
55IEEE Communications Magazine — Communications Standards Supplement • September 2015 0163-6804/14/$25.00 © 2014 IEEE

INTRODUCTION
The number of people living in cities has
increased dramatically in recent years, and the
trend is expected to continue. The United
Nations Population Fund estimates that by the
year 2030 nearly 60 percent of the world’s popu-
lation will live in an urban environment [1].
More convenient and comfortable living condi-
tion, as well as more opportunities for work and
career development, are the main motivations
for urbanization. However, the explosion of city
populations resulting from urbanization is strain-
ing existing daily and public facilities such as
transportation, healthcare, and security, and cre-
ating new problems like environmental pollu-
tion. These issues need to be solved to provide
sustainable urbanization.

ABSTRACT

With more people living in cities, urban sens-
ing is urgently required to create a comfortable
and convenient living environment. As Internet
of Things (IoT) is the fundamental infrastructure
to realize urban sensing, it should be flexible to
support various application requirements and
convenient management of infrastructure.
Inspired by software-defined networking, which
aims to make networks more
flexible, the authors propose a
software-defined IoT architec-
ture for smart urban sensing.
This architecture decouples
urban sensing applications from the physical
infrastructure. Centralized controllers are
designed to manage physical devices and provide
APIs of data acquisition, transmission, and pro-
cessing services to develop urban sensing appli-
cations. With these properties, various
applications can coexist on the shared infra-
structure, and each application can request con-
trollers to customize its data acquisition,
transmission, and processing on-demand by gen-
erating specific configurations of physical
devices. This article discusses the background,
benefits, and design details of the proposed
architecture as well as open problems and poten-
tial solutions to realize it, which opens a new
research direction for IoT and urban sensing.

Urban sensing is one of the most promising
solutions to address the above problems. As a
simple example, if the real-time traffic load is
known, the efficiency of existing transportation
systems can be enhanced significantly. The Inter-
net of Things (IoT) has the potential to make
urban sensing a reality. With an increasing num-
ber of various sensor devices connected to the
Internet, it is possible to obtain the infrastruc-
tural and environmental data in real time that
would enable an efficient approach to perceive
and manage urban facilities. Many cities have
deployed sensor platforms to support urban
sensing. For example, London has deployed vari-
ous sensor nodes to obtain traffic, environmen-
tal, and utilities data [2], and various experi-
mental platforms of IoT have been developed
for research [3]. In addition to dedicated sensor
platforms, as human carried smart phones are
equipped with a rich set of sensors like cameras,
digital compasses, GPS, etc., they can also be
exploited to realize urban sensing. This is
referred to as mobile crowd sensing [4].

Currently, IoT is still in the initial stages of
development and deployment. However, there is
no doubt that the IoT will have an important
impact on people’s lives, just like Internet does
today. The Internet has had great success and
changed our lives, but it still faces some prob-
lems. On one hand, as the control intelligence,

which is implemented by various
routing and management proto-
cols, is embedded in every
router/switch and is hard to
change, Internet infrastructure

becomes ossified and therefore evolves slowly.
Also, vendor-dependent interfaces make the
infrastructure management complex and error-
prone. On the other hand, it only provides best-
effort service and thus prevents the development
of highly personalized applications with specific
requirements on service quality and user experi-
ence. The design of the future IoT architecture
should avoid these problems to support sustain-
able evolution, convenient management, and
various application requirements.

Software-defined networks (SDNs) [5] offer
the ability to address the above mentioned prob-
lems. In SDN, the control intelligence is moved
from data plane devices (switches, routers) and
implemented in a logically centralized controller,
which interacts with data plane devices through
standard interfaces. The network operator runs
software programs on the controller to automati-
cally manage data plane devices and optimize
network resource usage. They can further devel-
op up-to-date control schemes to provide differ-
ent network services for applications, e.g.
providing QoS guaranteed forwarding services.

Inspired by SDN, this article proposes a soft-
ware-defined IoT (SD-IoT) architecture for
smart urban sensing. In accordance with SDN,
SD-IoT also decouples the control logic from
functions of the physical devices through a logi-
cally centralized controller that manages the
devices via standard interface. In particular, SD-IoT
extends the spirit of the software-defined
approach from network devices to sensor plat-
forms and the cloud, and combines them to sup-
port urban sensing applications together by

SOFTWARE-DEFINED INTERNET OF THINGS
FOR SMART URBAN SENSING

With more people living in cities, urban sensing is urgently required to create a comfortable and
convenient living environment. IoT is the fundamental infrastructure to realize urban sensing, it
should be flexible to support various application requirements and convenient management of
infrastructure. Inspired by software-defined networking, which aims to make networks more

flexible, the authors propose a software-defined IoT architecture for smart urban sensing.

Jiaqiang Liu, Yong Li, Min Chen, Wenxia Dong, and Depeng Jin

COMMUNICATIONS
TANDA RDS S

Jiaqiang Liu, Yong Li,
and Depeng Jin are with
Tsinghua University.

Min Chen is with
Huazhong University of
Science and Technology.

Wenxia Dong is with
Huawei Technologies Co.
Ltd.

This work is supported by
the National Basic
Research Program of
China (973 Program)
(No. 2013CB329001),
and the National Nature
Science Foundation of
China (No. 61301080,
No. 91338203, No.
91338102, and No.
61321061).

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 55

IEEE Communications Magazine — Communications Standards Supplement • September 201556

providing well-defined service APIs in terms of
data acquisition, transmission, and processing.
Figure 1 conceptually illustrates the usage of this
architecture. The physical infrastructure consists
of sensor platforms, forwarding devices, and
servers. On top of this infrastructure, multiple
urban sensing applications are deployed, and
each application customizes its data acquisition,
transmission, and processing through the service
APIs. The standard service API reduces the
complexity and developing cycle for deploying a
new application, while the sharing of physical
infrastructure greatly reduces the capital and OAM
(operation, administration and maintenance)
costs. These characteristics empower SD-IoT to
efficiently support various application require-
ments and thus enable smart urban sensing.

In the rest of this paper, we first analyze cur-
rent urban sensing applications along with the
problems and trends. We then introduce the
proposed software-defined IoT architecture, fol-
lowed by open problems and potential solutions.
After that, we present a quantitative analysis to
show the benefits of SD-IoT. We then conclude
the paper.

IOT: STATE OF THE ART AND
TRENDS AND SOLUTIONS

URBAN SENSING: STATE-OF-THE-ART
Figure 2 presents the three most common urban
sensing applications: temperature, noise, and PM
2.5 monitoring. These applications can be logi-
cally divided into three subsystems: data acquisi-
tion, transmission, and processing. Specifically,
different sensors are deployed in the city to
obtain temperature, noise, and PM 2.5 data. The
obtained data are then transmitted to remote
servers to be stored/processed. Usually, the sen-
sor node first transmits the data to a gateway

through a wireless sensor network (WSN) [6].
The gateway then transmits data to the remote
server through wireless or wired networks. Data
processing may happen during the whole course,
e.g. filtering undesired data at the sensor nodes [7],
compressing and encrypting data at the gateway,
further analyzing acquired data at the server to
obtain the statistical information, etc.

Currently, an application-oriented approach is
utilized to develop these three subsystems [11].
That is, application developers customize the sen-
sor platform, gateway, network, and remote serv-
er from slate state, according to the application
requirements. Specifically, the developers need to
buy or develop a sensor platform according to the
application requirements, which usually includes
the sensors to obtain the required data, the radio
modules to transmit the data, the power supply
modules, and the microcontroller to coordinate
the peripheral modules and execute data process-
ing functions. The firmware also needs to be cus-
tomized for this specific application. As an
example, Downes et al. [8] introduced the design
of a platform for wireless image sensor networks.
Then the developers need to take a similar path
to customize the network and computing infra-
structure, e.g. to determine how to access the
Internet, whether to cache the data or not, where
to store and process the obtain data, etc.

PROBLEMS ANALYSIS
While the above application-oriented approach
seems quite direct, it has many drawbacks. We
summarize them as follows:

High Capital and Maintenance Cost: As each
application needs to deploy and manage its own
sensor platforms, it requires a huge investment
in hardware deployment and maintenance, while
in fact it is possible for many applications to
share sensor platforms if they require the same
type of data. Even when the required data are
different, many modules in a sensor platform,
like the radio, power supply, and microcon-
troller, can be shared to reduce the overall cost.

Inflexible for Potential Application Changes:
Under this approach, the infrastructure and the
application are closely coupled, i.e. the intelli-
gence of the application is hard-wired in the sen-
sor platform, the gateway, and the server. Any
change related to an application requires re-
developing or re-customizing the physical infra-
structure, which is complex, error-prone, and
sometimes even impractical.

Inefficient Resource Usage: As the control
logic of applications is embedded in hardware
devices, it is difficult to improve resource utiliza-
tion by dynamically optimizing data acquisition,
transmission, and processing. For example, as
there is no approach to dynamically control data
collection and transmission in sensor platforms,
they would continuously transmit the data to
remote servers, even though such data is unde-
sired during some time periods, and thus the
energy of sensor platforms and the bandwidth of
the network are wasted.

Long Development and Deployment Cycle: As
each application needs to develop and deploy its
own sensor platform, gateway, and remote server
from scratch, the overall time to introduce a new
application is long. The long development and

Figure 1. Illustration of software-defined IoT solution.

Sensor platform Gateway

Data processing units

Sensors

Forwarding device

Application 2

Application 1

Bandwidth guarantee

Low latency

Physical infrastructure

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 56

IEEE Communications Magazine — Communications Standards Supplement • September 2015 57

deployment cycle, as well as the high investment
required, definitely increase the barrier for
deploying new applications and thus prevent
potential innovations in applications.

THE TRENDS
With the increase in users and applications,
Internet architecture and related infrastructure
are also evolving in order to deal with encoun-
tered challenges. There are some apparent
trends in this evolution, which should be consid-
ered in the design of IoT architecture.

The Sharing of Physical Infrastructure: Shar-
ing means that the underlying physical infra-
structure simultaneously supports multiple
applications belonging to multiple parties. The
popularity of cloud computing best explains the
trend of sharing physical infrastructure. Through
cloud computing, the application developers
deploy their applications in cloud data centers
rather than build their own physical infrastruc-
tures. In addition to cloud computing, there is
also a trend of sharing network infrastructures,
such as base stations, access points, etc. As the
sharing of physical infrastructure has one gener-
al benefit of reducing capital and maintenance
costs, we envision that the IoT infrastructure
should be shared to obtain this benefit.

The Rising of Software-Defined Architecture:
SDN enables flexible network control by sepa-
rating the control plane and the data plane.
Inspired by these benefits, SDN has been extend-
ed to mobile access networks [9] and wireless
sensor networks [10, 11]. As the physical infra-
structure will become increasingly complex in
the era of IoT, it is necessary to borrow the
insight of SDN to realize flexible control and
management of IoT infrastructure.

The Prevalence of Application Programming
Interfaces: Providing application programming
interfaces (API) is a growing trend to share physi-
cal infrastructure. Cloud providers like Google
APP Engine have offered such APIs, and network
controllers like OpenDaylight [12] also provide
northbound APIs to develop control applications.

In addition to enabling the sharing of physical
infrastructure, APIs also hide the complexity and
heterogeneity of the physical infrastructure, which
significantly reduces the difficulty of application
development and shortens the time to market of
new applications. This trend suggests that IoT,
especially sensor platforms, should provide APIs
for applications to exploit their abilities in a flexi-
ble and efficient manner.

SD-IOT:
ARCHITECTURE OVERVIEW AND SYSTEM DESIGN

ARCHITECTURE OVERVIEW
In this paper we propose a software defined IoT
(SD-IoT) architecture. As illustrated in Fig. 3,
SD-IoT consists of three layers: a physical infra-
structure layer, a control layer, and an applica-
tion layer.

Physical Infrastructure Layer: This layer is
composed of various kinds of physical devices,
including sensor platforms, gateways, base sta-
tions, switches/routers, and servers. These
devices possess the essential functions and
resources to sense an urban environment, trans-
mit data from one node to another, and process
them to extract required information. However,
they do not determine what to do by themselves.
Instead, they leave the decision-making to the
control layer by interacting with it through stan-
dard interfaces, i.e. a southbound interface
named in SDN.

Control Layer: The control layer acts as the
intermediary between the infrastructure layer and
the application layer. On one hand, the control
layer manages the physical devices with various
characteristics and functions through different
southbound interfaces. On the other hand, the
control layer provides services to the application
layer through APIs known as northbound inter-
faces. For urban sensing applications, the control
layer will provide data acquisition, transmission,
and processing service. We will explain these ser-
vices in detail in the following subsections.

Figure 2. Illustration of urban sensing applications, which include three subsystems of data acquisition,
transmission and processing.

Temperature
sensor

Noise sensor Gateway

Gateway

Gateway

Network

Noise
monitoring server

Temperature
monitoring server

PM2.5
monitoring server

PM2.5 sensor

With the increase in
users and applications,
Internet architecture

and related infra-
structure are also
evolving in order to

deal with encountered
challenges. There are
some apparent trends
in this evolution, which
should be considered

in the design of IoT
architecture.

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 57

IEEE Communications Magazine — Communications Standards Supplement • September 201558

Application Layer: In this layer, developers
build urban sensing applications using the pro-
vided APIs. In particular, they can customize
data acquisition, transmission, and processing
without worrying about the required change of
configurations in physical devices, which greatly
simplifies the procedure of developing new
applications. Also, as the physical infrastructure
is shared by multiple applications, the overall
capital and maintenance costs are reduced.

SENSOR PLATFORM AND DATA ACQUISITION SERVICE
The data acquisition service provides APIs for
applications to specify their data requirements.
The controller automatically configures sensor
platforms to obtain the required data. Data
specification includes general attributes, such
as data type, targeted geographical areas, and
time duration. For example, as shown in Fig.
4a, an application would request PM 2.5 data
at Tsinghua University. Applications can also
specify type-dependent attributes, e.g. sampling
rate can be set for PM 2.5 and noise data. The
data acquisition service also provides APIs for
applications to query the properties of avail-
able data such as data types and geographical

areas as well as optional attributes for each
type of data.

Under SD-IoT, each sensor platform is
equipped with more than one sensor with the
same or different types and shared by many
applications. For example, a sensor platform
may include a PM 2.5 sensor and a noise sensor
simultaneously, significantly reducing the total
number of sensor platforms that need to be
deployed. As a result, the overall investment for
hardware, deployment, and maintenance is also
reduced. The sensor controller has a global view
of the underlying sensor platforms. Specifically,
it knows the location and embedded sensors of
every sensor platform. Based on the global view,
the sensor controller can dynamically activate/
deactivate sensors and customize their configu-
rations to satisfy application requirements and
simultaneously reduce energy consumption.

NETWORK AND DATA TRANSMISSION SERVICE
The network is used to transmit data from the
sensor platforms to servers in the cloud. As
applications may prefer different cloud data cen-
ters, they should have the ability to specify the
destination of data transmission. Also, applica-

Figure 3. Architecture of software-defined IoT.

Smart
transportation

Smart
parking

Air pollution
monitoring

Noise level
monitoring

Northbound interface Northbound interface

Southbound interfaceSouthbound interface

Sensor platform

A
pp

lic
at

io
n

la
ye

r
C

on
tr

ol
la

ye
r

Ph
ys

ic
al

 in
fr

as
tr

uc
tu

re
la

ye
r

Network Cloud

Data acquisition
service

Data transmission
service

Data processing
service

Processing units
monitoring

Sensor states
monitoring

Sensor controller Network controller Cloud controller

Manage and
optimization

Manage and
optimization

Manage and
optimization

Network states
monitoring

Sensor Node

Table 1. Summary of state of the art, problems and the trends.

State of the art Problems The trends

Data
acquisition

Application-oriented wireless sensor platforms.
The control functions are preset in the firmware.

Hard to customize in run time.
Hard to implement dynamic optimization.
High capital and maintenance cost.

Over the air programming to update sensor
firmware.

Data
transmission

Distributed protocols, such as WiFi, ZigBee, TCP/IP.
The control protocols embed in each forwarding device.

Hard to control and evolve.
No QoS guarantee.

Software-defined network.
Network as a service with QoS guarantee.

Data
processing

Each application developing data processing pipelines
from the scratch.

The time cycle to develop a new application is long.
Hard to share data processing resources.

Cloud based data processing to provide various
data processing software, platform, and tool.

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 58

IEEE Communications Magazine — Communications Standards Supplement • September 2015 59

tions may have specific performance require-
ment for data transmission. For example, a
smart transportation application that provides
path planning suggestions must be aware of cur-
rent traffic load, and thus requires low latency
data transmission. In contrast, a video applica-
tion that provides real time street views must
guarantee that the video is fluently transmitted,
and thus requires reservation of bandwidth.

The data transmission service provides APIs
for applications to specify their requirements,
which mainly include two dimensions: destina-
tion and QoS parameters. An IP address can be
used to specify destination, while several options
can be provided for QoS specification: basic
transmission, latency sensitive transmission, and
bandwidth guaranteed transmission.

Generally, basic transmission is carried in a
best-effort manner, latency sensitive transmis-
sion has high priority during traffic scheduling,
and the controller reserves bandwidth for band-
width guaranteed transmission. In addition, with
the advance of network function virtualization
(NFV), the network will also provide on-path
data processing services, e.g. data compressing
and encryption. Specifically, the data transmis-
sion service API will also allow applications to
specify the service chain [13], i.e. the pipelines of
virtual network functions that a specific flow needs
to go through. Figure 4b illustrates two examples
of requests for data transmission service.

To realize the data transmission service, the
network follows a software-defined network
architecture. The forwarding devices are pro-
grammable, e.g. OpenFlow-enabled, and the
controller is responsible for implementing traffic
steering and scheduling. Specifically, based on
the collected global network view, the controller
steers packets to different destinations, and
dynamically schedules traffic to satisfy applica-
tion requirements for network quality and opti-
mize the usage of network resource.

CLOUD DATA CENTER AND DATA PROCESSING SERVICE
Urban sensing data is further stored and pro-
cessed using resources provided by three main
cloud computing models: IaaS, SaaS, and PaaS.
Currently, a cloud usually uses one of these for
service provisioning. However, as the application
of urban sensing would require them simultane-
ously, we argue that they should be integrated to
support data processing services, i.e. a cloud
should simultaneously provide software service,
platform service, and infrastructure service, and
offer APIs for users to flexibly utilize them
together. Figure 4c illustrates two examples. One
application requires mining the received data in
real time and exploiting visualization software to
illustrate the mining results. Thus, it requires a
data mining platform and visualization software,
which can be provided by PaaS and SaaS, respec-
tively. Another application aims to store the
received data at first and then exploit their own
programs for data processing. Thus, it needs
storage and VMs, which can be provided by IaaS.

Data processing service APIs allow applica-
tions to specify the required resources, which
includes running submitted programs on specific
platforms, deploying existing software entities,
and providing VMs. The cloud controller knows

the state of the underlying server resource pools,
such as which servers are used to support a spe-
cific platform and the residual resource in them,
and maps the application’s resource request to
underlying server pools based on it.

OPEN PROBLEMS AND POTENTIAL SOLUTIONS
SOUTHBOUND INTERFACE DESIGN

To implement SD-IoT, the southbound interface
should be designed for controllers to interact
with the physical infrastructure. Some interfaces
have been designed to address the challenge.
For forwarding devices, OpenFlow is the most
widely used interface that abstracts the forward-
ing behavior in heterogeneous switches and
routers. For servers, the interface usually
depends on the cloud control system. However,
in general, middleware software applications are
utilized to deal with device heterogeneity. Com-
pared to forwarding devices and servers, design-
ing a southbound interface for sensor platforms
is much more difficult due to higher device het-
erogeneity. Besides, sensor platforms are energy
limited and thus the energy consumption for
interacting with the controller should be reduced
as much as possible.

As an initial idea for designing a southbound
interface for sensor platforms, we propose to
combine the strategy of abstraction and middle-
ware software. First, by providing an abstraction
on the data collection, processing, and transmis-
sion procedure in the sensor platform, the imple-
mentation of the sensor controller is decoupled
from sensor platforms. Galluccio et al. [11] has
proposed a finite state machine based abstrac-
tion for data processing and transmission. In Fig. 4a
we also show an example to abstract the data
collection ability based on the included sensors
and their types and IDs. Second, before the
standardization of the abstraction, the actual
control interface of different sensor platforms
varies across each other. Middleware software
then can be exploited to carry out the transfor-
mation. Particularly, to save energy at the sensor
platform, middleware software can be placed in
the controller, and the controller should
decrease the frequency of interactions with sen-
sor platforms when they are inactive. Despite-
having these benefits, the design and implement-
ation of the abstraction and middleware software
needs more discussion and study.

CONTROL LAYER DESIGN
The design of a logically centralized control
layer should achieve three objectives: high scala-
bility, high performance, and high robustness.
First, as more and more physical devices and
applications will be added over time, the control
layer should scale at the same time to support
them. Besides, in SD-IoT, application perfor-
mance and control flexibility depends on the
performance of the interaction between the con-
trol layer and the physical layer, e.g. communica-
tion delay. Further, the control layer must be
robust enough to work normally under various
possible failures.

Deploying multiple controllers is a general
approach to achieve these objectives. On one
hand, the controller can be replicated to increase

The cloud controller
knows the state of the

underlying server
resource pools, such
as which servers are

used to support a spe-
cific platform and the
residual resource in
them, and maps the

application’ s resource
request to underlying

server pools
based on it.

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 59

IEEE Communications Magazine — Communications Standards Supplement • September 201560

its robustness. On the other hand, each controller
can manage only part of the devices and thus the
control layer can be scaled by increasing the num-
ber of controllers. Further, the controllers can be
placed at different locations to reduce the average
communication delay to the physical devices.
Ahmed and Boutaba [14] proposed to exploit a
vertical approach to organize multiple controllers
for software defined wide area networks, which
can also be extended to the control of sensor plat-
forms and clouds. For example, we can use one
controller to control one WSN and use an orches-
tration controller to coordinate them.

MOBILITY MANAGEMENT
In SD-IoT, the control plane needs to imple-
ment mobility management to support the
mobile sensor platform handover from one gate-
way to another. Particularly, as the gateways are
controlled by multiple physical controllers for
scalability, the control plane needs to coordinate
these controllers to implement the mobility man-
agement function.

Wu et al. [15] have introduced a solution to
mobility management by maintaining a con-
troller network based on structured overlay
when the physical controllers are distributed. In
addition, we can also employ an orchestration
controller to coordinate the mobility manage-
ment by recording the controller currently man-
aging each mobile sensor platform. When a
mobile sensor platform attaches to the gateway
managed by a new controller, the controller
reports the event to the orchestration controller,
which then coordinates the original controller
and the new controller to carry out the handover.

CONFLICT RESOLUTION AND
OPTIMIZATION FOR THE SENSOR PLATFORM

Under SD-IoT, the sensor platforms are shared
by different applications, which may lead to
potential configuration conflicts. For example,
one application may request noise data in
Tsinghua with a sampling rate of once every five
minutes, while another application may also

Figure 4. Illustration of data acquisition, transmission and processing services:a) data acquisition service; b) data transmission ser-
vice; and c) data processing service.

Low latency

Low latency

Data transmission service

Bandwidth guarantee
and compressing

Data compressing

SN 2

SN 1

SN 3

DC 2

DC 1

Bandwidth guarantee

PM 2.5 data @ THU / 30 min

Data acquisition service

PM 2.5 sensor

ID

(a) (b)

(c)

ID

ID

0x00000001

0x0001

0x000F

0x0002

0x000E

Sensor
Type

Type
Sensor

Noise sensor

Sensor node

Sensor node

Sen

S

Noise data @ THU / 5 min

Storage and three VMs for
customized processing

Mining and
visualization

Data processing service

Server resource pools

PaaS

Data mining
platform

Visualtion tool

Storage

VM instance

SaaS IaaS IaaS

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 60

IEEE Communications Magazine — Communications Standards Supplement • September 2015 61

request the noise data in Tsinghua but with a
different sampling rate. When conflicts happen,
the sensor controller needs to decide whether to
accept the application’s request, how to resolve
the conflicts, and simultaneously minimize the
sensor platform’s energy consumption.

To avoid the conflicts, the controller can allo-
cate each sensor to at most one application.
While this strategy is simple, it is inefficient
because sometimes the sensor can still be shared
by applications with different settings. For exam-
ple, if Application A wants to set the sampling
rate to once every five minutes, while Applica-
tion B wants to set it to once every seven min-
utes, the controller can make Application A and
Application B share the sensor by generating a
series of sampling time points, e.g. five minutes,
seven minutes, 10 minutes, 14 minutes, 15 min-
untes, etc. To extend this approach to a general
case, the controller sets up a resolver for each
sensor. The resolver records the sensor’s current
configuration. After receiving a service request
and transforming it to the configuration of the
sensor, the controller sends the configuration to
the corresponding resolver. The resolver gener-
ates appropriate configurations according to the
new configuration and current configuration, or
it will reject the configuration request if there
are unresolvable conflicts.

QOS ENABLED TRAFFIC SCHEDULING
In SD-IoT, the network controller can provide
end-to-end QoS guaranteed data transmission.
However, several challenges need to be
addressed to achieve this. First, the forwarding
devices have a limited number of queues for
QoS enforcement, and thus it is difficult for
them to support a huge number of QoS require-
ments. Second, it is a challenge to design effi-
cient traffic scheduling algorithms to satisfy QoS
requirements in a large-scale network.

We now explain two strategies to deal with
the above challenges. The first is reducing the
demand for queues in forwarding devices by
quantization of QoS requirements, which can be
conducted based on statistics of application
requirements. The second is considering the
number of available queues in each forwarding
device when scheduling traffic. As this strategy
further increases the complexity of the traffic
scheduling problem, some approximate algo-
rithms should be developed to solve it efficiently.

RESOURCE MAPPING IN CLOUD DATA CENTERS
In SD-IoT, the cloud controller needs to decide
how to map application service requests to the
physical devices. For example, considering that
the cloud allows applications to store data at
first and then rent VMs to process them, the
cloud controller needs to decide where to store
the data and which servers should be used to
host VMs for post-data processing. Generally,
several objectives are expected, such as increas-
ing the cloud provider’s revenue by accepting
more service requests, saving energy by using
less servers, and balancing the server’s load by
equally mapping service requests to different
servers. The constraints include server capacity,
storage capacity, and the type of softwares/plat-
forms/VMs a server can host.

One challenge to implement the above opti-
mizations is that sometimes different objec-
tives are in conflict with each other, and hence
it is impossible to achieve them simultaneous-
ly. As an example, energy saving and load bal-
ancing are conflicting objectives. Efficient
heuristic or approximate algorithms should be
developed to achieve a trade-off between con-
flicting objectives. As an example, a threshold-
based strategy to activate and shut down
servers can be an effective trade-off between
load balancing and energy saving, i.e. activate
more servers when the average workload
exceeds a pre-set maximum, and shut down
some servers when the workload goes below a
pre-set minimum.

CASE STUDY AND QUANTITATIVE ANALYSIS
SELECTED SCENARIO

In order to further illustrate the benefits of SD-
IoT, we conducted a case study and quantitative
analysis, described in this section. Figure 5a
illustrates the selected scenario. The target
region consists of 5x6 rectangular urban areas.
There are three types of sensor platforms: fixed
sensor platform, user smart phone based sensor
platform, and mobile vehicle based sensor plat-
form. We considered five urban sensing applica-
tions: street view, weather monitoring, noise
monitoring, environmental monitoring, and dust
monitoring. The essential sensors to support
each application are shown in the figure. We
assume that each rectangle and vehicle can
deploy at most one sensor platform. During a
time period, each vehicle has a constant proba-
bility to appear in one specific rectangular area.
In our simulation there are 2500 vehicles, and
the constant probability is set to 1/1000. Further,
there are three data centers connected by a net-
work of seven forwarding devices. The data rate
of each sensor under a standard sampling rate is
shown in Figure 5b. The five applications employ
a similar data processing procedure. Data is
stored at first; then, VMs are used to execute
customized processing; finally, the visualization
software applications are exploited to illustrate
the processing results.

QUANTITATIVE ANALYSIS
Data Acquisition: To illustrate the benefits of SD-
IoT, we consider four deployment cases, which
are il lustrated in Figure 5c. The first case
reflects current IoT architecture, where there
are five sensor platforms, each embeding sen-
sors required by corresponding applications.
The other three cases reflect the proposed SD-
IoT architecture, where some sensor platforms
embed more sensors and are shared by differ-
ent applications. For example, in case 3 the
sensor platform equipped with camera and
sound level sensors can be shared by street view
and noise monitoring applications. In each
deployment case, every rectangular area and
participating vehicle randomly selects one sen-
sor platform to deploy.

We then observe the average coverage ratio
of each application, which is defined as the ratio
of areas covered by sensors of that application
over the total target area. We show the results in

When a mobile sensor
platform attaches to

the gateway managed
by a new controller,

the controller reports
the event to the

orchestration con-
troller, which then

coordinates the origi-
nal controller and the

new controller to carry
out the handover.

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 61

IEEE Communications Magazine — Communications Standards Supplement • September 201562

Fig. 5e and Fig. 5f. From the figure, we can find
that the coverage ratio of each application
increases from case 1 to case 4. For example, in
Fig. 5f, when sensor platforms in each vehicle
can be used by one application, as case 1 indi-
cates, the coverage ratio is only about 40 per-
cent. However, if each sensor platform can be
shared by five applications, as case 4 indicates,
the coverage ratio increases to 90 percent. Such
enhancement is due to the increase in the num-
ber of sensor platforms that can be used by each
application. As the cost to deploy a sensor plat-
form with seven sensors is not much higher than
the cost with fewer sensors, these results suggest
that it is efficient for different applications to
share the underlying sensor platforms.

Data Transmission: We assume there are four gate-
ways deployed in the target area. The sensor
platform first transmits the data to the nearest
gateway, then the gateway transmits the data to
the corresponding data center. In Fig. 5d we
show the sampling rate of each application at
different times of day. We consider three scenar-
ios. The first scenario corresponds to the current
IoT architecture, and we use “traditional” to
refer to it, where the configuration of sensor
platforms is unchangeable and the network uses
the shortest path to transmit data from the gate-
way to the data center. The second scenario is
denoted by “SD-DA,” where the configuration
of sensor platforms can be dynamically changed,
but the network still uses the shortest path for

Figure 5. Quantitative analysis scenario and results: a) selected scenario; b) data rate of each sensor under standard sampling rate;
c) sensor platforms exploited in four deployment cases; d) the relative sampling rate (compared to standard sampling rate) of
each application during different time periods; e) the coverage ratio by fixed sensor platforms with four deployment cases;
f) the coverage ratio by vehicle based sensor platforms with four deployment cases; and g) the maximum link load during differ-
ent time periods under three different scenarios.

06:00-20:00

DC 3

DC 2

DC 1

Camera
NO2, CO, etc
Thermometer
Sound level

PM 2.5

•••

Smart phone based
sensor platform

Fixed sensor platform

GPS
Camera

NO2, CO, etc
Thermometer,
Sound level

PM 2.5

•••

Mobile vehicle based
sensor platform

GPS
Camera

Microphone
Compass

(a)

(b)

•••

Sensor platforms

(c)

(d)

{Camera}, {Temperature, Humidity},
{Noise}, {NO2,CO}, {PM2.5}Case 1

Time period Relative
sampling

rate

Application

06:00~20:00 1Street view

1Weather

1Noise

1Environmental

1Dust

20:00~24:00 1Weather

0.5Noise

1Environmental

1Dust

00:00~06:00 1Weather

1Environmental

1Dust

{Camera}, {Temperature, Humidity, NO2,CO},
{Noise}, {NO2,CO,PM2.5}Case 2

{Camera, Sound},
{Temperature, Humidity, NO2, CO, PM2.5}Case 3

{Camera, Sound, Temperature, Humidity,
NO2,CO,PM2.5}Case 4

Urban sensing application

(e)

Street
view

0.2

0Co
ve

ra
ge

 ra
tio

 b
y

fix
ed

 s
en

so
r p

la
tf

or
m

s

0.4

0.6

0.8

1

1.2

Weather Noise Environ-
mental

Dust

Urban sensing application

(f)

Street
view

0.2

0Co
ve

ra
ge

 ra
tio

 b
y

m
ob

ile
 s

en
so

r p
la

tf
or

m
s

0.4

0.6

0.8

1

1.2

Weather Noise Environ-
mental

Dust

Time period

(g)

20:00-24:00 00:00-06:00

500

M
ax

im
um

 li
nk

 lo
ad

1000

1500

2000

2500

3000

3500
Case1
Case2
Case3
Case4

Case1
Case2
Case3
Case4

Traditional
SD-DA
SD-IoT

Storage

Visualization

Customized
processing

Street view
(camera)

Weather
(thermometer,

humidity)
Noise

(sound level)
Environment

(NO2, CO)
Dust

(PM2.5)

Camera Humidity Noise NO2 CO PM2.5Thermometer

Rate 100 15 40 15 15 155

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 62

IEEE Communications Magazine — Communications Standards Supplement • September 2015 63

data transmission. The third scenario, referred
as “SD-IoT,” corresponds to the proposed soft-
ware-defined IoT architecture, where both the
sensor platform and network are software
defined and thus can be exploited to dynamically
optimize data transmission.

Figure 5g shows the maximum link load under
the above three scenarios. For the traditional
architecture, the maximum link load remains the
same over time because the configuration of each
sensor platform is fixed and thus the total data rate
does not change. In contrast, the SD-DA scenario
reduces the maximum link load at night, since it
can switch off sensors when not required or lower
their sampling rate to reduce the total data rate.

Moreover, as software defined networks
enable dynamic and global optimization of traffic
forwarding, SD-IoT further decreases the maxi-
mum link load by distributing the traffic equally
over multi paths. Specifically, the maximum link
load is reduced by 32 percent, 25 percent, and
22.6 percent during the time periods 6:00-20:00,
20:00-24:00, and 00:00-06:00, respectively.

Data Processing: In the selected scenario, each appli-
cation requires data storage, the platforms, or
VMs to execute customized data processing, and
visualization software to illustrate the data pro-
cessing results. Currently, these resources can
only be separately provided by different cloud
data centers. Therefore, the data processing pro-
cedure needs to traverse multiple data centers,
which results in significant overhead on the net-
work, and non-ignorable increase in the delay of
data processing. In contrast, the proposed SD-
IoT aims to provide these resources in the same
data center to reduce the delay and mitigate the
overhead on the network.

CONCLUSION
This article focused on the design of a flexible
IoT architecture for smart urban sensing. Specif-
ically, we proposed a software-defined IoT archi-
tecture that decouples the applications from
underlying physical infrastructures. With this
architecture, urban sensing applications can cus-
tomize their own data acquisition, transmission,
and processing through well-defined APIs, and
multiple applications coexist on the shared infra-
structure to further reduce the overall capital
and maintenance cost. As a result, this architec-
ture enables flexible control and management of
physical infrastructure, and accelerates applica-
tion innovation.

REFERENCES
[1] M. Naphade et al., “Smarter Cities and Their Innovation Challenges,” Comput-

er, vol. 44, no. 6, 2011, pp. 32–39.
[2] D. Boyle et al., “Urban Sensor Data Streams: London 2013,” IEEE Internet

Comp., vol. 17, no. 6, 2013, pp. 12–20.

[3] A. Gluhak et al., “A Survey on Facilities for Experimental Internet of Things
Research,” IEEE Commun. Mag., vol. 49, no. 11, 2011, pp. 58–67.

[4] H. Ma, D. Zhao, and P. Yuan, “Opportunities in Mobile Crowd Sensing,” IEEE
Commun. Mag., vol. 52, no. 8, 2014, pp. 29–35.

[5] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,”
ACM SIGCOMM CCR, vol. 38, no. 2, 2008, pp. 69–74.

[6] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless Sensor Network Survey,”
Computer Networks, vol. 52, no. 12, 2008, pp. 2292–330.

[7] A. Papageorgiou et al., “Smart M2M Data Filtering Using Domain-Specific
Threholds in Domain-Agnostic Platforms,” Proc. IEEE BigData Congress,
2013, pp. 286–93.

[8] I. Downes, L. B. Rad, and H. Aghajan, “Development of a Mote for Wireless
Image Sensor Networks,” Proc. COGIS’06, 2006.

[9] A. Gudipati et al., “SoftRAN: Software Defined Radio Access Network,” Proc.
2nd ACM HotSDN, 2013, pp. 25–30.

[10] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor OpenFlow: Enabling Software-
Defined Wireless Sensor Networks,” IEEE Commun. Lett., vol. 16, no. 11,
2012, pp. 1896–99.

[11] L. Galluccio et al., “SDN-WISE: Design, Prototyping and Experimentation of a
Stateful SDN Solution for Wireless Sensor Networks,” Proc. Infocom, 2015,
pp. 513–21.

[12] J. Medved et al., “Opendaylight: Towards a Model-Driven SDN Controller
Architecture,” Proc. 15th IEEE WoWMoW, 2014, pp. 1–6.

[13] Z. A. Qazi et al., “Simple-Fying Middlebox Policy Enforcement Using SDN,”
ACM SIGCOMM CCR, vol. 43, no. 4, 2013, pp. 27–38.

[14] R. Ahmed and R. Boutaba, “Design Considerations for Managing Wide Area
Software Defined Networks,” IEEE Commun. Mag., vol. 52, no. 7, 2014, pp.
116–23.

[15] D. Wu et al., “UbiFlow: Mobility Management in Urban-Scale Software
Defined IoT,” Proc. Infocom, 2015, pp. 208–16.

BIOGRAPHIES
JIAQIANG LIU received his B.S. degree in electronic engineering from Tsinghua
University, Beijing, China, in 2012, and is now a Ph.D. student at Tsinghua Univer-
sity. His research interests include software defined network, data center net-
work, network function virtualization, and Internet of Things, etc.

YONG LI [M’09] received the B.S. and Ph.D degree from Huazhong University of
Science and Technology and Tsinghua University in 2007 and 2012, respectively.
During 2012 and 2013 he was a visiting research associate with Telekom Innova-
tion Laboratories and Hong Kong University of Science and Technology, respec-
tively. From 2013 to 2014 he was a visiting scientist with the University of Miami.
He is currently a faculty member in the Department of Electronic Engineering,
Tsinghua University. His research interests are in the areas of mobile comput-
ing and social networks, urban computing and vehicular networks, and network
science and future Internet. Dr. Li has served as general chair, Technical Pro-
gram Committee (TPC) chair, and TPC member for several international work-
shops and conferences. He is currently an associate editor of the Journal of
Communications and Networking and EURASIP Journal of Wireless Communica-
tions and Networking.

MIN CHEN [SM’09] (minchen@ieee.org) is a professor at the School of Computer
Science and Technology at HUST. He was an assistant professor in the School of
Computer Science and Engineering at SNU from September 2009 to February
2012. He worked as a post-doctoral fellow in the Department of Electrical and
Computer Engineering at UBC for three years. Before joining UBC he was a
postdoctoral fellow at SNU for one and a half years. His research focuses on
Internet of Things, machine-to machine communications, body area networks,
body sensor networks, e-healthcare, mobile cloud computing, cloud-assisted
mobile computing, ubiquitous networks and services, mobile agents, multimedia
transmission over wireless networks, and so on.

WENXIA DONG received the master’s degree from Southwest Jiaotong University
in 2008. She then joined Huawei, where she is now a network research engi-
neer. Her research interests are in the areas of vehicular networks, SDN north-
bound interface, social networks, and application of big data in networks. She
has 13 patents as the first author.

DEPENG JIN received the B.S. and Ph.D. degrees from Tsinghua University, Bei-
jing, China, in 1995 and 1999, respectively, both in electronics engineering. He
is a professor at Tsinghua University and the chair of the Department of Elec-
tronic Engineering. Dr. Jin was awarded the National Scientific and Technolog-
ical Innovation Prize (second class) in 2002. His research fields include
telecommunications, high-speed networks, ASIC design, and future Internet
architecture.

With the proposed
architecture, urban
sensing applications
can customize their

own data acquisition,
transmission, and pro-
cessing through well-

defined APIs, and
multiple applications
coexist on the shared
infrastructure to fur-

ther reduce the overall
capital and mainte-

nance cost.

LI_LAYOUT.qxp_Layout 9/3/15 1:31 PM Page 63

