
POEM: On Establishing A Personal On-demand Execution Environment for Mobile
Cloud Applications

Huijun Wu, Dijiang Huang
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University
{Huijun.Wu, Dijiang.Huang}@asu.edu

Min Chen
School of Computer Science and Technology

Huazhong University of Science and Technology
minchen@ieee.org

Abstract—A distributed mobile cloud service model called
“POEM” is presented to manage the mobile cloud resource
and compose mobile cloud applications. POEM provides the
following salient features: (a) it considers resource management
not only between mobile devices and clouds, but also among
mobile devices; (b) it utilizes the entire mobile cloud system as
the mobile application running platform, and as a result, the
mobile cloud application development is significantly simplified
and enriched; and (c) it addresses the interoperability issues
among mobile devices and cloud resource providers to allow
mobile cloud applications running cross various cloud virtual
machines and mobile devices. The proposed POEM solution
is demonstrated by using OSGi and XMPP techniques. Our
performance evaluations demonstrate that POEM provides a
true elastic application running environment for mobile cloud
computing.

Keywords-mobile cloud computing; offloading; service ori-
ented architecture; OSGi; XMPP

I. INTRODUCTION

An ideal mobile cloud application running system should
enable mobile devices to easily discover and compose
cloud resources for its applications. From mobile resource
providers’ perspectives, they may not even know what appli-
cations are using their resources and who may call their pro-
visioned functions beforehand. In this way, the mobile ap-
plication design should not be application-oriented; instead,
it should be functionality-oriented (or service-oriented). For
example, the video function of a mobile device should
provide general calling interfaces that can be called by
multiple local or remote functions in the runtime. To achieve
this feature, we can consider these Provisioning Functions
(PFs) as the fundamental application components in the
mobile cloud, which can be composed by mobile cloud
service requesters in realtime. As a result, mobile cloud
can significantly reduce the mobile application development
overhead and greatly improve the agility and flexibility to
build a personalized mobile cloud computing system that
can be customized for each mobile user.
There are several challenges in current mobile cloud

application scenarios. The first challenge is that knowing
the status of mobile devices, e.g., online/offline and runtime
information (such as battery, computing power, connectivity,

�������	
���
���	
���
���

����
��������
�����

����� �����������

�

��
��!�	
���
��"�##	���$%
����
��$��%���
�
��&

�''(� �''(�
�''(�

��)
	�*��
���

Figure 1. Overview of POEM.

etc.), is difficult due to the mobility of mobile users. The
second challenge is that knowing the available PFs on each
mobile device is not a trivial task. Currently, there is no
such a common framework allowing mobile devices for
exchanging the available PFs information and running such
a system in a distributed environment. The third challenge
is to compose PFs crossing various hardware and software
platforms, which demands a universal programming and
application running environment with little compatibility
issues.
To address these challenges, we present a new mo-

bile cloud application running system, which is called
POEM (Personal On-demand execution Environment for
Mobilecloud computing), as shown in Figure 1. POEM
treats each mobile device as a PF provider. In addition,
POEM is designed based on the mobile cloud framework,
where a dedicated Virtual Machine (VM) is assigned to each
mobile device providing computing and storage support.
Moreover, PFs can be offloaded/migrated from a mobile
device to its assigned VM. Thus, the VM can not only
run mobile devices’ PFs (i.e., as shadows), but also can
it run extended PFs that mobile devices may not have the
capacity to execute. Thus, we also call the VM in the

2015 IEEE International Conference on Mobile Services

978-1-4673-7284-8/15 $31.00 © 2015 IEEE

DOI 10.1109/MS.2015.16

41

POEM framework as ESSI (Extended Semi-Shadow Image).
Collectively, the PFs provided by a mobile device X and
its corresponding ESSIX is denoted as {PF}X . POEM
regards mobile devices and their dedicated ESSIs both as PF
providers. As a result, the mobile user’s applications can be
composed by PFs from local PFs (may be offloaded/migrated
to its dedicated ESSI) and/or remote PFs (may run on remote
mobile devices or their dedicated ESSIs).
To demonstrate the proposed POEM solutions, we im-

plemented a pilot POEM system based on OSGi [1] and
XMPP [2] techniques. In summary, the contributions of the
presented research is highlighted as follows:

• Social mobile cloud computing: POEM solution en-
ables mobile cloud application to utilize social network
power, i.e., in addition to the discovered PFs through
the mobile cloud system, mobile user can establish
mobile cloud applications through their trusted social
connections. In this way, POEM applications not only
can use the resource in cloud by offloading resource
intensive components but also can use services provided
from their social connections.

• Versatile and personalized application offloading, mi-
gration, and composition: POEM maintains available
mobile cloud resource and allows users choosing a
mobile cloud application by using different approach-
es (offloading, migration, and composition) based on
the available system resources and their personalized
application requirements.

The paper is organized as follow. Section II introduces
related work. Section III describes systems and models. Sec-
tions IV and V discuss POEM design and implementation,
respectively. Section VI presents evaluation results. Finally,
Section VII concludes the paper.

II. RELATED WORK

Most of the previous research focuses either on mobile
tasks partition and composition or on offloading techniques.
μCloud [3] describes a framework for mobile cloud applica-
tion composition from heterogeneous software components.
μCloud is a static mobile cloud application model, which re-
quires a lot of work for programmers to partition application
and decides which partition runs on which part of the cloud.
eXCloud [4] focuses on offloading and migration: it migrates
Java Virtual Machine (JVM) runtime to cloud. However it
migrates only the top portion of runtime stack, rather than
the whole virtual machine, to cloud using Stack On Demand
(SOD) [5] migration technique. CloneCloud [6] maintains a
clone of mobile device in the cloud. CloneCloud can deal
with dynamic offloading, however it requires synchroniza-
tion between mobile device and cloud, which is not always
satisfied in mobile cloud application scenario due to unstable
mobile connection to cloud. Zhang et al. [7] proposed a
web based mobile cloud application model. It defines weblet
as independent compute unit that provides web service.

a

b

POEM

manager

POEM

manager

POEM frameworkPOEM framework

b

1 publish

2 discover
2 discover

(a) PF publishing and discovery.

c

d

POEM

manager

POEM

manager

POEM frameworkPOEM framework

1 request

2 respond

1 request
1 request

2 respond
2 respond

(b) PF composition.

e

e

POEM

manager

POEM

manager

POEM frameworkPOEM framework

1 migrate 1 migrate

1 migrate

(c) PF offloading.

Figure 2. POEM functionalities.

Zhang et al. model restricts application structure to User
Interface (UI), weblet and manifest, which force application
components to communicate through web service. MAUI [8]
and ThinkAir [9] use similar offloading technique and both
have their own decision making algorithms. They require
the programmer to mark the offloadable method and they
generate two versions of an application: one is for mobile
execution and the other is for cloud. Cuckoo [10] focuses
on offloading technique. Cuckoo generates local and remote
version of an Android Service component, which is similar
to MAUI and ThinkAir. Cuckoo requires programmer sup-
port to build the final application and it’s offloading decision
making algorithm is static.

III. SYSTEMS AND MODELS

We propose three fundamental POEM functionalities, as
shown in Figure 2. There are two POEM frameworks run-
ning on two devices or machines. Each POEM framework
has an identity so that they can form friendship relation, and
the PFs on the framework can benefit from this friendship
relation in the service discovery procedure. The items a to
e present PFs.
The Figure 2(a) describes how one PF discovers remote

available PFs. PF b hosts a service and it publishes the
service through local POEM for remote PF to discover. Then
PF a can discover the published service on remote side with
local POEM PF’s help. One prerequisite for a to discover

42

�������

��	
�
��������
��

����
��
�
�	�����

������
�
��

�����
�������
 ����

�!

�"#$�%�������

$
����
��
�!

�"#$�$������

Figure 3. POEM components.

and use service of b is that they are mutual friends, in other
words they in each other’s contact list. PF a does not know
that PF b is running on remote side because POEM pretends
that b is running locally. Thus, a programmer does not need
special treatments in coding when developing PF a.
The Figure 2(b) presents how an application recruit a

service provided by a remote PF. The PF c sends method
invocation parameters, which are transferred by the POEM
on local side and then on remote side, to the destination PF
d. Then, the service result returns along the reverse route
from d back to c. PF c also regards it is calling a local target
d due to POEM transparent transfer, and d also thinks local
c is calling it.
The Figure 2(c) presents how one PF migrates to a remote

entity. A POEM PF initializes the migration process. There
are two types of migrations: pull and push. In pull migration,
the POEM PF on the right side sends request to left side
POEM PF, and then the later fetches and transfers the target
PF e to the right side. In push migration, the POEM PF on
the left side transfers PF e to the remote side. The source
keeps the PF e active during transfer to provide the failsafe
when the transferring is not successful.

IV. POEM DESIGN

POEM is designed for a distributed application run-
ning platform and provides service publish, discovery and
composition as a uniform execution environment. In this
environment, transparent and seamless PF migration is the
key POEM function, i.e., mobile users will not notice the
platform level operations when running POEM supported
applications.
Figure 3 illustrates the overall design of POEM system.

The POEM Manager monitors local services, tracks service
state change, maintains local PF repository and responds to
remote service queries. Its networking component also main-
tains XMPP connections to XMPP peers that provides the
communication and signaling infrastructure among mobile
devices and their ESSIs. The POEM composition component
creates local proxy for remote service provider that responds
to service request by transferring the request to the remote
PF, and then getting the result to the local PFs. Based on

a systematic decision model, POEM initiates the migration
operations for PF offloading. In the following sections, we
describe each component within the POEM framework.

A. Distributed POEM Service Platform

POEM’s networking and signaling system is deployed
based on XMPP approaches. The communication between
POEM entities (i.e., mobile devices and ESSIs) is full
duplex compared to half duplex HTTP approach deployed
by many web-based service frameworks. In a distributed
execution environment, any entity can be both a client and
a server at the same time, which is different from web-
based service models where clients and servers are explicitly
defined. Moreover, POEM inherits the XMPP trust and
identity management framework, where every POEM entity
is authenticated when joining the system and data transferred
are also protected through cryptographic approaches. As a
result, the PF offloading and PF compositions can utilize
the XMPP trust management framework with fine-grained
access control capabilities. Furthermore, POEM entities need
to provide their presence information to indicate its avail-
ability information in real-time, which is as well used to
indicate their service status.
1) POEM Service Discovery and Publishing: POEM ser-

vice discovery is designed based on XMPP service discovery
protocol[11] and XMPP publish-subscribe extension[12]. A
PF may reside on a mobile device or its corresponding ESSI.
The ESSI takes the responsibility to represent the mobile
user for any PF related operations and the mobile device
POEM Manager can frequently update its available PFs
information to the ESSI. In this way, the main POEM service
discovery, migration, and composition operations will not be
flooded to end mobile devices. The ESSI POEM Manager
also maintains the mobile device availability information and
provides its reachability information to its trusted POEM
peers. When the ESSI POEM Manager receives the service
discovery message, it replies with its available PFs with the
available remote service interfaces.
POEM Manager also monitors local service changes and

notifies its friends. This is done through a publishing pro-
cedure. POEM Manager first registers a publish node (i.e.,
a virtual node in the XMPP server) under its JID. Thus,
when local service status changes, POEM Manager can post
the notice on its publish node and its friends get notified
and update their PFs availability database. We note that this
concept can be extended to the scenario for POEM users
are not on each others friend list. POEM can create interest
groups for who have registered and receive notices published
in the corresponding interest group.
2) POEM Service Composition: When POEM discovers

service provided by remote POEM entities, it tries to create
a proxy for that service so that remote PF can be used
locally. POEM uses Java dynamic proxy technique to create
proxy. Dynamic proxy requires that the target interface’s

43

Class instance must exist. To have remote service interface’s
Class instance in local OSGi framework instance, POEM
fetches PF JAR file corresponding to the target service from
remote POEM framework. POEM Manager installs the PF,
and then the target Class instance is available and proxy
generation is done.
POEM uses JavaScript Object Notation (JSON) over

XMPP for service composition because JSON is lightweight
and has abundant expression ability. The service proxy
generated by POEM Manager captures local service requests
that are then converted into JSON requests. Then the JSON
request is sent to XMPP channel to the destination. The
destination POEM Manager receives the JSON request and
translates it to method invocation on service provider’s
object. It then returns the result in form of JSON back to the
source POEM Manager. Then the JSON response is decoded
and returned to calling object.

B. PF Offloading

When application decides to offload a service provider
object and migrate it to cloud, POEM Manager chooses to
send the object’s byte code to cloud and start the object
from byte code. How to choose POEM PFs to be migration
is based on several conditions described as follows: First,
thread migration solution is not adopted because some
objects that exist in the same thread have to run on mo-
bile device, such as user interfaces and sensors. Second,
an application usually wants to migrate only the compute
intensive operations rather than the whole thread. Third,
object state is not maintained because the insight private
details of the object to be migrated cannot be fetched due
to Java security management. Our recent practice suggests
that service implementation should be stateless, so that the
object states will not bother POEM like Representational
State Transfer (REST) does [13].
1) Migration: The service provider object offloading

process follows a three-step approach: First, the target PF
JAR file is transferred to ESSI and started. Then, a proxy
object is created to intercept and capture service request
to remote target service. Finally, the PF containing target
service provider object is stopped.
The migration happens according to the migration de-

cision module command. POEM constructs the migration
decision module as plug-in framework. User can develop the
migration decision strategy plug-ins and install the strategy
bundle into POEM, which not only provides the flexibility
for user customized migration strategy but also scales the
POEM intelligence.
2) PF Isolation: The migrated PFs are running in the

surrogate POEM framework for providing service for its
origination. These PFs may interact with the POEM frame-
work and interrupt the PFs that belong to surrogate host.
The PF isolation is required to protect the surrogate POEM

framework and cease the potential attack from the migrated
PF.
The POEM manager initializes a separate PF container for

each friend who wants to offload his PF. The PF container
is duplication of the surrogate host POEM framework. The
only difference is that this nested PF container is empty and
dedicate for the corresponding friend. The friend identity is
stored and managed by identity manager. The surrogate host
defines the accepted PF policies that are enforced by policy
manager.
3) Connection Failsafe: The connection between mobile

device and cloud is usually not stable as mobile device
moves. When the connection is lost, POEM Manager restarts
the PF that has been stopped in offloading process. The
recovery process has the following two steps: First, the target
PF is started. Then, the proxy service is unregistered and
the proxy object is destroyed. The first step prepares for
receiving service request. The second step destroys proxy,
which makes the target service provider object be the first
in the ranking order to receive service request.

V. POEM IMPLEMENTATION

This section describes the implementation details of the
POEM Manager OSGi bundle as well as the seamless
offloading procedure.

A. POEM Manager OSGi Bundle Implementation
POEM Manager consists of several objects as shown

in Figure 4. They are categorized as three sets - XMPP
connection and related listeners, PF context and related
listeners, and proxy and migration management. The three
object sets represent three POEM functional sets: XMPP
connection set represents remote POEM framework; PF
context set represents local POEM framework; and proxy
and migration management represent core POEM logic and
operation that connect the other two parts.
XMPP connection object maintains three XMPP managers

that manage service discovery, publish-subscribe, and file
transfer separately. Besides, it also maintains a roster that
publishes local presence and a publish node that local
service change notification is posted on. There is a set
of listeners registered with XMPP connection. They are
noticed when corresponding events occur. Roster listener
tracks friends’ presence and update proxy pool accordingly.
Item event listeners, one listener for one friend, wait for
friends’ service change notice and update proxy pool accord-
ingly. Connection listener monitors connection status and
executes robustness strategy. File transfer listener handles
file transferring. Packet listeners handle iq packets defined in
POEM name space between POEM PFs. Service discovery
provider responses to remote service discovery by querying
PF context.
Other POEM components are as follows: PF context

handles interaction to POEM framework. Service listener

44

��������	�
��������������

����
�
���
�����
����

���������������

��������������������

����

��� �������

����� ���
������
�����

 ������������
�����

!�
������
�����

"����
�����

&������������
�����&������������
�����&������������
�����

��'�����
�������'�����
�������'�����
�����

� !�*�
������
 ������

����������
�����

��������

�������
	�
������
�������

��+���
�������

����
 ���
���
�������

!�
���

"�
 ���������

Figure 4. POEM Manager Details

monitors local service change and publish change to publish
node maintained by XMPP connection. Proxy management
contains a database and a proxy pool. It memorizes remote
service status and local proxy status in database, and pro-
vides proxy generation and recycling methods. Migration
management implements migration service registered by
POEM Manager. PF repository provides JAR file source for
file transfer request.

B. Seamless Offloading
POEM Manager registers a service with an Java interface

that contains a method to do service migration. Service
migration involves two framework instances that are source
framework and destination framework. The offloading pro-
cess can be illustrated using the following application sce-
nario. The source is device 1 and the destination is an ESSI.
The migration method is called on device 1. Service name
and destination XMPP identity are passed to the migration
method. The migration process consists of five steps as
follow. First, a migration notice is sent by device 1 to the
ESSI. Along with the migration notice, the PF JAR file that
owns the indicated service is transferred from device 1 to
the ESSI. Second, POEM Manager in the ESSI starts the PF.
When PF is running, services including the indicated service
are registered. Third, POEM Manager in the ESSI is notified
with service changes in last step. it unregister existing proxy
under the same service name. Then it publishes the new
services to the ESSI’s publish node. At this point, both sides
have the running PF that provides services to local PFs.
Fourth, POEM Manager on device 1 is notified due to the
publishing in last step. it creates the proxy for the published
services with a higher ranking. Then it stops the local PF.
At this point, the PFs on device 1 are consuming services

��� ���� ���� �������� ����

	
���
�	
���
� �����

��������������
��������
������
������
�

�����
������������

�
����
�����
�����

���
����
� ��!"�
����

�
����
� ��!"�
����
�
����
��
��!"�
����

��� �����

 �������
����
�����
 �������
����
�����

 �������
����
�����

�
����
�����
�����

	
���
� �����
��
����
 ����� �����
��
����

���
����
���� ��!"�
����

Figure 5. POEM Migration Sequence

provided by the ESSI. The sequence diagram of migration
process is shown in Figure 5.
Besides device 1 and the ESSI, a third framework instance

on device 2 is using the service being migrated. When
POEM Manager in the ESSI signals the new service, POEM
Manager on device 2 creates proxy for the new service with
a higher ranking as device 1 does. When POEM Manager
in the ESSI signals the service recycling, POEM Manager
on device 2 recycles the proxy for that service.

VI. PERFORMANCE EVALUATION
This section describes POEM performance evaluation and

case study.

A. Methodology
The POEM Manager is implemented on Felix [14] OS-

Gi implementation version 4.0.3. Mobile application that
contains a Felix OSGi framework instance that hosts PO-
EM Manager runs on Android Motorola phone A855. The
phone’s parameters are 600MHz CPU and 256M memory.
The Android version is 2.2.3. The virtual machine is with
1GHZ CPU and 512M memory, which runs Ubuntu 11.10.
Four applications are used to evaluate the POEM perfor-

mance. They are Fibonacci sequence generator, N-Queens
puzzle, nested loop and permutation generator. The Fibonac-
ci application generates Fibonacci sequence in a recursive
manner. Its time complexity is O(2n) and its stack usage is
high due to recursive algorithm. The N-Queens application
calculates all solutions for input chessboard size. Its time
complexity is O(n2) and its stack usage is also high due to
recursive algorithm. The nested loop application contains
a six layer loop which leads to time complexity O(n6).
The permutation application’s time complexity is O(n!) and
uses little memory. Experiment result is obtained by running

45

Table I
MAX SPEED UP

Case Input Phone Cloud Max speed
(ms) (ms) up (ms)

Fibonacci

26 59.25 2 57.25
27 99.5 3.05 96.45
28 156.75 5 151.75
29 251 7.65 243.35
30 408.25 12 396.25

N-Queens

8 11 1.1 9.9
9 39.75 3.05 36.7
10 222.75 12.2 210.55
11 1593.5 64.4 1529.1
12 9630.25 377.2 9253.05

Nested loop

14 157 15.05 141.95
15 332 21.55 310.45
16 276.75 28.6 248.15
17 392.5 39.85 352.65
18 560.25 54.35 505.9

Permutation

5 1.25 0.25 1
6 1 0.25 0.75
7 6.5 0.4 6.1
8 49.25 2.05 47.2
9 1124.75 12.1 1114.65

the application 50 times for every scenario and averaged.
Between two consecutive executions there is a pause of 1
second.
The experiments are run under two scenarios:
• Phone: Applications are run only in phone.
• WiFi: Phone is connected to the ESSI through WiFi.

The WiFi connection has averaged latency of 70 ms, down-
load bandwidth of 7 Mbps, and upload bandwidth of 0.9
Mbps. Ping is used to report the average latency from the
phone to the ESSI, and Xtremelabs Speedtest, downloaded
from Android market, is used to measure download and
upload bandwidth.

B. Macro-benchmarks
For typical input parameter values, four applications are

run on phone and in the ESSI separately. The application
running time is recorded in Table I. By subtracting time on
phone and in the ESSI, the max speed up is put in the last
column of the table. However, the max speed up is seldom
achieved due to cost of communication and proxy. This cost
changes little while offloading benefit changes much, so
there should be some point when the benefit of offloading
surpasses its cost giving application net gain.
Fibonacci application takes a sequence index number

and calculates the corresponding number in the Fibonacci
sequence. Figure 6(a) shows execution time of Fibonacci
application. The intersection of execution time on phone
and WiFi offloading is the Boundary input value (BIV) [9]
that shows the offloading benefit starting point. N-Queens
application takes chess board size and calculates all solutions
and return solution number. Figure 6(b) shows execution

time of N-Queens application. The execution time on phone
rises dramatically as the chessboard size increases one scale.
Offloading offers benefit after chess size is larger than 10.
Nested loop application takes loop times and execute loop
without memory operation. The execution time on phone
is convex, which means it is less than exponential increase
compared to the above two applications that requires both
computing and storage. The execution time of offloading
increases slowly. The Permutation application takes a max
number N and returns count of prime number within the
range (1,N). The prime number searching algorithm used
is Permutation algorithm. The execution time increases on
phone, however the execution time for offloading approach
almost remains same.
The offloading line of four applications is increasing

slowly compared to phone line. As the phone line starts
from a low point, which indicates the application runs fast
when input is small, the offloading line and phone line
intersects finally. Comparing offloading line and the ESSI
execution time column in Table I, the slow increase is
reasonable due to execution time increase slowing in the
ESSI as well. Besides, the starting point of offloading line
is higher than phone line, so there must be cost for remote
method invocation.

C. Micro-benchmarks

This experiment measures service invocation time. This
time is measured on phone where is service consumer
side. The remote service consuming time consists of three
parts: marshaling time of both consumer and provider sides,
network transfer time and actual execution time. The result
is shown in Figure 7.
Figure 7 shows time against different input parameters.

From the table, the actual execution time is similar to the
execution in the ESSI of column the ESSI in table I. At
the beginning, execution time is nearly zero. The execution
time increases along with input parameter value increases.
Figure 7 shows that marshaling time is relatively small
compared to network delay. Figure 7 also shows that the
main cost for remote method invocation is network delay
around BIV point. And marshaling time and network time
against different input parameters are approximately identi-
cal. The marshaling and network cost decides the start points
of offloading line in Figures 6(a)-6(d). And execution time
decides the trend of those offloading line. If the network
delay or the marshaling is reduced in some situation, the
offloading line will drop and then BIV point will go to left,
which means the range of benefit increase and application
components are supposed to be offloaded to the ESSI. In
another perspective, if component’s ratio of computation
cost to network cost increases, it is better to offload that
component to the ESSI.
Besides service invocation time, the proxy generation

time is also measured. The proxy generation time indicates

46

(a) Execution time of Fibonacci application. (b) Execution time of N-Queens application.

(c) Execution time of nested loop application. (d) Execution time of Permutation application.

Figure 6. Execution time.

(a) invocation time of Fibonacci application. (b) invocation time of N-Queens application.

(c) invocation time of nested loop application. (d) invocation time of Permutation application.

Figure 7. Service invocation time

POEM initialization time, which is paid once at starting
POEM Manager.

D. PF Migration
This experiment measures PF migration time. PF migra-

tion time period starts when service migration command is

issued and ends when proxy for migrated service is available.
The result is in table II which shows that the migration
time is nearly same for the tested four applications. This
is reasonable because the migration time is mainly the time
of transferring PF bundles on the network and these four PF
bundle sizes are similar.

47

Table II
SERVICE MIGRATION TIME

Cases migration time (ms)
Fibonacci 272
N-Queens 335
Nested loop 290
Permutation 304

Figure 8. real application evaluation

E. Image Capture Application Evaluation

We developed a remote image capture application to
evaluate the prototype. The application implements a PF
function to capture the image. The evaluation scenario is
that the cloud server composes the image capture function
from the remote android phone. The cloud server initiates
the PF composition process, and the android phone execute
the image capture function and return the image to the
cloud server. We measure the time cost for each step in
this scenario as shown in Figure 8. In the figure, we use
the network handshaking time as the unit time. The phone
and the cloud server are connected by a router that is also
wifi access point for the phone. From the figure, we can
see that the time spent for the POEM prototype is relatively
lower than the time for image transfer, which shows the good
performance of the prototype.

VII. CONCLUSION

This paper proposes a novel application running platform
for mobile cloud computing that allow mobile users to
offload and compose mobile cloud application with little
management overhead. The implementation is based on
OSGi platform and XMPP protocols. The proposed service
platform handles service migration, service discovery and
service composition seamlessly in a transparent fashion. The
evaluation shows the proposed service platform is flexible
and efficient. The future work on POEM is to improve
security and privacy control of the POEM system. Moreover,
the service discover should incorporate more social network
features to make the discovery scalable and customizable.

ACKNOWLEDGMENT

The authors would like to thank NSF CPS #1239396 grant
to support the research on the MIDAS project.

REFERENCES
[1] OSGi Core Release 5, OSGi Alliance, March 2012, http://

www.osgi.org/Release5/HomePage.

[2] “Extensible Messaging and Presence Protocol (XMPP), avail-
able at http://xmpp.org/,” Open Source.

[3] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg, and
B. S. Lee, “ucloud: Towards a new paradigm of rich mobile
applications,” 8th International Conference on Mobile Web
Information Systems (MobiWIS), 2011.

[4] R. Ma, K. T. Lam, and C.-L. Wang, “excloud: Transparent
runtime support for scaling mobile applications in cloud,”
in 2011 International Conference on Cloud and Service
Computing (CSC), 2011, pp. 103–110.

[5] R. Ma, K. Lam, C. Wang, and C. Zhang, “A stack-on-
demand execution model for elastic computing,” in Proc.
of the 39th International Conference on Parallel Processing
(ICPP 2010), 2010, pp. 208–217.

[6] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and
cloud,” in Proceedings of the sixth conference on Computer
systems, 2011, pp. 301–314.

[7] X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs,
“Towards an elastic application model for augmenting com-
puting capabilities of mobile platforms,” Mobile wireless
middleware, operating systems, and applications, pp. 161–
174, 2010.

[8] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: making smart-
phones last longer with code offload,” in Proceedings of the
8th international conference on Mobile systems, applications,
and services. ACM, 2010, pp. 49–62.

[9] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading,” in 2012 Proceedings
IEEE INFOCOM, 2012, pp. 945–953.

[10] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a
computation offloading framework for smartphones,” Mobile
Computing, Applications, and Services, pp. 59–79, 2012.

[11] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre,
XEP-0030: Service Discovery, XMPP Standards Foundation
(XSF), 2008, http://xmpp.org/extensions/xep-0030.html.

[12] P. Millard, P. Saint-Andre, and R. Meijer, XEP-0060: Publish-
Subscribe, XMPP Standards Foundation (XSF), 2010, http:
//xmpp.org/extensions/xep-0060.html.

[13] R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture,” ACM Transactions on Internet
Technology (TOIT), vol. 2, no. 2, pp. 115–150, 2002.

[14] “Apache Felix,” http://felix.apache.org/site/index.html, A-
pache Felix. [Online]. Available: http://felix.apache.org/site/
index.html

48

