the keys from the parent of K5,7 to the
root using one-way function with the key of the child node.

'

5.75 6 7, , : ()
G

u u u K f K

Then, the group manager uses K1,4, the sibling keys of K5,7,
to encrypt the rekeying message and broadcasts to the others.

 1 4 1,4

'
,..., : ()

GKu u E K

GK

4,1K
5,7K

2,1K

1u

8u leaves4,3K
6,5K

1K 2K 3K
4K 5K

6K 7K

2u 3u
4u 5u

6u 7u

GK

4,1K 5,8K

2,1K

1u

4,3K
6,5K

1K 2K 3K
4K 5K

6K 7K

2u 3u
4u 5u

6u 7u

7,8K

8K

8u

8u joins

Fig. 5. Key update of NCKC

VII. ANALYSIS OF NCKC

A. Security Analysis of NCKC

First, when a user joins, the group key and the internal keys
in the path from the user to the root have been updated. The
user cannot obtain the previous keys. So, NCKC fulfill
backward security. Second, when a user leaves, the old group
key and the old internal keys which the user knows are updated.
So, NCKC fulfill forward security. Third, for the users in the
group, they can obtain the updated keys either by computation
or decryption. For the users who obtain the keys by
computation, they compute the keys with the keys known to
them. For the users who obtain the keys by decryption, the
keys which they obtain is the results by using one-way
functions. The keys equals to new ones. The users in the group
cannot obtain the keys which should not be known by them.

B. Performance Analysis of NCKC

Table II shows the comparison of the schemes. SU, CJ , CL,
PJ, PL represent the storage overhead of the user , the
communication overhead when a user joins, the
communication overhead when a user leaves, the
computational cost when a user joins, and the computational
cost when a user leaves, respectively.

TABLE II. COMPARISON OF NCKC WITH OTHER SCHEMES

 LKH CKC NCKC

CJ 2log2N 1 log2N

CL 2log2N-1 log2N log2N-1

PJ 2log2N *CE CE log2N*CE

PL (2log2N-1)*CE log2N*CE (log2N-1)*CE

SU log2N+1 log2N+2 log2N+1

N is the number of users in the group. CE is the
computational cost of one encryption. From Table II, we can
see compared with CKC, NCKC increases the group
manager’s communication overhead when a user joins and the
group manager’s computational cost when a user joins. But,
NCKC decreases the group manager’s communication

overhead when a user leaves and the group manager’s
computational cost when a user leaves.

2000 5000 8000 10000 20000 40000 80000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of users in the group

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

k
ilo

b
it
)

LKH

CKC

NCKC

Fig. 6. Group manager’s communication overhead of NCKC

VIII. SIMULATIONS

With the development of computer technology,
computation and storage ability of computers increase
continuously. Therefore, the communication overhead
becomes the main aspect for the performance of group key
management.

In the below, we will show the experiments. The hardware
for the experiments includes: a personal computer with Inter
Pentium CPU G630 2.7GHz and 8GB RAM. The hard disk of
the computer is over 2GB. The software for the experiments is
Windows 7 64bit operation system and Matlab 2012b. In the
experiments, AES is taken for encryption. The length of the
keys used in the group is 256 bits. SHA-256 is taken as one-
way function. The bandwidth of network is 20 Mbps.

Every experiment is done for 1000 times and the average
values are taken as the results. The operations of the users
include joining and leaving. The probabilities of joining and
leaving are both 0.5. The number of the operations is 2000.

A. Communication Overhead

Fig. 6 describes the group manager’s total communication
overheads when users join or leave. We can see the
communication overhead of NCKC is about 1.86 of CKC and
is about 49.8% of LKH. Compared with CKC, the Group
manager’s communication overhead of NCKC is acceptable.

B. Computational Cost

In Fig. 7, we use the group manager’s total encryption
times to describe the computational cost. We can see the
encryption times of NCKC is about 1.8 of CKC and is about
49.2% of LKH.

2000 5000 8000 10000 20000 40000 80000
1

2

3

4

5

6

7
x 10

4

Number of users in the group

E
n
c
ry

p
ti
o
n
 t

im
e
s

LKH

CKC

NCKC

Fig. 7. Group manager’s encryption times of NCKC

IX. CONCLUSION

In this paper, the security of a kind of group key
management schemes which use calculation was studied. First,
we gave out the vulnerability in CKC and designed two attacks
by which a user can continue to obtain communication contents
after he leaves. The condition of successful attack was
discussed. Second, we presented that the other two schemes
had similar vulnerabilities and can be compromised by the
similar attacks. Finally, we presented the improved scheme
NCKC. Performance analysis and simulation results showed
that NCKC can fulfill backward and forward security at a little
increase in communication overhead and computational cost.

ACKNOWLEDGMENT

This study is supported by The Energy Saving technology
Research in WSN of The Scientific Research Foundation of the
Young and Middle-aged (2014-QGY-18). The work is also
supported by the Science and Technology Program of
Guangdong Province under Grant no. 2013B091100014.

REFERENCES

[1] Yin Zhang, et al., “CADRE: Cloud-Assisted Drug REcommendation
Service for Online Pharmacies”, ACM/Springer Mobile Networks and
Applications, Vol. 20, No. 3, pp. 348-355, 2015.

[2] Yin Zhang, et al., “Health-CPS: Healthcare Cyber-Physical System
Assisted by Cloud and Big Data”, IEEE Systems Journal, doi:
10.1109/JSYST.2015.2460747, 2015.

[3] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A novel batch-based
group key management protocol applied to the internet of things,” Ad
Hoc Networks, vol. 11, pp. 2724-2737, November 2013.

[4] Daxin Tian, Yunpeng Wang, He Liu, Xianghong Zhang. “A Trusted
Multi-hop Broadcasting Protocol for Vehicular Ad Hoc Networks.”
Proceedings of the International Conference on Connected Vehicles and
Expo, December 12, 2012, pp.18-22.

[5] D. Je, Y. H. Choi, and S. W. Seo, “Subscription-period-aware key
management for secure vehicular multicast communications,” IEEE
Transactions on Vehicular Technology, vol. 62, pp. 4213-4227, October
2013.

[6] Y. Jung, E. Festijo, and M. Peradilla, “Joint operation of routing control
and group key management for 5G ad hoc D2D networks,” IEEE
International Conference on Privacy and Security in Mobile Systems,
2014, pp. 1-8.

[7] M. Hajyvahabzadeh, E. Eidkhani, S. A. Mortazavi, and A. N. Pour, “A
new group key management protocol using code for key calculation:
CKC,” IEEE International Conference on Information Science and
Applications, 2010, pp. 1-6.

[8] H. Harney and C. Muckenhirn, “Group key management protocol
(GKMP) specifications,” RFC 2093, Internet Engineering Task Force,
1997.

[9] D. Wallner, E. Harder, and R. Agee, “Key management for multicast:
issues and architectures,” RFC 2627, Internet Engineering Task Force,
1999.

[10] R. Varalakshmi and V. R. Uthariaraj, “A new secure multicast group
key management using gray code,” IEEE International Conference on
Recent Trends in Information Technology, 2011, pp. 85-90.

[11] W. Zhou, Y. Xu, and G. Wang, “Distributed group key management
using multilinear forms for multi-privileged group communications,”
12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, 2013, pp. 644-650.

