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Abstract—The Internet of Things (IoT) opens up tremen-
dous opportunities to location-based industrial applications that
leverage both Internet-resident resources and phones’ processing
power and sensors to provide location information. Location-
based service is one of the vital applications in commercial,
economic, and public domains. In this paper, we propose a novel
localization scheme called NextMe, which is based on cellular
phone traces. We find that the mobile call patterns are strongly
correlated with the co-locate patterns. We extract such correlation
as social interplay from cellular calls, and use it for location pre-
diction from temporal and spatial perspectives. NextMe consists of
data preprocessing, call pattern recognition, and a hybrid predic-
tor. To design the call pattern recognition module, we introduce
the notions of critical calls and corresponding patterns. In addi-
tion, NextMe does not require that the cell tower addresses should
be bounded with concrete coordinates, e.g., global positioning sys-
tem (GPS) coordinates. We validate NextMe across MIT Reality
Mining Dataset, involving 500 000 h of continuous behavior infor-
mation and 112 508 cellular calls. Experimental results show that
NextMe achieves fine-grained prediction accuracy at cell tower
level in the forthcoming 1–6 h with 12% accuracy enhancement
averagely from cellular calls.

Index Terms—Cell towers, Internet of Things (IoT),
localization, location prediction, mobile calls.

I. INTRODUCTION

I NTERNET of Things (IoT) connects uniquely identifiable
objects into an Internet-like structure and seamlessly inte-

grates the physician world with the digital world based on the
participation of billions of networking sensors [1]–[3]. Such
sensors are deployed into devices and machines in real world.
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They may collect various kinds of data, such as environmental
data, geographical data, astronomical data, and logistic data.
Mobile equipment, transportation facilities, public facilities and
home appliances all can be data acquisition in IoT.

IoT has fostered increasing attention to location-based
telecommunication applications and services with lots of human
digital traces.These tracesarecapturedbysuchasmobilephones,
embedded sensors, and radio-frequency identification (RFID)
[4], [5]. Digital traces ranging from cell IDs, mobile calls, short
messages to global system for mobile communications (GSM)
traces reflect many facets of user mobility and interaction. With
the prior knowledge of user location, telecommunication oper-
ators can serve users with customized services. Thus, they can
attract more users and boost their loyalty.

With the development of IoT and cloud computing tech-
nology, predicting mobile phone users’ location is essential
to many mobile applications, including location-based services
[6]–[10], mobile multimedia quality of service (QoS) provision
[11], [12], as well as the resource management [13] for mobile
computation [14], and storage [15].

Recently, a variety of location prediction schemes have been
proposed, e.g., evaluating mobility models for temporal predic-
tion (ETP) [16], NextPlace [17], home-cell community-based
mobility model (HCMM) [18], time-variant community model
(TVCM) [19], and Markov-based schemes [20]. Most existing
schemes predict user location based on user behavioral regular-
ity. This is because users exhibit spatial and temporal regularity,
when visiting certain locations such as homes and offices.
However, users follow the regular mobility patterns in a very
loose manner. Therefore, the prediction schemes based on spa-
tial and temporal regularity are limited. As uncovered in [21],
the predictability of these schemes is bounded. Some efforts
[22], [23] have divulged that social relationship has a signifi-
cant impact on user mobility patterns, and thus it can be used for
location prediction. Nevertheless, they all require external data
sources rather than mobile phone traces to characterize user
relationships, e.g., getting user relationship information from
Facebook in [24]. Moreover, they identify neither the moment
social relationships nor the encounter duration.

We investigate the location prediction problem by using MIT
Reality Mining Dataset (abbr. Reality dataset), which involves
2 667 895 GSM traces and 112 508 cellular calls [25]. We find
that human mobility exhibits randomness to some degree, and
cellular calls are one of factors to result in such randomness.
To be specific, the call pattern between a pair of users is
highly correlated with their “encounters” (i.e., simultaneously
co-locating at the same region), and the influence of the cellular
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calls on user mobility is short term. Each pair of users who
have successive cellular calls and following certain call patterns
would co-locate soon with a high probability in a short period of
time after the most recent call. Consequently, we introduce the
social interplay to reveal the social relationships embedded in
the cellular calls. We further investigate the impact of the social
interplay on the prediction of user mobility. To invoke the social
interplay for location prediction, we introduce the concepts of
critical call (CC) and CC pattern.

Note that MIT Reality Mining Dataset brings forth two
issues.

1) Locations of cell towers are represented by code names
(i.e., symbolic locations). This makes some existing pre-
diction schemes fail, e.g., [17]. For a cell tower address
“5188.41097” from MIT Reality Mining Dataset, “5188”
and “41097” are code names of a cell area and a cell
tower, respectively. Apparently, they do not support any
arithmetic or logic operation, as global positioning system
(GPS) coordinates do.

2) There are a large number of cell tower handover data in
user mobility traces as cell towers are highly overlapped.

To this end, we propose NextMe—a location prediction
scheme that leverages cellular calls to enhance location predic-
tion accuracy. NextMe comprises several components: 1) data
preprocessing; 2) call pattern recognition; 3) periodicity-based
and social interplay-based prediction modules; and 4) aggrega-
tion unit. To remove the noise and handover data of cell towers,
we design a data preprocessing component. Then, NextMe
identifies CCs by the call pattern recognition component.
Based on the recognition results, NextMe will invoke the
prediction module based on either user behavior periodicity or
social interplay. Finally, it aggregates the recommendation for
prediction results.

Compared with those traditional standard location tracking
techniques (e.g., GPS, GSM, and WiFi localization), the pro-
posed method adopts some core technologies in new industry,
such as location-based service, digital footprint, and mobile
computing. Due to widely usage of mobile devices, mobile-
based applications and services are highly required as they
reach most of users without additional efforts. Unlike smart
phones, which use extra resources (e.g., WAP, WiFi, and
Internet applications), basic cellular phone-based mobile loca-
tion applications depend on existing cellular network infrastruc-
ture, which do not need additional resources [26].

Meanwhile, the development of IoT, particularly the explo-
sion of sensor-equipped mobile phones, has led to an unprece-
dented accumulation of digital footprints—the digital traces
that people have left while interacting with cyber-physical
spaces. These digital traces have spurred numerous innova-
tive applications in mobile and ubiquitous computing field.
By analyzing pervasive data streams collected from personal
mobile phones, we can mine the individuals and groups active
mode, large-scale human activities, and urban dynamic regular
patterns. Researchers adopt the innovative services in human
health, public safety, city resource management, environmental
monitoring, and transportation management [27]. In addition,
the proposed method takes the characteristics of the periodicity
and social interplay in cellular traces into consideration simul-
taneously in the prediction process.

To summarize, the main contributions of this paper are
fourfold.

1) NextMe extracts social interplay from telecommunica-
tion call records, which reveals the underlying correlation
between human mobility patterns and cellular call pat-
terns. It further comes up with a novel prediction module
using cellular calls.

2) NextMe introduces the call pattern recognition compo-
nent, which is based on the proposed concepts of CCs and
relevant patterns. The recognition component determines
the moment the social interplay-based prediction module
works.

3) NextMe is capable of handling symbolic cell tower loca-
tions by converting them to regions. This abates the
complexity of detecting cell tower topology and trans-
forming the code name of cell towers to computable
coordinates. This also removes much cell tower handover
noise in the raw dataset.

4) Experimental results demonstrate that NextMe achieves
much higher prediction accuracy than the periodicity-
based location schemes at region level. The social
relationships contribute to 12% on average prediction
accuracy.

The rest of this paper is organized as follows. Section II
briefly overviews the related work. Section III conducts empir-
ical study with MIT Reality Mining Dataset to reveal the
existence of social interplay and its impact on user mobility
patterns. The design of the proposed scheme is introduced in
detail in Section IV. Section V reports experimental results.
Section VI concludes this paper.

II. RELATED WORK

The IoT evolves from wireless sensor networks, mobile
computing to ubiquitous computing. In some extent, IoT can
refer to previous research paradigms for localization. In recent
years, there are several schemes close to our work, which
address the location prediction problem using cellular records.
Hence, we mainly review these schemes. In general, they fall
into two broad categories: 1) regularity-based schemes; and
2) nonregularity-based schemes.

A. Regularity-Based Schemes

These schemes take advantage of temporal and spatial regu-
larities that are exhibited in user daily lives. They foresee user
location by detecting periodic patterns in user traces. The peri-
odic mobility model (PMM) [23] was based on an intuition that
the majority of human mobility was periodic among a small set
of locations. Relying on the time of the day, PMM predicted a
user location that was in the location set. Various techniques in
artificial intelligence and machine learning have been exploited
to discover the mobility regularity, such as hierarchical clus-
tering technique [17], Markov models [20], and nonlinear time
series technique [28].

Nevertheless, regularity-based schemes implicitly assume
that user mobility periodicity is static. This assumption might
not be always held in reality because users usually follow
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TABLE I
ABBREVIATIONS USED IN THIS PAPER

floating periodicity. Moreover, they miss a prediction engine,
which leverages social relationships.

B. Nonregularity-Based Schemes

The interaction among emerging areas such as social net-
works, mobile computing, wireless communication, and ubiq-
uitous computing has fostered a new research direction for
location prediction from the social perspective. Social network-
based schemes uncover that user mobility is partially driven
by social relationships. HCMM [18] incorporated social com-
munity and user location preferences for prediction. On top
of HCMM, Hossmann et al. [22] proposed a new way to
extract contact lists in mobile devices as social relationships.
Backstrom et al. [24] predicted user location using user-
side address information and connections between Facebook
members.

In the latest couple of years, several user behavior stud-
ies based on mobile phone traces have been reported, e.g.,
Barabási’s work [29]. In [25], Eagle et al. showed the existence
of social relationships and the behavioral similarity among the
frequent call pairs. Calabrese et al. [30] analyzed cellular data
and found that 70% of users having reciprocal cellular calls
would co-locate at the same cell tower. Both of them, however,
neither modeled the social relationships based on call records
nor proposed any specific location prediction models. In con-
trast, Cho et al. [23] modeled user relationships as a function
of distance that users would travel. Then, with the user cur-
rent location available in checking-in websites as input, they
computed the probability using the function that the user would
move.

To sum up, the aforementioned schemes have exploited var-
ious data sources, rather than cellular call records, to extract
social relationships. For instance, the check-in information at
Foursquare was exploited to get social relationships in [23],
and the friend information in Facebook was used in [24]. In
this paper, we find a new kind of social relationship—social
interplay—that exists in cellular call records. According to the
interplay, we design an engine of location prediction.

III. EMPIRICAL STUDY

In this section, we conduct an empirical research on the social
interplay, as well as its influence on user mobility patterns.
Table I lists the abbreviations used in this paper. In order to
find the relationships between user social interplay and mobil-
ity patterns, we conduct empirical study aiming to answer the
following two questions.

1) Does the social interplay exist in cellular calls?
2) When will the social interplay affect the user mobility

patterns?

TABLE II
STATISTICS OF MIT REALITY MINING DATASET

We examine these two questions using MIT Reality Mining
Dataset. We choose the dataset due to its popularity and the
unavailability of other large-scale cellular trace datasets. This
dataset consists of 112 508 cellular calls and 500 000 h of
human behavior information, e.g., user location, co-location,
proximity, and communication information. Table II summa-
rizes the statistics of this dataset. We extract three kinds of
events from MIT Reality Mining Dataset.

These events are as follows.
1) The cellular call event that refers to a directed call

happened from one user to another.
2) The face-face encounter event that denotes two users are

connected with Bluetooth.
3) The coregion event, i.e., the co-locating event that stands

for two users visiting the same region during the same
period of time.

We ignore the face-face encounter event, because it is out of
the scope of this paper. As a matter of fact, we consider the cel-
lular call events, coregion events, and user cell tower location
traces for location prediction.

A. Does the Social Interplay Exist in Cellular Calls?

In order to answer this question, we present two concepts:
1) the inter-coregion time; and 2) inter-call-coregion time.
Given two users, they are given as Definition 1.

Definition 1: The inter-coregion time is the interval between
two consecutive co-locating events, whereas the inter-call-
coregion time refers to the interval between the current cellular
call time and the forthcoming co-location time.
In fact, the inter-coregion time reflects the periodic co-locating
patterns for user pairs and the inter-call-coregion time reveals
the co-locating patterns with the influence of cellular calls.

In order to validate whether the social interplay exists in cel-
lular calls, we conduct an experiment across the MIT Reality
Mining Dataset. Fig. 1 shows the CDFs of the inter-coregion
time and inter-call-coregion time. Overall, the CDF curves of
the inter-coregion time and inter-call-coregion time exhibit the
similar upward trend in the next few hours. When the predic-
tion time falls into the interval from 0 to 12, the CDF of the
inter-call-coregion time is higher than that of the inter-coregion
time. When the prediction hour is beyond that interval, the CDF
of the inter-call-coregion time becomes less than that of the
inter-coregion time. This figure has two important implications.
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Fig. 1. CDFs of the inter-coregion time and inter-call-coregion time, exhibiting
the similar upward trend in the next few hours. When the prediction time falls
into the interval from 0 to 12, the CDF of the inter-call-coregion time is higher
than that of the inter-coregion time, and when the prediction hour is beyond that
interval, the CDF of the inter-call-coregion time becomes less than that of the
inter-coregion time.

Fig. 2. Cellular call patterns are classified into two categories: (a) there is only
one cellular call between two successive co-locating events; (b) there are more
than n (n >= 2) cellular calls occurred between two successive co-locating
events.

1) Social relationships are closely related with user core-
gion events. We name such social relationships as social
interplay.

2) Social interplay has a remarkable impact on user short-
term mobility.

Its influence on user mobility will drive user to move within
next few hours after cellular calls, e.g., 8 h on average in MIT
Reality Mining Dataset. Hereby, we limit the prediction period
from the forthcoming 1–6 h.

B. When Will the Social Interplay Affect User Mobility in the
Forthcoming 1–6 h?

As a result of further study, a certain cellular call pattern
would coincide with a user mobility pattern i.e., leading to
the coregion of call pairs. Note that some call pairs share
certain call patterns. They have reciprocal yet strong social
relationship, but might never co-locate after cellular calls. In
this section, we investigate the interval that the social interplay
affects user mobility in short. In other words, we would like to
answer what kinds of cellular call patterns would lead to the
co-locating events.

We classify all cellular calls between two successive co-
locating events into two categories, as illustrated in Fig. 2. One
category is that there is only one cellular call between two co-
locating events. The other category is that there are more than
one cellular call between two co-locating events. Through fur-
ther analysis, we figure out that the first category with one call
leads to less than 5% of the total co-locating events, whereas
the second category causes the rest of the co-locating events.

Fig. 3. CDF of inter-call time of cellular calls in CC patterns, indicating that
there are about 80% cellular calls occurred successively within 2 h and most of
the intervals between two successive calls are short.

Moreover, we find a specific cellular call pattern named as
critical cellular call pattern (CCCP), which reveals a user pair
to have an immediate co-locating event with a very high like-
lihood. Specifically, the CCCP is characterized by the number
of cellular calls and interval between the last two cellular calls.
There must be more than two calls between two successive co-
locating events. Meanwhile, the interval between the last two
cellular calls should be short.

Given two successive co-locating events ei and ei+1 for a call
pair, let:

1) n be the number of cellular calls occurred within the
interval of two co-locating events ei and ei+1;

2) σ be the threshold of the number of cellular calls;
3) ρ be the interval between the last two cellular calls (e.g.,

the n− 1 call and the n call) occurred between ei and
ei+1; and

4) � be the threshold of the interval between the last two
cellular calls.

Then, the CCCP and CCs are given as Definitions 2 and 3,
respectively.

Definition 2: A CCCP between two successive co-locating
events is a call sequence that satisfies: 1) n >= σ; and
2) ρ <= �.

Definition 3: Given a CCCP, the CC refers to the last cellular
call.

We further introduce the inter-call time concept, which
denotes that the interval between two successive cellular calls.
Fig. 3 shows the CDF of the inter-call time of cellular calls
in CC patterns. We observe that there are about 80% cellular
calls occurred successively within 2 h, implying that most of
the intervals between two successive calls are short.

In summary, we have shown that social interplay does affect
user short-term mobility with a great probability when the
CCCP appears. What follows is the design of the proposed
scheme.

IV. NEXTME: A NOVEL LOCATION PREDICTION

SCHEME FOR IOT

According to our findings, we propose a newly featured
localization scheme, called NextMe, using mobile traces
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Fig. 4. Architecture of the NextMe scheme, consisting of five separate com-
ponents: 1) data preprocessing; 2) call pattern recognition; 3) periodicity-based
module; 4) social interplay-based module, and 5) aggregation. The data prepro-
cessing module removes the noise and handover data of cell towers. The call
pattern recognition module decides to activate corresponding prediction mod-
ule, if there is no CCCP happening, the periodicity-based prediction module is
activated, otherwise, the social interplay-based module is invoked to estimate
user location. The aggregation module aggregates the prediction results of two
separate modules.

for IoT, which can achieve fine-grained localization accu-
racy. NextMe incorporates user behavior regularity and social
relationship from cellular calls into location prediction. The
regularity refers to the spatial and temporal features of user
behaviors. We will detail the scheme in the following sections.
Note that we tend to provide localization accuracy at region
level. A region is a part of the covering area of a cell tower. We
use the “users” and “customers” interchangeably in the contexts
without ambiguity.

A. Overview

NextMe aims to predict user location at region level in the
forthcoming 1–6 h. It consists of two subgoals—detecting the
CCCP patterns and CCs and then foreseeing user location.

Fig. 4 shows the system architecture of the proposed scheme,
which consists of five separate components: 1) data preprocess-
ing; 2) call pattern recognition; 3) periodicity-based module;
4) social interplay-based module; and 5) prediction aggrega-
tion. The data preprocessing module filters the noise in the
dataset and converts symbolic-represented cell tower loca-
tions to our regions. The call pattern recognition module
detects whether the CCCPs and CCs take place at the current
instant. Suppose there is no happening CCCP, the periodicity-
based prediction module is activated. Otherwise, the social
interplay-based module is invoked to estimate user location.
Finally, NextMe aggregates the prediction results of two sep-
arate modules and delivers the estimated location sequence to
applications.

B. Data Preprocessing

The dataset imposes several problems on the proposed
scheme. In order to identify the interference from users accu-
rately, we need to handle them.

1) The cell tower IDs are represented as code names rather
than physical coordinates. Hence, we do not allow any
arithmetic and logic operations on cell tower IDs.

2) The dataset contains lots of redundant data. As each
cell might overlap with several other cells, cell handover
frequently takes place.

For an overlapping area, only one cell tower is logged in at
a moment. In the next moment, another cell tower might be
logged in. Therefore, we introduce the concept of “region” that

Fig. 5. Region extraction from cell towers. When there are three cell towers A,
B, and C and every two cell towers is overlapped, seven regions are extracted
as {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, and {A, B, C}.

is a part of the covering area of a cell tower. Fig. 5 gives an
example, where there are three cell towers A, B, and C and
each pair of two cell towers is overlapped. NextMe models
both the independent area (e.g., {C} shown in the diagram) and
the overlapped area (e.g., {A, C}) as a region, correspondingly.
Thus, there are totally seven regions coming from three over-
lapped cells. NextMe generates 89 764 regions from 32 579 cell
towers in MIT Reality Mining Dataset. In the evaluation stage,
NextMe regards the prediction as correct when the predicted
region sequence is the same as the ground truths.

In addition, the dataset contains many outlier cell towers
because it does not provide us with the topology of cell tow-
ers. We first collect the times all cell towers appeared in the
selected traces for a time period t. For each cell tower, we
count its occurrence number over the period. Let the set {n1,
n2, . . ., nm} (m is the number of the cell towers) denote the
occurrence numbers collected. We define the neutral value of
the occurrence number un as the expected occurrence number
when there is no interference and failure, i.e.,

un =

∑m
i=1 ni

m
.

The sensitivity of the occurrence number of cell towers is
measured by the standard deviation of the time series, i.e.,

σn =

√(∑
(ni − un)2

)
/m.

With the neutral number k (k > 1) as the threshold, we can
determine whether a cell tower is an outlier or not. Technically,
we have the following theorem.

Theorem 1: Let u and σ be the neutral value and the sensitiv-
ity of the occurrence number of a cell tower, respectively. In the
given period, if a cell tower appears n times, and |n− u| ≥ kσ,
the probability that a cell tower is not an outlier is at least
(1− 1

k2 ).

Proof: Derived from Chebyshev’s inequality directly. �
For the same reason, we can identify the overlapped covering

areas of cell towers and formulate these areas as regions. After
the data preprocessing step, we get the dataset where a user is
associated with a region for an hour. Note that a user may visit
more than one region in an hour. To be simple, we select the
region where the user stays for the longest time as the location
for this hour.
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Algorithm 1. The Process of Checking Whether the Cellular
Calls After the Latest Coregion Event ei Follow a CCCP Pattern
or Not For a User Pair x and y

Input:
ei is a coregion event between user x and y
n is the number of cellular calls occurred after the ei

coregion
σ is the threshold of the number of cellular calls
ρ is the interval between the last two cellular calls after
ei

� is the interval threshold between the last two cellular
calls after ei

Output:
Yes, return the critical call information
Otherwise, return NULL

1 begin
2

–

if isExistCCCP(x, y) then
3 /* Parameter estimation */
4 σ←− estimatePoissonMean(n of all samples);
5 �←− estimatePoissonStandardVar(ρ of all

samples);
6 /* Get coregion event time */
7 ti←− getEventTime(ei);
8 /* Get the number of cellular calls

happened during the period of time
ti */

9 n←− getCallNumber(ti, x, y);
10 /* the call number of the CCCP

pattern must satisfy the
Definition 2. */

11

–

if n >= σ then
12 ρ←− getLastInterval(ti, x, y);
13 /* Check the CCCP call pattern */
14

–

if ρ <= � then
15 return getCriticalCall(ti, x, y);
16

–
else

17 return NULL;
18

–
else

19 return NULL;
20

–
else

21 return NULL;
22 end

C. Call Pattern Recognition

This component attempts to identify when the social
interplay-based module works. To be specific, it has two objec-
tives: 1) detecting the CCCP patterns; and 2) identifying the
CCs. Note that a CCCP is defined as a cellular call pattern that
would lead to the next coregion event for two users. In this
paper, we only consider cellular calls.

According to Definition 2, NextMe recognizes a CCCP from
three perspectives: 1) the number of cellular calls; 2) the inter-
val between the last two cellular calls; and 3) the co-locating
history. Without co-locating history, NextMe also reproduces
the CCCP for a user pair. This slightly degrades the prediction

accuracy. With the dataset, the CCCP discovery for all call pairs
can be achieved in an offline manner. By Definition 3, NextMe
can easily identify the CCs that trigger the social interplay-
based prediction module. Algorithm 1 gives the pseudocode of
detecting the CCCP pattern for a user pair x and y. Lines 3–5
compute the value of the thresholds σ and � before the pattern
recognition. Evidently, each of them follows the Poisson distri-
bution. We resort to the Poisson parameter estimation technique
for model establishment. Lines 11–19 show the CC detection
based on the Definitions 2 and 3.

Recap that Algorithm 1 checks the CCCP in an online man-
ner as we do not know the next co-locating time and region.
We may get false positive errors. To avoid such errors as pos-
sible, we introduce the confidence level as 0.95 to filter many
cellular calls in the process of parameter estimation. These calls
affect user mobility with a small probability. Thus, the probabil-
ity P 1−6

x,y of the call pair (x, y) coregioning in the forthcoming
1–6 h approaches to 1.

D. Periodicity-Based Module

The periodicity-based module takes the historic location
traces of a user as input and foretells user future location as out-
put. It exploits the temporal and spatial periodicity embedded
in user mobility traces. As mentioned before, the cell towers in
MIT Reality Mining Dataset are symbol-represented so that the
arithmetic and logic operations cannot be directly applied. We
have to take this into consideration.

We design a periodicity-based module using Kullback–
Leibler divergence (KLD). This module consists of three stages.

1) It exploits a combined method of Fourier transform and
auto-correlation to retrieve the periodic movements with
scattered periods from several reference locations.

2) It uses a probabilistic model to characterize the periodic
behaviors based on the detected periods. Then by mea-
suring the KLD-based distance between the movements,
the module clusters the scattered periodic movements into
integral periodic behavioral patterns.

3) It predicts the user location by using periodic behavioral
patterns.

E. Social Interplay-Based Module

In prediction stage, once a call sequence is detected as a
CCCP, NextMe will immediately invoke the social interplay-
based module. To reduce the workloads, we can turn OFF the
periodicity-based module. In order to design the prediction
module according to the social interplay of a user pair, we need
to answer the following three questions.

1) When will the call pair co-locate?
2) Where will the call pair co-locate?
3) How long will the pair co-locate?
By answering the above questions, we are able to forecast

both user location and the coregion duration. In the rest of this
section, we will answer these questions in detail.

1) When Will the Call Pair Co-Locate?: In general, given
a call pair, their inter-call-coregion time complies with the
Poisson distribution. Thus, NextMe employs the Poisson
parameter estimation to get the mean and standard variance of
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Fig. 6. Pdf of the call pair user 4 and user 8, indicating that the probability
of user 4 and user 8 co-locate is more than 60% within 60.8979 h, where the
confidence level is set to 0.95.

the inter-call-coregion time. With the mean and standard vari-
ance, NextMe obtains the probability density function (pdf).
Fig. 6 illustrates the pdf diagram for the selected call pair of
users 4 and 8 in the dataset. According to the calling time, the
prediction duration and pdf, NextMe estimates the moment the
call pair might co-locate at the same region.

To be specific, NextMe collects the inter-call-coregion time
of a given call pair from MIT Reality Mining Dataset. Then,
it obtains the Poisson distribution of the inter-call-coregion
time using parameter estimation. In light of the Poisson for-
mula, NextMe computes the pdf of inter-call-coregion time.
According to the time that CCs occurred and pdf, NextMe infers
the moment that the call pair might co-locate. The proposed
scheme also takes the temporal constraint into consideration
that user mobility is subject to the current time, i.e., the next
visit to a place relies on the current time. Given a call pair
(x, y), let:

1) τ be the prediction duration (i.e., its value as 1, 2, 3, 4, 5
or 6);

2) Ci be the ith call in the n successive calls in a CCCP;
3) Kx,y(τ) be a KLD-based likelihood function for the τ th

prediction hour; and
4) Gx,y be the Poisson function.
NextMe obtains the coregion probability Px,y(τ) for the user

pair x and y at the τ th hour as

argmax
τ

Px,y(τ) and τ ∈ {1, 2, . . . , 6}

Px,y(τ) = P 1−6
x,y ·

Kx,y(τ)∑
τ∈{1,2,...,6} Kx,y(τ)

(1)

where Kx,y(τ) is computed as

Kx,y(τ) =
∏

1≤i≤n

Gx,y(Cn − Ci + τ), τ ∈ (1, 6) (2)

where Gx,y(k) is given as

Gx,y(k) =
e−σσk

k!
(3)

where the parameter σ is the mean and standard variance for
the Poisson function. The value of the parameter is obtained by

Poisson parameter estimation on the raw data of the inter-call-
coregion time.

To alleviate the computation workload in (1), NextMe gen-
erates a social interplay matrix beforehand, where each item
is either 1 or 0, representing the related users have contacted
with each other or not. By this matrix, NextMe can quickly
identify the candidate set of users that have calls with the cur-
rent user, thus considerably narrowing the searching space of
the candidate users. When there are more than one critical call
from several candidate users, for the sake of simplicity, NextMe
exploits the latest CC for prediction.

2) Where Will the Call Pair Co-Locate?: Usually, the above
step gets a set of time that the call pair might co-locate.
However, there is a spatial constraint that user mobility is
affected by his/her current location or preferred locations. That
means there is a close relationship between the next place user
would visit and the current location. Consequently, the pro-
posed scheme designs the following process for every call pair.

NextMe first predicts the regions that the call pair might co-
locate. As users usually prefer to co-locate at nearby regions,
it incorporates the region preference into the prediction results.
To be specific, NextMe estimates the most possible region for
co-locating in two steps.

1) We build two indices for all 683 383 co-locating records.
One is the hour index h which records the co-locating
hour in a day. The other is the region index Rg by
occurring regions.

2) From these two indices, we can easily get the co-locating
probability of every region. Equation (4) addresses the
probability of the user pair x and y co-locate at the region
r at the moment t′, where hx,y(t mod 24) is the set of
co-locating records for the user pair (x, y) in the corre-
sponding section of time t and Rgx,y(r) refers to the set
of co-locating at the region r for the pair (x, y). Because
of the fuzziness and freedom of user mobility, NextMe
takes ±1 h slots around the t′ into account

Px,y(r|t′) =

∑
t∈{t′−1...t′+1}

|hx,y(t mod24) ∩ Rgx,y(r)|
∑

t∈{t′−1...t′+1}
|hx,y(t mod24)| .

(4)

Therefore, the probability of the call pair x and y co-locate
at the region r at time t is calculated as the product of (1) and
(4). NextMe deduces the region that a given user would like to
move. Note that when there is no co-locating records for a user
pair, we randomly select a current location of one user as the
encounter place. To keep concise, we set the probability of co-
locating at the picked location as the value of one to the total
number of regions that both users in the call pair have visited
before.

3) How Long Will the Call Pair Co-Locate?: NextMe is
targeted to forecast user location in the forthcoming 1–6 h.
Hence, after prediction for the first hour, it needs to estimate
the co-locating duration.

NextMe takes advantage of two sources to estimate the
duration: 1) the average time of the user pair co-locate; and
2) location inference. Given a user pair, the former source is
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computed as the ratio of the total co-locating time to their co-
locating times. In contrast, the latter source is from GSM traces
that reveals the user location in most time. User location is asso-
ciated with region addresses and sample time in GSM traces. By
continuously sampling user location in GSM traces, we infer
the duration of a user staying at a cell tower. For example, a
user stays at a region r1 for co-location at time t1 and appears
at another nearby region r2 at time t2. Thus, we estimate the
co-locating duration. We adopt the average co-locating time as
the basic estimation of the co-locating duration, and improve it
when the second source is available. We count the co-locating
duration by hour, as around 91% user pairs will co-locate for
more than one hour.

F. Prediction Aggregation

NextMe makes prediction by fusing the location prediction
results from its two modules. The interplay-based module pre-
dicts the short-term locations that the user pairs would visit,
whereas the periodicity-based module generates both short-
term and long-term locations.

When initiating the prediction process, NextMe will detect
the CCs. Once a CC is detected, it will turn on the social
interplay-based module. Suppose NextMe detects a CC at
00:45:00 for the user Tomas. It foretells his location using the
interplay-based module. Its prediction is a region R at the fourth
hour after the CC. The co-locating duration will be 1 h. Thus,
NextMe will predict all his location before the co-locating time
(e.g., 04:45:00) by the periodicity-based module. His location
in the next hour after the co-location (e.g., 05:45:00) will still
be the region R.

So far we have finished the introduction to the proposed
scheme. Among all the modules, the call pattern recognition
is fundamental. To reduce the computation complexity, it is
necessary to generate social interplay matrix beforehand.

V. EXPERIMENTS

To examine the performance of the proposed scheme, we
have conducted a series of experiments with a real-world
user telecom trace that enables scientists to investigate human
mobility and interaction using user footprints recorded by smart
phones. Empirical study is run in MATLAB, and the prediction
model is implemented in Java SE Development Kit 7. Another
implementation using public cloud is given in [31], [32].

In particular, we would like to answer the following
questions.

1) How is the overall performance of the proposed scheme?
Does it work better than the state-of-the-art scheme?

2) How is the performance of the periodicity-based module?
3) How much does the social interplay affect the prediction

accuracy of the proposed scheme?

A. Metrics

We select the prediction accuracy to measure the perfor-
mance of the proposed scheme. For every user, NextMe will

deliver six locations as the predicted results for the forthcom-
ing 1–6 h. Let Ei

j be the prediction result at the ith hour for
the user j. The Ei

j is valued 1 when the predicted region is the
same as the one that is really visited, otherwise it goes to 0.
Equation (5) defines the prediction accuracy at the ith hour in a
prediction process

Accuracyi =

∑
j∈s E

i
j

||s|| (5)

where s is the times we repeat the experiments with different
activity monitoring time, and the ||s|| is the size of s.

B. Experiment Design

We select MIT Reality Mining Dataset [25] as the raw
dataset, which is generated from 106 users in 1.5 years. Its sta-
tistical information is given in Table II. We extract the 2 666 897
GSM traces, call logs and parts of activity information records
for this study.

We select two periodicity-based schemes: 1) periodicity-
based (Perio) predictor; and 2) collective behavioral patterns
(CBP) predictor [33] as the baseline. Perio scheme is described
in detail in Section IV-D, which is built on top of the state-
of-the-art periodicity detection technique—KLD [28]. CBP
scheme aims to forecast ones locations in next 6 h based on
the locations of other users. First, the scheme observes the
existence of collective behavioral patterns through association
pattern mining, and uncovers the association rules of CBP.
The association rules identify the correlation of user’s loca-
tions at the same moment. CBP can acquire such correlations
between the current locations of crowds and the locations of
target user in the next few hours. Then the scheme extends the
collective behavioral patterns to associate users’ locations from
crowds to individuals with time shifting. Finally, the scheme
builds a Bayesian model to learn the correlations with time-
shifting from the mobility data of crowds, and applies it to
localization.

C. Overall Performance

We do several experiments for all participants to verify
the overall performance of the proposed scheme. We use the
aggregated prediction accuracy as the metric. The aggregated
prediction accuracy is computed as the average accuracy of all
predicted users for every prediction period.

Fig. 7 illustrates the overall performance of the proposed
scheme, where the x-axis and y-axis represent the forthcoming
hour and prediction accuracy respectively. With the value of x
varies from 1 to 6, the values of y for Perio, CBP, and NextMe
schemes decrease. Compared with the Perio scheme, NextMe
exhibits a slower downward trend and CBP maintains relatively
stable trend. In all prediction periods, NextMe achieves higher
prediction accuracy than the Perio and CBP schemes. This
shows the superiority of the proposed scheme regarding pre-
diction accuracy. Moreover, Fig. 7 demonstrates that the social
interplay significantly contributes to the prediction accuracy.
This is attributed to the fact that the cellular calls affect user
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Fig. 7. Overall performance of Perio, CBP, and NextMe schemes, indicating
that the prediction accuracy for Perio, CBP, and NextMe schemes decrease in
the forthcoming 1–6 h, compared with the Perio scheme, NextMe exhibits a
slower downward trend and CBP maintains relatively stable trend. In all pre-
diction periods, NextMe achieves higher prediction accuracy than the Perio and
CBP schemes.

Fig. 8. Case study: the performance of CBP and Perio for active user 4, semi-
active user 69 and passive user 9, demonstrating that Perio scheme can obtain
more than 58% accuracy in the forthcoming 1–2 h for user 9. Compared
with CBP scheme, Perio gains higher accuracy for the active user 4 and the
semi-active user 69, but the accuracy becomes lower for the passive user 9.
The accuracy of the user 4 is less than that of the user 9 for both CBP and
Perio schemes, which is because the active users usually exhibit high-level
randomness and freedom of their mobility.

short-term mobility. In addition, NextMe copes well with
the traces with symbolic locations by the data preprocessing
module.

D. How Is the Performance of the Periodicity-Based Module

This section aims to validate the periodicity-based module
of NextMe scheme. The users in MIT Reality Mining Dataset
could be classified into three categories: 1) active; 2) semi-
active; and 3) passive users. Active users are the users who
frequently communicate with other persons, whereas the pas-
sive users are the users who have fewer social connections. To
represent these user categories, we extract users 4, 69, and 9 as
exemplars.

Fig. 8 illustrates the prediction accuracy for user 4, 69, and
9 adopted Perio and CBP schemes respectively. Overall, for the
passive user 9, Perio scheme can obtain more than 58% accu-
racy in the forthcoming 1–2 h. This explains that NextMe is

Fig. 9. Case study: the performance of Perio and NextMe schemes for call
pair—active users 10 and 15, indicating that the prediction accuracy is
improved from 3% to 14% in the forthcoming 1–6 h and its average is 9.1%.

Fig. 10. Case study: the performance of Perio and NextMe schemes for call
pair—passive users 74 and 94, demonstrating that the prediction accuracy is
enhanced from 2% to 20% in the forthcoming 1–6 h and its average is 13.6%.

appropriate to make prediction based on the mobility regular-
ity. Compared with CBP scheme, Perio gains higher accuracy
for the active user 4 and the semi-active user 69, but the accu-
racy becomes lower for the passive user 9. Furthermore, the
accuracy of the active user 4 is less than that of the passive user
9 for both Perio and CBP schemes. This is because the user
9 shows a higher-level regularity than the user 4. In fact, the
active users usually exhibit high-level randomness and freedom
of their mobility. Thus, it appears challenging to forecast their
location only by behavior regularity.

E. How Much Does the Social Interplay Affect the User
Mobility

In this section, we examine the affection of social interplay
to user mobility. We extract two classes of call pairs: 1) active
users 10 and 15; and 2) passive users 74 and 94. We carry out
experiments by treating every call pair as a new “user” (i.e., the
prediction accuracy is the average accuracy for the two users
in a call pair).

Figs. 9 and 10 present the prediction accuracy of Perio and
NextMe schemes for the call pairs {10, 15} and {74, 94},
correspondingly. As expected, NextMe scheme obtains higher
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prediction accuracy than the Perio scheme in these two figures.
In Fig. 9, the average improvement of the prediction accuracy
is from 3% to 14%, and its average is 9.1%. In Fig. 10, the
enhancement of the prediction accuracy falls into the interval
of 2% to 20%, and its average is 13.6%. Consequently, we infer
that the social interplay is a fundamental driver to user mobil-
ity, and its contribution is 12% on average for call pairs in MIT
Reality Mining Dataset.

VI. CONCLUSION

As the penetration of IoT goes up rapidly, location-based
telecommunication services are vital to telecommunication
operators. In this paper, we have investigated the large-scale
mobile traces from Telecom logs and introduced the social
interplay that affects user short-term mobility. We further pro-
pose a prediction scheme named NextMe that can predict user
location at region level in the forthcoming 1–6 h.

In the future, we will incorporate more telecommunication
records, e.g., short messages, into the system design. Also, we
would like to develop a practical system and mobile applica-
tions, enabling a series of IoT services in telecommunication
related fields.
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