
Energy-Efficient Dynamic Event Detection by
Participatory Sensing

Jianxin Zhao†, Chi Harold Liu†, Min Chen�, Xue Liu‡ and Kin K. Leung�
†Beijing Institute of Technology, China, ‡McGill University, Canada

�Huazhong University of Science and Technology, China, �Imperial College, UK
E-mail: †{2220130566,chiliu}@bit.edu.cn, ‡xueliu@cs.mcgill.ca, �minchen2012@hust.edu.cn, �kin.leung@imperial.ac.uk

Abstract—Dynamic event detection by using participatory
sensing paradigms has received growing interests in recent years,
where detection tasks are assigned to smart device users who can
potentially collect needed sensory data from the equipped sensors.
These data can be utilized to detect interested events like noise,
air pollution, or even earthquake. Since most existing solutions
focus on centralized detection approaches that, however, usually
cause heavy communication overhead, it is strongly desired to
design distributed solutions to reduce energy consumption while
achieving a high level of detection accuracy. In this paper, we
first present a novel Minimum Cut based centralized detection
algorithm as the performance benchmark, and then introduce a
novel distributed, energy-efficient solution, where an optimization
problem is formulated and an optimal solution is derived.
Simulations based on a real-trace driven data set in Beijing
demonstrate the effectiveness of our proposed algorithms.

I. INTRODUCTION

Participatory sensing is an emerging paradigm that aims at
collecting data from a huge amount of smart devices carried by
users. These devices are equipped with a variety of embedded
sensors, e.g., accelerometer, GPS, light sensor, etc. Participa-
tory sensing can successfully reduce the deployment costs, and
enables the sensing of the world at an unprecedented spatio-
temporal granularity. These features make it quite suitable to
be applied in a wide range of applications; for example, noise
[1] and air quality monitoring [2] in urban areas, and urban
street-parking availability monitoring [3], etc.

Among many applications of participatory sensing, dynamic
event detection is an important one that has received a growing
amount of research attention. Our research is motivated by
the application scenario in Fig. 1, where a group of smart
device users inside a certain spatial sensing region subscribes
to a central server (CS). Periodically, a selected crowd of
participants collect sensory data by using their smart device-
embedded sensors. Sometimes local data processing is also
needed. These participants then transmit the necessary data
to the CS via built-in communication interfaces, such as
3G/LTE or WiFi. With these data, CS is able to identify the
area of target events inside the sensing region with certain
accuracy. Such events could be abnormal noise in a specific
region, residential fire in forests, or meteorological hazards
[4], [5], etc. The temporal property of events and the large

Corresponding Author: Chi Harold Liu. This work is financially sponsored
by National Natural Science Foundation of China (Grant No. 61300179).

Participants’devices
and energy

Short range D2D
communication

Detected event
region

Base station and
connected central

server

Event
Region 1

Event
Region 2

Participants’ tracks

Fig. 1. The considered participatory sensing scenario for dynamic event
detection.

amount of participants involved make dynamic event detection
a challenging problem; and can be more challenging when
considering the device energy consumption.

There are mainly two categories of approaches to tackle
the aforementioned problem. The first approach is that the
participants transmit the collected raw data to the CS for
centralized processing. For example, Sasaki et al. in [5]
construct an earthquake reporting system where each Twitter
user is regarded as a “sensor”. If a user detects some possible
events, he/she tweets directly to a CS, where complex models
are used to distill earthquake information from these large
amounts of tweets precisely. However, in such a centralized
algorithm, the communication overhead of uploading data
can cost significantly to both the infrastructure and partic-
ipants. The other approach is to process the data on each
participant’s smart device distributively. The authors of [6]
present a distributed system that aims at classifying different
application-specific events. Each node extracts some features
out of its sensory data. By exchanging feature vectors with
its neighboring nodes, each node classifies the event locally.
However, this method can only be applied on small networks
for validation. Using pattern matching techniques is another
new trend for dynamic event detection. It could be applied
distributively on each participant as in [7], or applied in the
CS [8]. However, in some cases, the exemplary training data
for events is very hard to generate.

Despite the complicated essence of an event, the data
model used in experiments are sometimes over-simplified. For
example, the authors of [9] generates their data by normal
distributions with fixed parameters. In [10], the sensor fault
is modeled by a uncorrelated Bernoulli random variable.
Therefore, real world based simulations are needed to verify
the performance of proposed approaches.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 3180

All the above research activities fail to consider the en-
ergy conservation problem, since participants tend to refuse
to cooperate if an application consumes too much energy
(or resources) from their devices. In this regard, existing
research declares that power consumption could be reduced
by minimizing the active time of devices [11]. Furthermore,
in [12], the authors claim that reducing the packet size can also
effectively bring down energy depletion; and Higuchi et al. in
[13] propose an energy-efficient information diffusion protocol
for mobile crowd sensing. However, they have not built up
mathematical foundations to establish the synergy between
energy consumption and detection accuracy, in a distributed
manner, as the central theme of our work in this paper.

Towards this end, in this paper we propose a set of novel
dynamic event detection algorithms to explicitly consider the
relationship between the energy consumption and detection
accuracy. The contribution of this paper is summarized as
follows:

1) We propose a centralized event detection algorithm that
makes use of a Minimum Cut (Min-cut) algorithm as the
performance benchmark.

2) We propose a distributed, energy-efficient event de-
tection framework, in which the participants calculate
events’ regions by negotiating with their neighbors.

3) We propose a utility function from the solution of an
optimization problem to embed in the distributed frame-
work. The effectiveness and flexibility of the proposed
algorithms are extensively evaluated by real-trace driven
experiments.

The rest of the paper is organized as follows. Section II es-
tablishes formal model of our system. Section III describes the
Min-cut based centralized event detection algorithm. Section
IV describes our proposed distributed event detection frame-
work and utility function. Section V extensively evaluates
the performance of the proposed strategy by real trace-driven
simulations, and finally Section VI concludes the paper.

II. SYSTEM MODEL

We model the sensing region as a 2D map, denoted as
M, and within the region there are a set of participants.
Each participant’s smart device is embedded with the required
sensors for specific sensing tasks. We focus on detecting events
by using only one kind of sensor in this paper, however
the proposed framework can be easily applied to other cases
where multiple sensors are needed. We assume that the system
runs continuously for a long period of time, which contains
many detection cycles. Each detection cycle consists of three
phases: Event Monitoring, Information Transmission and Cen-
tral Processing. That is, the participants collect data from
the environment, perform some local computation if needed,
and then transmit the necessary data to a CS server for final
processing.

Formally, we define participants as a set P � {i|i =
1, 2, . . . , P}, where P is the size. For the rest of the paper,
we refer to a participant i and his/her associated collective
attributes together as a participant, or simply a user. These

TABLE I
LIST OF IMPORTANT NOTATIONS AND THEIR DESCRIPTIONS

Notation Explanation
M Interested region in an application
P Set of participants
P Total number of participants

xi, yi, vi, ei The coordinates, sensory reading and
remaining energy of participant i

d(i, j) The Euclidean distance of two participants i and j
wij Edge weights between two participant i and j
E Edges set in graph model G(P, E)
Ec A minimum cut of graph G(P, E)

Pin,Pout Subsets of P that contain the participants
that within/out of the events

e0 Initial energy of each device
ωi(k, t) Accuracy for participant i to choose user k in cycle t
Ai(k, t) Average of ωi(k, t) up to cycle t

Ti(k) Estimated target accuracy for i to choose participant k
Ui(k, t) Utility value of i to choose participant k

attributes are denoted by a tuple pi = (xi, yi, vi, ei), where
xi and yi are a participant’s coordinates, vi is the sensory
reading of his/her device, and ei is the remaining energy level.
Each user’s device has an initial energy level e0. We assume
the participants move around in M randomly. A participant
has necessary computing ability, and all participants have a
common, but tunable communication range δ.

For centralized algorithms, we model the sensing region
as a graph G(P, E), where E = {lij |∀i ∈ P, ∀j ∈ P} is
the edge set (lij denotes the edge between users i and j).
Besides, the weight wij for each edge lij ∈ E is calculated
as: wij = exp (−|vi − vj |/d(i, j)), where d(i, j) denotes the
distance between two participants i and j. It reflects the change
of sensory readings between two neighboring users.

For distributed algorithms, we define the neighbor set of
any participant i as:

N (i) = {j|j ∈ P, d(i, j) < δ}. (1)

For a user i, each neighbor j ∈ N (i) is associated with a
utility value U to explicitly represent the benefit of choosing
user i. In addition, the nearest neighbor of a participant i is
defined as:

N 1(i) = argmin
j

Uj , ∀j ∈ N (i), (2)

where Uj is the utility value of user j. Similarly, its Top-K
nearest neighbors NK(i) is a set that contains its K nearest
neighbors.

Note that during multiple detection cycles, the sensory data
from a participant changes accordingly. Thus all the variables
above can be combined with the factor of time. For instance,
we use vi(t) and ei(t) to denote the time-varying sensory
reading and remaining energy of user i in cycle t, etc.

Important notations used in this paper are listed in Table I.

III. MIN-CUT BASED CENTRALIZED APPROACH

After the participants collect data from the environment, the
raw data are transmitted to the CS for processing. Since the
data transmission methods have been thoroughly studied in

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3181

(a) (b)

two removed edges

p1

p2

p5

p4p3

<11,0,0>

<9,0,10>

<10,8,2>

<50,6,8>
<8,10,9>

p1

p2

p5

p4p3

<11,0,0>

<9,0,10>

<10,8,2>

<50,6,8>
<8,10,9>

0.88

0.818

0.91

0.02

0.001

0.002

0.0001

p1

p2

p5

p4p3

<11,0,0>

<9,0,10>

<10,8,2>

<50,6,8>
<8,10,9>

(c)

p1

p2

p5

p4p3

<11,0,0>

<9,0,10>

<10,8,2>

<50,6,8>

<8,10,9>
(d)

0.76

Fig. 2. An example of the Min-cut based algorithm. (a) Connect every two vertexes, (b) remove edges and calculate weights, (c) recognize edges to be
removed, and (d) final detection result.

many previous research activities, we focus on the processing
part in this paper. Besides, we only need to focus on one
detection cycle. The rest of cycles have identical participant
actions.

In G(P, E), our proposal’s core step is to use an improved
Min-cut algorithm [14] to find a subset Ec ⊂ E that connect
two neighboring participants within and out of the area of
an event. Then all users that are in an event region can be
separated out.

As an example, Fig. 2 shows the steps of how the partici-
pant(s) in an event region is(are) recognized in a mini-network
with five participants p1 ∼ p5. Obviously, with its abnormally
high reading, sensor p5 is identified in an event region. Thus
edges p1p5, p2p5, p3p5, and p4p5 all connect one user inside an
event area and one that is outside. Our algorithm can recognize
these four edges, as shown in Fig. 2(c). Once these edges are
removed, the participants in an event region (only p5 in this
case) are identified (see Fig. 2(d)). The detailed process of this
algorithm is explained below.

Step 1: Initialization. To initialize E , every two participants
in P are connected, thus E = {lij |∀i ∈ P, ∀j ∈ P, i �= j}. In
other words, every two participants are connected in the map,
as shown in Fig. 2(a).

Step 2: Edge removal. To reserve only edges connecting
neighboring users, those between non-adjacent users are re-
moved. The remaining edges consist a new set E ′.

Step 3: Calculating edge weights. The weight wij for each
edge lij ∈ E ′ is calculated.

Step 4: Min-cut. Finally, the Min-cut algorithm is applied.
A minimum cut Ec of a graph is a cut that divide the vertexes
into two non-empty disjoint sets Pin and Pout and has the
smallest sum of weights possible, where Pin∪Pout = P , Pin∩
Pout = ∅, i ∈ Pin, j ∈ Pout, ∀lij ∈ Ec. In our case, it represents
the edges connecting two set that are within and out of the
events.

Step 5: Repeat for multiple events. Let minPout � min(vi),
maxPout � max(vi), ∀i ∈ Pout. Δ is a predefined upper-
bound of abnormal reading. Once an event region is detected,
the judgment condition (maxPout − minPout) ≥ Δ is updated.
If there is still another event to be detected, the Min-cut
algorithm loops to find other event regions.

When no more event area can be detected, the users in
Pout are connected by edges in Ec, and the users in Pin are
isolated. These are exactly the participants that fall in the

region of events. This algorithm does not assume a pre-defined
threshold for events. Besides, it can detect multiple event
regions. Moreover, by traversing all possible edges between
any two users, this algorithm give precise detection result.

However, despite its high precision, this algorithm consumes
much computational resources and runs slowly, which can be
observed in the simulation section. Besides, it does not scale
well with the size and structure of the network due to the
communication bottlenecks and energy expenses.

IV. DISTRIBUTED EVENT DETECTION APPROACH

Different from centralized algorithms, in a distributed ap-
proach, participants not only collect data, but also perform
certain local processing, and then transmit processed data (e.g.
event detection result) back to the CS, where CS has no
further processing task to perform. Therefore, the key part
of a distributed approach is to design how each user makes
decision locally in an optimal way. Without loss of generality,
we assume that the threshold to recognize an event has already
been given to each user, but the value can be easily changed
in different applications.

A. Distributed Event Detection Framework

The essence of our proposed approach is as follows. While
each user can detect events according to the predefined thresh-
old, many participants tend to provide similar detection results
due to their similar geographical locations. Accordingly, we
would like to group participants with “similar” neighbors,
so that they are very likely to yield the same result during
detection. Thus when one user is monitoring the environment,
its companions, i.e. the other members in its group, do not
have to monitor in the same cycle. Unless otherwise specified,
for the rest of the paper we assume that each user can have
at most one companion; and we shall study the impact of
multiple companions during simulations. In this process, a user
chooses its companion according to their pre-defined utilities.
A proper utility definition is obviously a vital part in our
detection framework, and it will be theoretically discussed in
detail later.

At the beginning of each detection cycle, each user in
region M selects its nearest neighboring users, referred as
the “linking petition” to this neighbor. We refer to the initially
chosen neighbor of participant i as its desired user. Conversely,
i is a petitioner of its desired user. Each user has no prior

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3182

Fig. 3. An example of the conflict situation in the distributed framework.

knowledge of its neighbors’ initial decisions before making
its own decision, so it is highly possible that a user makes an
improper decision.

Fig. 3 shows an example. We focus on users p1 and p2
in this case. The dash line circles denote their maximum
transmission ranges. They both have some neighbors within
the range. In Fig. 3(a), both users make initial decisions after
computing their neighbors’ utilities. However, user p1 chooses
p2 whereas p2 chooses its another neighbor p3, that creates a
conflict situation. Our solutions is that: if participant p1 finds
its desired user p2’s desired user is not p1 itself, p1 gives
up its petition. Therefore, in Fig. 3(b), the linking petition
of user p1 is declined by p2 after their initial decisions are
exchanged. Fig. 3(c) shows another scenario where user p1 and
p2 choose each other as initial decisions, hence form a group
successfully. Below is a formal description of our algorithm.

Step 1: Exchange user information. Each user sends its
sensory data to its neighbors, and then computes their utilities.

Step 2: Make initial decision. According to the associated
utility, each user chooses one of its neighbors as desired users.

Step 3: Exchange Initial decision. Each user’s initial deci-
sion is transmitted to all neighboring participants by sending
control messages in the control channel.

Step 4: Make petition decision. With knowledge of each
user’s petitioner, the described strategy is applied to decide
whether it should accept linking petitions.

Step 5: Exchange petition decision. Each user notifies its
petitioner whether it is accepted. Then, each user finally decide
whether it should form a group with its desired user.

Step 6: Make sleep-wake decision. Each user decides
whether itself should maintain sleep state in this cycle. If it
is not in a group, it stays awake, otherwise whoever has most
residual energy in this group stays awake.

After these steps, participants start to monitor the environ-
ment. If any event is detected, the corresponding users send
alerts to the CS that contains information as short as 1 bit.

We next analyze the running time of our proposed algo-
rithm, consisting of the time to complete: (a) the user or
decision information exchange in Step 1, 3, 5, and (b) the
decision-making process in Step 2, 4, 6. In the information
exchange steps, each participant only needs to broadcast his
information to his neighbors. We could reasonably assume that
these steps all run within a fixed amount of time. Furthermore,
in the decision-making steps, the algorithm just traverses the
information table of neighbors in the memory and find the
proper one, which also takes constant time. In other words,
the distributed approach is scalable whose running time is

independent of network sizes.

B. Energy-Efficient Utility Definition

To complete our proposed distributed algorithm, a definition
of the utility is important. For example, a simple Random-
neighbor strategy could be applied, which means that a par-
ticipant randomly chooses a neighbor for initial decision. How-
ever, to obtain a good metric, we need to build up synergies
between detection accuracy and energy consumption.

We assume that each participant has an average sensory
reading v̄i(t) up to cycle t. An intuitive idea is that a user
picks the neighbor that has the most similar average reading
with itself. We calculate the target accuracy of neighbor k of
any user i as : Ti(k, t) = exp

(− |v̄i(t)− v̄k(t)|
)
. However,

when a participant’s energy consumes, the detection accuracy
is also decreased. Thus a neighbor with more remaining energy
should be given higher priority to join the detection task.
Therefore, for user i, we define its accuracy of selecting
neighbor k at cycle t as: ωi(k, t) = exp

(−|vi(t)− vk(t)|
)×

ek(t)
e0

. Suppose user i has m neighbors, then our goal is to
define an appropriate utility with which the long-term average
accuracy of all neighbors Ai = {Ai(1), Ai(2), . . . , Ai(m)}
is proportional to the target accuracy Ti. Here Ai(k, t) =∑t

l=1 wi(k, l)/t. In order to define the utility, we decompose
the analysis process into two lemmas. The first one formulate
an optimization problem for any user i, then the second lemma
prove that the optimal solution A∗

i to the optimization problem
is proportional to the target Ti = {Ti(1), Ti(2), . . . , Ti(m)}.
Note that for simplicity, we drop the factor of time.

Lemma 1: If each user maximizes the following objective
function over Ai :

max f(Ai) =

m∑
k=1

Ti(k). log(Ai(k)),

s.t.
m∑

k=1

Ai(k) ≤ C,

(3)

where C is a positive constant that upper bounds the total
average accuracy of all neighbors of user i. Then, the optimal
solution A∗

i is proportional to Ti.
Proof: This problem is a classic constrained optimization

problem, thus could be solved with Lagrange multipliers.
Specifically, we have:

L =

m∑
k=1

Ti(k). log(Ai(k))− λi.

(
m∑

k=1

Ai(k)− C

)
. (4)

The first order (necessary) optimality condition for (4) is:

�L = 0 and λi

(
m∑

k=1

Ai(k)− C

)
= 0. (5)

Since the constraint is binding and λ �= 0, the first part in (5)
could be solved as: Ti(k)/A

∗
i (k) = λi. This means that after

some iterations the average accuracy A∗
i is proportional to Ti

element-wisely.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3183

Then, we define a utility function and prove that if this
utility is enforced in our proposed distributed framework, the
objective function in (3) converges to the optimal solution.

Lemma 2: If user i uses the following utility:

Ui(k, t) = Ti(k)
ωi(k)

Ai(k)
, (6)

it maximizes the objective function in (3) iteratively.
Proof: Since the objective function in (3) is convex,

the sufficient and necessary condition of optimality for this
problem is: �f |Ai .(Ai −A∗

i) ≤ 0, where Ai could be any
arbitrary energy consumption vector. This equation could be
further broken into two parts:

m∑
k=1

Ti(k)
Ai(k)−A∗

i (k)

Ai(k)
, (7)

where Ai(k) and A∗
i (k) are the average of ei(k) in time, so

this equation could be rewrite as:
m∑

k=1

Ti(k)
E[ωi(k)]

Ai(k)
−

m∑
k=1

Ti(k)
E[ω∗

i (k)]

Ai(k)
, (8)

where symbol E means the expectation of target accuracy for a
series of cycles. Then maximizing the following will maximize
the second part of (8):

max
ωi

Ti(k)
ωi(k)

Ai(k)
. (9)

Since ei in the first part in (8) is not optimal as in (9), the
second part must be greater than the first term in (8). So this
equation holds. That is, use the metric in (6) maximizes the
objective function in (3).

In practical applications, taking the factor of time into
consideration, (6) could be used as:

Ui(k, t) = Ti(k)
ωi(k, t− 1)

Ai(k, t− 1)
. (10)

V. PERFORMANCE EVALUATION

A. Simulation Settings

We validate our proposed algorithms with the Microsoft
Research Asia GeoLife data set [15]. It contains 182 vol-
unteers’ trajectories in Beijing for three consecutive years.
We find a 200× 500m2 region that is of high movement
density.Based on this data set, we consider a noise level
monitoring application by participatory sensing. We use the
number of visits on each area to indicate the possible noise
level. The communication range of each participant is 10
meters. We also employ the energy dissipation model in [16],
where the cost to transmit a L-bit message is:

Etx(L, d) =

{
Lεtx + Lεfsd

2, if d < d0,
Lεtx + Lεmpd

4, if d ≥ d0,

where d denotes the distance between two users, εtx is the
energy dissipation per bit to run the transmitter circuit, εfs
and εmp are transmitter amplifiers, d0 =

√
εfs/εmp. We

adopt the same parameter settings in [16]: εtx = 50nJ/bit,

0 1,00 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Detection CyclesR
es

id
ua

l e
ne

rg
y

of
 a

ll
pa

rti
ci

pa
nt

s
(J

)

Min-cut and SVM based
Proposed

Fig. 4. Network lifetime performance of the proposed utility.

TABLE II
RUNNING TIME OF THREE ALGORITHMS WITH DIFFERENT USER NUMBER.

No. of participants 100 200 300 400 500
Min-cut based (mins) 6′′ 1′20′′ 5′58′′ 14′46′′ 57′13′′

SVM based (s) 0.0435 0.0441 0.0447 0.0458 0.0472
Proposed (s) 0.0045 0.0095 0.0143 0.0191 0.0239

εfs = 10pJ/bit/m2 and εfs = 0.0013pJ/bit/m4. The energy
dissipated in event monitoring per round is 0.001mJ, and the
initial energy of each user is set to 5mJ.

We assess the performance of our proposed Min-cut based
centralized algorithm and distributed approach, by comparing
with the SVM-based centralized algorithm and our proposed
distributed algorithm using the Random-Neighbor strategy. We
treat the detection problem as a pattern matching one. First, a
SVM model is trained in the CS with prepared exemplary data,
that contains participants’ information and labels showing
whether they are in an event region or not. Second, the
participants transmit data back to the CS for classification.

B. Results and Discussions

First we compare the running time of our proposed algo-
rithms in each detection cycle with different number of partic-
ipants in the sensing region. As shown in Table II, the Min-cut
based algorithm runs in the scale of minutes, and sometimes
even hours. On the contrary, the distributed approach can run
9.67 times faster than the SVM-based algorithm. We can also
observe that with the state-of-the-art solvers and optimized
codes, the running time of SVM does not change dramatically
with the increase of number of participants in this order of
magnitude.

Fig. 4 shows the total energy consumption with 200 users.
When a user has less than 1% energy left, it is deemed
inactive. When the detection process continues, the distributed
algorithm consumes much less energy. Fig. 5(b) shows the
network lifetime. With the increase of number of participants,
the network lifetime achieved by Min-cut based algorithm
barely grows, while the distributed achieves much higher and

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3184

50 100 150 200 250

0%

20%

40%

60%

80%

100%

Number of participants
N

or
m

al
iz

ed
 n

et
w

or
k

lif
et

im
e

Min-cut
Proposed

50 100 150 200 250
0.5

0.6

0.7

0.8

0.9

1

1.1

Number of participants

Pr
ec

is
io

n

Proposed
Random-neighbor
SVM based
Min-cut based

1 2 3 4

0%

20%

40%

60%

80%

100%

Maximun allowed number of connected neighbors

N
or

m
al

iz
ed

 n
et

w
or

k
lif

et
im

e

50 participants
100 participants
150 participants

Fig. 5. (a)-(b) Precision and network lifetime with different number of participants. (c) Network lifetime performance with different maximum allowed
number of connected neighbors.

increases significantly. Here we define a network (or sensing
region) as not functional, when 90% users are inactive. From
the figure, we observe that the network lifetime is prolonged
73% with distributed algorithm than with Min-cut approach.

Since the centralized algorithm detects events more accu-
rately, we use its detection result as the benchmark. As for the
distributed algorithm, we investigate its performance with two
utilities: our proposed one in (10), and the random-neighbor
strategy. We use detection precision as merit to evaluate their
performance, calculated as follows. Suppose TP is the number
of detected event node that are true event node, FP is the num-
ber of detected event node that are actually non-event node,
the precision (P) is then defined as: P = TP/(TP+ FP). Our
proposed solution can maximally achieve 86% precision, if
compared with the optimal Min-cut based algorithm. Besides,
our proposal shows better performance than the SVM-based
centralized approach. That is, on average, it achieves 4.3%
more precision.

As stated in Section IV, a participant always selects its
nearest neighbor to form a group. Here we aim to explore
the impact of using different number of companions on the
performance of our distributed algorithm. Specifically, each
user can choose its Top-K nearest neighbors to form a group,
where K ranges from 1 to 4. Fig. 5(c) shows the network
lifetime with different number of participants. It is clear that
the more neighbors one user can choose, the more enduring
a network is. Despite the number of participants, if K is set
as 4 instead of 1, the network lifetime is prolonged 85% on
average.

VI. CONCLUSION

Dynamic event detection by participatory sensing is a
promising research direction. In this paper, we proposed
two event-detection algorithms: a Min-cut based centralized
approach, and more importantly a distributed detection frame-
work. In the distributed algorithm, an optimization problem is
formalized and solved to derive an optimal utility that ensures
the detection precision and energy-efficiency of the algorithm.
Extensive experimental results, based on a real-trace driven

data set, show that our proposed distributed algorithm detect
events fast, accurately and energy-efficiently.

REFERENCES

[1] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell, “Sound-
sense: Scalable sound sensing for people-centric sensing applications on
mobile phones,” in ACM MobiSys’09, 2009, pp. 165–178.

[2] S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath, “Real-
time air quality monitoring through mobile sensing in metropolitan
areas,” in ACM SIGKDD’13, 2013, p. 15.

[3] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe, “Parknet: drive-by sensing of road-side
parking statistics,” in ACM MobiSys’10, 2010, pp. 123–136.

[4] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-
phone: An end-to-end participatory urban noise mapping system,” in
ACM/IEEE IPSN’10, 2010, pp. 105–116.

[5] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors,” in ACM WWW’10, 2010,
pp. 851–860.

[6] G. Wittenburg, N. Dziengel, C. Wartenburger, and J. Schiller, “A
system for distributed event detection in wireless sensor networks,” in
ACM/IEEE IPSN’10, 2010, pp. 94–104.

[7] E. Ould-Ahmed-Vall, B. H. Ferri, and G. F. Riley, “Distributed fault-
tolerance for event detection using heterogeneous wireless sensor net-
works,” IEEE Trans. Mobile Comput., vol. 11, no. 12, pp. 1994–2007,
2012.

[8] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matching for event
detection in sensor networks,” in ACM SIGMOD’06, 2006, pp. 145–156.

[9] Z. Zhou and G. Qu, “An energy efficient adaptive event detection scheme
for wireless sensor network,” in IEEE ASAP’11, Sept 2011, pp. 235–238.

[10] B. Krishnamachari and S. Iyengar, “Distributed bayesian algorithms for
fault-tolerant event region detection in wireless sensor networks,” IEEE
Trans. Comput., vol. 53, no. 3, pp. 241–250, March 2004.

[11] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Netw.,
vol. 7, no. 3, pp. 537–568, 2009.

[12] Y. Li, C. Ai, C. T. Vu, Y. Pan, and R. Beyah, “Delay-bounded and
energy-efficient composite event monitoring in heterogeneous wireless
sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 9, pp.
1373–1385, 2010.

[13] T. Higuchi, H. Yamaguchi, T. Higashino, and M. Takai, “A neighbor
collaboration mechanism for mobile crowd sensing in opportunistic
networks,” in IEEE ICC’14, June 2014, pp. 42–47.

[14] M. Stoer and F. Wagner, “A simple min-cut algorithm,” J. ACM, vol. 44,
no. 4, pp. 585–591, 1997.

[15] Y. Zheng, X. Xie, and W. Ma, “Geolife: A collaborative social network-
ing service among user, location and trajectory,” IEEE Data Engineering
Bulletin, vol. 33, no. 2, pp. 32–40, 2010.

[16] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
2002.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3185

