Journal of Network and Computer Applications 37 (2014) 12-24

Journal of Network and Computer Applications L

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect

COMPUTER
APPLICATIONS

iﬁ%ﬁj‘a:ﬁ_<

A multi-channel architecture for IPv6-enabled wireless sensor and
actuator networks featuring PnP support

@ CrossMark

Paulo A. Neves®®, Joel J.P.C. Rodrigues **, Min Chen ¢, Athanasios V. Vasilakos ¢

@ Instituto de Telecomunicagoes, University of Beira Interior, Portugal
P polytechnic Institute of Castelo Branco, Castelo Branco, Portugal

¢ Seoul National University, Seoul, Korea

d National Technical University of Athens (NTUA), Greece

ARTICLE INFO

Article history:

Received 7 July 2010
Received in revised form

26 December 2010

Accepted 30 March 2011
Available online 10 May 2011

Keywords:

Wireless sensor and actuator networks
Data gathering on WSANs

IPv6

6LoWPAN

Plug-and-Play

ContikiOS

ABSTRACT

Wireless sensor and actuator networks provide a distributed system composed of wirelessly connected
smart sensor and actuator nodes, suitable for cost-efficient control applications. An important research
challenge is deployment, where features like node auto-configuration, unattended operation, and
Internet connectivity are becoming mandatory. Moreover, on off-the-shelf solutions the user typically
must be network technology-savvy to take advantage of sensing and actuation services. This paper
presents a novel multi-channel architecture for sensor data gathering and actuation, featuring Plug-
and-Play like functionality for node attachment and operation, IPv6 at the node level, and dedicated
communication semantic protocols—the ZenSens system architecture. The architecture features the
sensor/actuator nodes, a personal computer application (SenseLab), a mobile application (SenseLab
mobile), and World Wide Web access (WebSensor), presenting the user with a complete sensing and
actuation solution. As a result the user can operate the network without technological background, and
near-zero configuration. All developed software and firmware are presented, and validated through a
series of experiments on real hardware, namely using a test-bed with TelosB motes running ContikiOS.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless sensor and actuator networks (WSANs) present a
distributed environment of wirelessly connected nodes that can
present sensing and/or actuator control capabilities, thus making
them suitable for cost-efficient deployments (Xia et al., 2007).
Research community has centered much of its efforts on wireless
sensor networks (WSNs) (Baronti et al., 2007), leaving WSANS as a
relatively new area of research. Typically WSNs are considered for
many control applications at the sensing level, leaving the control
and actuation planes for other systems to perform.

A WSAN is also composed of small smart nodes that commu-
nicate wirelessly with processing core and memory, a battery, one
or more base stations (sinks), and sensor nodes. However, WSANs
introduce actuator nodes, small smart nodes similar to sensor
nodes, but with actuation capabilities. This small difference
brings a new plethora of applications and challenges. Small smart
nodes can have sensors, actuators, both or none. Sensors capture

* Corresponding author at: Instituto de Telecomunicacdes, University of Beira
Interior, 6201-001 Covilha, Portugal.
E-mail addresses: pneves@co.it.pt (P.A. Neves), joeljr@ieee.org
(JJ.P.C. Rodrigues), minchen@ieee.org (M. Chen), vasilako@ath.forthnet.gr
(A.V. Vasilakos).

1084-8045/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jnca.2011.03.033

information, actuators make decisions and take actions based on
the input from sensors, and sinks monitor overall network,
communicating with both sensor and actuator node types to
reach network’s goals (Rezgui and Eltoweissy, 2007).

A WSAN can also benefit from Internet connectivity, exposing
its sensing services and actuation information worldwide. Two
main approaches can be considered when Internet connectivity is
mandatory, namely proxy-based and node stack-based (Rodrigues
and Neves, 2010). WSN/WSAN with Internet connectivity makes
ubiquitous computing realistic (Stankovic, 2008), turning sensor
and actuator networks into ubiquitous networks. The node stack-
based approach has been gaining popularity (Hui and Culler,
2008; Yang et al., 2008; Silva et al., 2008; Han and Ma, 2007),
namely with support from two of the major operating systems for
embedded objects—TinyOS (Levis et al., 2004) and ContikiOS
(Dunkels et al., 2004).

This paper proposes a system architecture for WSANSs, called
ZenSens, with user-centric perspective, namely featuring different
software access channels, and zero-user configuration. As a result
the user can operate and take advantage of the network’s services
without technological background. The architecture supports
Plug-and-Play (PnP) from the ground up, where nodes present
themselves to the sink, with automatic network attachment, in
a hassle-free and transparent way. With the ZenSens system a

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24 13

user can deploy and automatically monitor a WSAN through
different channels, putting the user in control without digging
into WSAN technology, mobile or personal computer technolo-
gies. ZenSens enables the user to focus on the physical system to
be controlled, obtaining results in an effective way.

PnP in WSNs/WSANs (Sung et al., 2009) is a fundamental
aspect of network operation, enabling automatic configuration of
nodes, abstraction from the attachment process, while contribut-
ing for dynamic topology designs. Another added benefit is also
the capacity to integrate new hardware platforms without system
changes or existing node reprogramming.

The software layers have knowledge of network condition and
assets through a USB-connected sink that manages and coordi-
nates connected remote nodes. For user access, the system
presents a multi-channel approach: computer-based (SenseLab),
mobile-based (SenseLab mobile), and Internet-browser based
(WebSensor). The personal computer application is also in charge
of distributing information obtained from the WSAN to the other
two channels through XML files. The mobile application brings
portability and convenience to the solution, while World Wide
Web access takes the system into a global scale.

The WSAN level is based and demonstrated on a test-bed using
TelosB motes (Polastre et al., 2005), running the Contiki operating
system. All motes are IPv6-enabled through ulPv6 (Durvy et al.,
2008), using the current implementation of 6LoOWPAN available
on Contiki (sicslowpan). This “future-proof” approach enables
seamless Internet connectivity of network nodes.

The remainder of the paper is organized as follows. Section 2
presents some background and related work, while Section 3
elaborates on the ZenSens system architecture. Section 4 presents
USB and UDP communication, node’s firmware, and PnP support,
while Sections 5 and 6 detail SenseLab and SenseLab mobile
applications. Section 7 presents WebSensor web solution, while
Section 8 elaborates on system tests and validation. Finally,
Section 9 presents the conclusions and planned future work.

2. Background and related work

This section elaborates on the system'’s technological base—
IPv6, 6LoOWPAN, and ContikiOS—and presents motivation for this
work. IPv6 brings several benefits to embedded smart objects that
require seamless Internet connectivity (Silva et al., 2008).

The 6LoWPAN specification enables the transmission of IPv6
packets over standard IEEE 802.15.4 networks with support for
header compression (Montenegro et al., 2007). This specification
defines frame format for transmission of IPv6 packets, establish-
ment of local-link addresses, and stateless auto-configuration.
IEEE 802.15.4 defines physical and link-layer communication for
small embedded devices, suitable for WSN/WSAN. Moreover,
since IEEE 802.15.4 is present in the majority of sensor hardware
(motes), the application of 6LOWPAN is almost mandatory for
IPv6 node stack approaches. Furthermore, a very recent book
presents 6LOWPAN and its benefits in several application scenar-
ios, helping the adoption of IPv6-enabled sensor networks (Shelby
and Bormann, 2009). Another work presents a study on perfor-
mance of 6LOWPAN implementation over TinyOS, with TelosB
and MICAz motes, using ICMP payloads (Cody-Kenny et al., 2009).

Contiki is an operating system for embedded smart objects,
realizing the vision of “The Internet of Things”, by enabling IP
communication on very constrained smart sensor node. It uses
ANSI C, as opposed to TinyOS nesC, and it is currently adopted by
many research teams worldwide. Among the assets of Contiki, it
is the ulPv6 communication stack that enables IPv6 communica-
tion for smart embedded devices, with MAC and link-layer

agnostic features. Namely, ulPv6 stack can potentially run over
IEEE 802.15.4, Ethernet, and IEEE 802.11.

Contiki supports an event-driven model with a form of multi-
processing designated as protothreads. Protothreads present a
multiprocessing-like environment, but with a shared stack sys-
tem, thus resulting in a memory-efficient alternative to threads.
However, since all protothreads share the same stack, care must
be taken with internal variables. Two types of events can be
used—system and in-program defined. Event timers are also avail-
able, enabling support for periodic events. Protothread processing
may be event-driven, thus turning it into an event handler.

The choice of ContikiOS over TinyOS was based in several
parameters. ContikiOS presents almost no learning curve for C
programmers, when compared to TinyOS, which uses nesC as the
development language. When considering IPv6 implementation,
ContikiOS is pioneer, offering a set of tools and the ulPv6 stack.
Third TelosB, the current test-bed hardware platform, is very well
supported in Contiki. Features like the availability of documenta-
tion, a pre-configured virtual machine and open source code are
common with TinyOS, although we found the virtual machine in
ContikiOS, instant-Contiki over Ubuntu, to be more adequate than
TinyOS over XUbuntos. Although ContikiOS documentation is far
from perfect, the discussion lists are simply phenomenal with real
help from the code contributors, including ContikiOS’ creator.

Authors believe IPv6 paves the way for the Future Internet, by
enabling not only hosts, but also small smart devices to be part of
Internet, realizing the “Internet of Things” vision. In this regard
6LoWPAN efforts may accelerate the adoption of IP-enabled WSN
designs and deployments. IP-enabled WSN research has been
focused on simulation-based approaches, use of test-beds for
performance assessment, some real deployments, and commercial
solutions. However, application layer, namely user interaction,
has been overlooked. To the best of the author’s knowledge, no
other solution presents multi-channel visualization tools, PnP-like
operation, and support for IPv6-enabled WSANSs.

Developing over real sensor devices can be difficult and
tedious (Ramanathan et al., 2005; Kopke et al., 2008), since unlike
personal computer programming, programs must be sent to the
target hardware, which is a time consuming ‘“non-productive”
task. This time consuming process may lead to simulation-based
approaches, thus shortening the development cycle. On ContikiOS
two tools that can be used for simulating node behavior, namely
COOQJA (Osterlind et al., 2006) and MSPsim (Eriksson et al., 2009,
2007). The latter one can be used for stand-alone debugging on
MSP430 processor-based boards such as TelosB, while COOJA can
simulate complete networks. Nevertheless, real hardware deploy-
ments always provide a deeper insight, enabling test-bed envir-
onments, clearly presenting a better match to real scenario
conditions.

The current approach is a step-up on previous work on WSNs
(Neves et al., 2010a,b), taking the architecture and assets further
to actuator networks. The system is based on a WSN, and as a
result does not feature actuator assets. Also the UDP communica-
tion inside the network was fully revised on this new version,
separating node attachment from the data gathering process. The
inclusion of actuators also implied changes on the node’s firm-
ware, SenseLab, and WebSense, with the introduction of new
features.

The current work is evaluated and demonstrated through the
implementation on real devices (motes, computers, and mobile
devices), debugging and throughout testing, with development
assist from simulation software at early stages. Our motivation is
based on bringing WSN/WSANs into mainstream use, namely
finding “killer applications” for a technology that is still used on
very specific applications, with Internet connectivity to achieve
the vision of “Internet of Things”. Applications stem from smart

14 P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24

homes, localized monitoring, and actuation (e.g. greenhouse
control, machinery control, among others).

Available low-cost components for sensor motes turned acces-
sible the presence of multimedia sensors on the traditional WSNs,
including CMOS cameras and microphones (Akyildiz et al., 2007).
These wireless multimedia sensor networks include sensor
devices that may retrieve multimedia content (images, audio,
and video) from the environment performing ubiquitous solu-
tions offering context-aware multimedia services (Zhou et al.,
2010a). Furthermore, video streaming may also be supported
using distributed scheduling schemes that jointly addresses
problems related to channel-assignment, rate allocation, routing,
and fairness problems for video streaming over multi-channel
multi-radio networks (as wireless multimedia sensor networks),
as proposed in Zhou et al. (2010b). The proposed architecture also
supports multimedia services over wireless sensor and actuator
networks.

Some related approaches can be identified in data gathering
for WSN, namely with some data processing on the network itself
(Al-Yasiri and Sunley, 2007; Yu et al., 2004; Burri et al., 2007).
In terms of related tools for WSN data presentation and manage-
ment, one can point one open source solution on Contiki, and two
solutions from commercial vendors, namely MoteView from
Crossbow (2009) and NodeView Pro from Sensinode (2009). The
ContikiOS tool, named Contiki-collect features a Java application for
sensor data gathering and visualization with Sky/Telos(B) motes.
Neither it does support IPv6 at the time of writing, nor multi-
channel visualization. However, due to the open source nature it
provides a valuable tool for ContikiOS developers.

MoteView features wireless sensor network management and
data gathering in a graphical way, with network topology view.
Other tools like MoteConfig and XSniffer, and the availability of a
dedicated XMesh routing stack API, further complement Mote-
View. However, Crossbow tools do not provide multi-channel
support, nor they can be used directly on IPv6-enabled motes or
even non-Crossbow motes.

NodeView Pro is a Java-based tool with sensor network real-
time view of node statistics, network topology map updates,
network performance assessment and 6LoWPAN support. How-
ever, the approach is network-centric, and as far as site informa-
tion goes no sensed data plotting is performed, nor the tool is
compatible with non-sensinode hardware. Moreover, as in the
previous approaches, multi-channel access is not contemplated.

On the current work we aim at improving user experience in
WSANSs, offering multi-channel tools for fast deployment and
immediate data gathering on several scenarios, namely on body
sensor networks (Neves et al., 2008; Singh et al., 2009) or wireless
multimedia sensor networks (Akyildiz et al., 2007; Zhou et al.,
2010a,b), with the added convenience of IPv6 at the sensor
node level.

3. System architecture

This section elaborates on the system architecture that
involves the WSAN, data management, and application levels.
This architecture is based on several identified functionalities,
leading to a complete system for data storage, monitoring, and
WSAN management, demanding minimal user technological
knowledge. It also presents the foundations for control applica-
tions to be integrated on the existing system, by enabling a sink
interface with a personal computer, which can be in charge of
applying a suitable control over the existing actuators, based on
sensed data. Moreover, smart sensor node firmware may be
programmed for a specific control scenario. SenselLab can also
be extended for control purposes, providing a real environment

TN

s Y
Internet

‘@

\

— /)

WebSens website New sensor/actuator node

L

WSAN sensor/actuator node

Server

¢ ContikiOS/
o> ulPv6/IEEE
< > = 802.15.4
Wi-Fi Sink/base station
Senselab
Desktop @ ’
USB semantic
protocol (command WSAN sensor/actuator node
S and reply
Qs specification)

SenselLab mobile

Fig. 1. ZenSens system architecture.

for a plethora of applications, from environmental monitoring to
smart spaces.

Figure 1 depicts ZenSens system architecture, composed of
WSAN level, where sensor/actuator nodes reside, the local mon-
itoring and control level, and the remote monitoring level. The
local monitoring and control level is composed of a personal
computer running a Java application—SenseLab. Communication
with the WSAN level is performed through USB to a sink node.
Unlike other sensor/actuator designs that rely on a more powerful
sink node, ZenSens uses the same constrained hardware for the
sink. The USB interface, together with a dedicated message
mechanism (see Sections 4.1 and 4.2 for details), enables Sense-
Lab with the tools required to monitor and control the WSAN
level on behalf of the user, with the added benefit of a Graphical
User Interface (GUI). The architecture enables multi-sink, through
the use of multiple USB ports.

On the WSAN level the sink coordinates a given set of nodes,
achieving the desired network goals. The sink and the remote
smart nodes run the ContikiOS with IPv6 support through ulP6.
Several protothreads were developed to achieve the desired
behavior of both node types (see Sections 4.3 and 4.4 for more
details), namely communication, data management, and actuation
control. WSAN nodes communicate through IEEE 802.15.4 wireless
communication, with 6LoWPAN on top to achieve the desired IPv6
compatibility. Smart remote nodes can be only sensor, only actuator
or both. Moreover, the sink can also be enabled with sensors and
actuators.

The SenseLab Desktop level is the primary interface for the
network administrator. It is divided into several areas, namely
data acquisition and presentation, actuator data monitoring and
control, data communication with the server, and settings. Data
acquisition and presentation, the main SenseLab Desktop func-
tionality, is achieved through USB communication with the sink
(data acquisition) and a GUI to display data with several visua-
lization options, namely chart format. Actuator data monitoring
and control is also achieved through USB communication, sending
sink commands accordingly.

Data communication with the server is achieved through
sockets, based on a pre-defined set of XML schemas—*‘networks”,
“devicelD”, and “networkIDtime”. Networks XML presents all
networks currently attached, showing for each network its ID,
name, time, and location. From this XML the software requests
the state of network with a certain ID, the networkIDtime XML.
This XML has all the information about the network assets at time
“time”, namely the network nodes with all sensor and actuator

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24 15

data. Finally the “devicelD” XML contains information about a
device profile, namely the correspondence of sensors and actua-
tors specified with abstract generic identification s1,...,sn and
al,..., an on the “networkIDtime” XML into meaningful names
like temperature, pressure, LED, among others. This simple
mechanism of separating sensor and actuator details from the
network description XML presents storage space and bandwidth
savings, while enabling hardware abstraction.

The settings part enables the user to define hardware profiles
that match the real installed hardware in terms of sensors and
actuators on a node. This setting together with the network
mechanisms provides hardware abstraction at the WSAN level,
where everything is numbered, avoiding communication of sym-
bolic names of sensors and actuators.

The remote monitoring level enables off-site access to col-
lected sensor and actuator data, namely through handheld device
(through native application, Windows Mobile and iPhone) on
SenseLab mobile, or through a standard Internet Browser such as
Firefox or Safari (WebSens). Although enabled with monitoring
capabilities, this level is not yet able to access the control features
of SenseLab Desktop. Data is obtained through SenseLab Desktop,
that pushes data onto the server, while also servicing nearby
handheld devices (on iPhone version data is collected directly
from the server).

4. Wireless sensor and actuator Level

This section presents the WSAN level of ZenSens, namely USB
and UDP communication, sink and remote node firmware, and
PnP support. The WSAN layer is the lowest layer of the system,
and as such must expose its assets to the PC application, namely
number of nodes, sensors and actuators, and use the sink as the
“outside world” interface.

Table 1
USB commands.

4.1. USB communication

Two main communication schemes were developed—wireless
inside the WSAN (UDP) and wired (USB) for WSAN interface with
the outside world. Two protocols were developed, specifying the
semantics of commands that the base station can process and
possible replies, both in the wired and wireless world.

Both communication schemes use simple command/response
architecture. In USB the command is issued by the PC application
to the sink node. Commands are summarized in Table 1, and have
two contexts or scope—sink (“BS” — Base Station) commands and
remote smart node (“SN” — Smart Node) commands.

Several commands were defined, from obtaining the node’s
IPv6 address (“ip” command), obtain the current node’s sensing
values (“sens” command), power (transmission level — “txp”, and
current consumption — “power”), “reset” that removes all remote
nodes information, and the new “setact” and “getact” commands
that enable actuation value programming and readout. Finally
“info” returns node’s current hardware characteristics (mote type,
number of sensors, and actuators). Timers setting, such as
transmission period of wireless communication from remote
nodes to the sink (“txtime”), and sensor-sampling period
(“sample”), are also available.

Some commands are only related to the “BS” (sink) context,
namely commands that return network status, such as “list” that
lists all current network node’s IDs, the number of nodes present
in the network—"“mn”— and “mtl” that returns the mote’s types.
The “ident” command is dedicated to remote nodes enabling
remote node visual identification, by toggling the mote’s green
led with a 2 Hz frequency for 10s.

With a plethora of possible commands, the need to identify
error conditions is mandatory. As a result seven possible error
states were defined, which can occur when interfacing the sink
node. These are as follows: “NAC”, Not A Command; “CER”,

Serial command Purpose

Context Command

BS/SN ip Return the node’s IPv6 address

BS/SN sens Retrieve last sensor’s readings, separated by *“|”

BS/SN txp Retrieve currently programmed IEEE 802.15.4 radio transmission power

BS/SN power Retrieve current node power consumption

BS/SN reset Clear data structures. BS, all structures; SN, specific node’s structures. Returns OK

BS/SN setact Set a given actuator value

BS/SN getact Get the value programmed into a given actuator

BS/SN info Get node type, number of sensors and number of actuators present in the node

BS/SN sample Set new sampling period in seconds. If issued on “BS” all nodes are reprogrammed

BS/SN txtime Set new transmission period in seconds (only applicable to remote nodes). If issued on BS all remote nodes are
reprogrammed

SN ident Command used to “find” a remote node in the network by blinking the green LED for 10 s at 2 Hz. Returns “OK” if node
exists. Only available if the remote node type supports it, such as Crossbow TelosB nodes

BS list List the current network mote’s ID, separated by “:”

BS mn Return the current number of motes present in the network

BS mtl Returns the list of mote types, separated by “:”, including the sink

Server reply Meaning

No reply Sink not connected—wrong USB port, port has other device or sink was physically disconnected

OK The normal reply from the sink on selected commands that do not provide information, e.g. “reset”

NDA No Data Available. Command produced no results, e.g. getact when no actuator data is available

NAC Not a command—signals command not recognized

CER Command Error—signals command error

INE Inexistent Node Error—SN context command refers to inexistent node ID

IAE Inexistent Actuator Error—the referred actuator does not exist in the current node

NSA No Sensors Available—referred node has no sensors

NAA No Actuator Available—referred node has no actuators

16 P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24

Table 2
UDP communication commands and replies

Message Parameters Purpose

Client to server

M Mote type, number of sensor fields and actuators Client requests WSAN attachment

D Sensor values Client sends sensor data to the server

A Actuator values Client sends actuator data to the server

Server replies

NSA No storage available on the sink to accept node
NAS Node attachment successful

MFE Message format error

NNR Node not recognized

NAA Node already attached

Server to client commands

SA Actuator values to be programmed Server sends new actuator values to actuator-capable node
TS Timers setting Server sends new timer’s value to remote node
1D None Server requests identification function

GA None Server requests actuator values

Command ERror; “INE”, Inexistent Node Error; “NDA”, No Data
Available; “IAE”, Inexistent Actuator Error; “NSA”, No Sensors
Available; and “NAA”, No Actuators Available. The first two (“NAC”
and “CER”) are signal errors on the commands. An “NAC” signals
that a non-valid command was received, and a “CER” that the
command is correct, but parameters were not correctly given. “INE”
is used on the “SN” context and signals that the provided nodelD
does not exist, while “IAE” signals that the requested actuator does
not exist on the specified node. “NDA” signals that the required
information is not available. Finally, since nodes can have only
actuators, only sensors, or none, the “NSA” reply signals that the
node has no sensors, and “NAA” that the node has no actuators.

If correctly attached to the computer, the sink always replies
to a received command, which is used to identify sink nodes from
other USB connected devices. The data parameters are speed
115,200 bps, 8 data bits, 1 stop bit and no parity check.

4.2. UDP communication

The sink acts as a UDP server and the remote nodes as UDP
clients. Two main communication phases were identified—node
attachment and data communication (sensorial and actuation
data). A dedicated message format was developed for clients
and server communication, as summarized in Table 2.

Communication initiative is always at the client side, and only
attached nodes can send sensor and actuator data to the server. In
the attachment process the client sends a type “M” message to
the server, stating the mote type (a number that corresponds to a
hardware profile), the number of sensor fields (may be more than
number of sensors, since some sensors may use floating point
notation, e.g. temperature), and the number of actuators. Since a
node can be actuator, sensor or both, two other message types
were defined: “D” for sensor data and “A” for actuator data. By
default a sensor and actuator node sends sensor data, sending
only actuator data when queried.

The server replies are used to signal normal and error condi-
tions. Since the server will implement a remote node’s data cache
on its RAM, the “NSA” reply informs the new remote node that it
cannot be part of this network or sub-network, due to space
restrictions on the sink. “NAS” is the expected outcome of an
attachment process, while “MFE” signals that the received mes-
sage format is not as expected. “NNR” signals a condition where a
node tries to send data without being properly attached to the
current sink, whereas “NAA” signals that the node is already
attached when it tries to send an “M” message.

Moreover, the server may also need to issue commands to
the remote node, issuing commands as replies to client

Remote N
Node

- "M12|5]1" |

"NAS"

I "D|235/55(80[300]"

"GA"

"A23)" T

T —

>

blink_green_LED

r

communication. One of the four requests can be made, “SA”,
“TS”, “ID”, and “GA”. “SA” is used by the server to indicate the
need to set one or more actuators, while “TS” informs the remote
need that it needs to update its timers values. “ID” issues the
identification function explained before, and finally “GA” is used
to obtain current node’s actuator values.

The server commands may be triggered upon requests made
by the PC to the sink node, which afterwards triggers the
necessary actions on the network. This mechanism enables role
separation between the WSAN coordination and management
(sink’s role), and data/control functions’ monitoring and visuali-
zation (SenseLab Desktop).

Figure 2 shows a UDP communication example between a
remote smart node that wants to join the WSAN and the sink. In
the attachment process the node informs the sink that it has
hardware profile 12, with five sensors and 1 actuator. As can be
seen, message fields are separated by “|” for easier parsing. After
successful attachment (received an “NAS” reply), the node starts
sending sensor readings periodically through the “D” type mes-
sage. In the example the sink replies with a request for actuator
data (“GA”), which forces the remote node to change the next
datagram to actuator data (“A” type). The remote smart node
sends actuator data, and sink replies with a request for the
identification function (“ID”), which sets an event on the remote
node to start flashing the green LED for 10s. Eventually the
remote node sends another datagram with sensor data (type “D”)

"D|223]56(82/300]"

—————

- 1

"SA[0]230]"

Fig. 2. UDP communication example.

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24 17

and receives a command from the sink to enable actuator 0 with
the value 230 (SA|0/230).

4.3. Sink firmware

The sink (coordinator) firmware is WSAN’s most complex
firmware. The firmware is divided into several Contiki proto-
threads and includes the data structures to store node data to be
readily available when queried. Although this “centralized”
approach may lead to scalability issues, most complex networks
use a multi-sink or hierarchical approach, thus enabling network
expansion.

The data structure is also a fundamental part of the PnP
approach used in this work. By enabling different sets of sensors
and actuators to be part of a given hardware platform, the WSAN
processes data without specific knowledge of what it really
means, delivering sensing and actuator services to the upper
software layers. The option for a linked list system is justified by
the expected dynamic nature of the PnP WSAN, where nodes

attach dynamically to the network. The linked list uses a data
structure that enables node information cache on the sink,
namely sensor and actuator data, node type and status, node’s
IPv6 address, node’s ID (sink managed), number of sensors, and
number of actuators.

Both server and client firmware are organized into proto-
threads. The server has five protothreads: serial_command_par-
ser, udp_server, set_actuation, read_sensors, and set_actuators
and init, totalizing 860 lines of code (LoC). The init protothread
initializes data structures, starts other protothreads and then
terminates. The serial_command_parser protothread is responsi-
ble for USB communication, receiving commands and replying
accordingly, as shown in Fig. 3. The protothread is waiting on a
serial event, starting with the analysis of the context as soon as
data is available, and then searching for a command. Commands
are separated into “complex” and “simple”—a complex command
needs parameters, while a simple one does not. As a result further
processing must be made on a complex command.

The udp_server_protothread implements the UDP server
according to the message formats described previously. When a

9

Wait for serial data

SP < Reply

Process

command —>? Reply "CER"

and reply

Process command
c and repl

Fig. 3. Serial_command_parser protothread actions.

NO

"M type
message?

exists in
W

node

"D'/"A" type
message?

Repl
Message vai,{"

format correct?

ote hw profile
matches?
R: ?;\}I,I\?l/{l? s there space .Beply.,
available? NNR
—— E—
Parse sensor ("D") or actuator
("A") data and update
Reply Reply
"NSA" "NAS"
* — Need to send
command?
Reply "MFE"
—

Reply with a command |

Fig. 4. Sink actions taken based on client communication.

18 P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24

client sends a UDP message to the sink, the sink acts according to
Fig. 4. Since each node will has an IPv6 address, the sink uses such
information to detect if node already exists in the current pool of
attached nodes, by comparing IPv6 addresses.

The protothreads set_actuation and read_sensors enable the
sensor and actuator roles inside the nodes. The set_actuation
protothread is responsible for actuator processing based on sink
input. This protothread is also event-driven, but the event is
triggered when an actuator needs to be set (software event). The
read_sensors is periodic and controlled by an event timer that
dictates the transmission period.

4.4. Remote node firmware

Remote node firmware is able to handle all types of possible
remote nodes—sensor, actuator or both—based on the same
scheme as the sink, using two protothreads. Another similarity
with the sink firmware is the init protothread, which has basically
the same behavior. The defined protothreads result in approxi-
mately 450 LoC.

However, since remote nodes communicate exclusively
through IEEE 802.15.4, the serial_command_parser protothread
is absent, while UDP communication is handled by the udp_client
protothread, shown in Fig. 5. This protothread uses an event timer
for periodic processing. If the node is attached, depending on
node’s assets and status a sensor or actuator data message is
formed and sent to the server. If the mote is not attached, it must
request attachment, sending an “M” message. This protothread is
also responsible for server reply processing, namely processing
server commands.

The nodes have knowledge of sink’s IPv6 address hardcoded in
the firmware, and use local-link addresses (IPv6 address starting
with FE80). UDP is used since 6LOWPAN specification clearly states
that TCP header compression is not supported, and TCP on WSN is
not desired due to the end-to-end acknowledge mechanism.

In terms of program memory the sink firmware occupies
45,522 bytes from the 48 KB pool, while the sensor and actuator
firmware takes 42,464 bytes. According to MSPsim simulator,

Initialize UDP data
Initialize periodic timer

SL

YES

NO
Mote attached?
Send "M" type
UDP datagram
No/
other) "
Receive reply?

Send "D"
type UDP
datagram

NDA"

sink’s CPU usage in stand-alone goes around 5%, while remote
node’s CPU goes around 36%. This difference is related to the
udp_client protothread that is periodically sending data through
UDP, while the sink is idle accepting connections.

4.5. Plug-and-Play support

Plug-and-Play supports start at the WSAN level on the node’s
firmware (sink and remote nodes). We face PnP as the mechanism
that allows automatic node attachment to the network, where
node adverties its capabilities, enabling autonomous operation.

As described earlier, the attachment process uses three infor-
mation fields: mote type, number of sensor fields, and number of
actuators. This information enables the sink to create an informa-
tion entry for the new node to store sensors and actuators data,
status, and mote data such as IPv6 address. Sink’s firmware data
structure is critical to accommodate different hardware, and to
provide support for network heterogeneity. By using an array to
store sensor and actuator values inside the data structure, any
given mote that needs up to the defined capacity can join the
network. Since typically constrained nodes are related to a
bounded number of sensors and actuators per node, we chose
five of each to be a reasonable value. If RAM is enough, this
number can be raised, even at the cost of lower number of
maximum nodes per sink (currently ten).

Based on attachment information, the sink is able to manage
the node, namely identifying if it can accept actuator data and/or
can provide sensing data. The mechanism to identify a given node
is based on the remote nodes’ IPv6 address, comparing the stored
IPv6 address on the sink with the sender’s IPv6 address. Data from
a node that is not recognized as attached is not considered by the
sink, which replies accordingly.

After successful attachment, the node can send data. By default a
sensor and actuator node sends sensor data periodically (according
to the internal transmission timer), only sending actuator data if
queried. This mechanism allows autonomous operation of the
remote node without any user interaction. Mote type can be set
according to Electronic Product Codes (EPCs) specification.

Send "A" type UDP
datagram

Transmission
timer = 120s

l

Restart timer

- Mote attached
- Update status - Mote not attached
l - Update status

<—_(f ;J

"Server
command"

Server

command
TS SA”
Send Set
actuator et new Set Set LED

timer
value

values

actuators event

Fig. 5. udp_client protothread actions.

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24 19

Since the attachment process is hardware-agnostic, any hard-
ware capable of running ulPv6 and support for IEEE 802.15.4 can
join a given network. Moreover, the node can operate autono-
mously without user configuration or intervention.

5. SenseLab application

SenseLab application was developed for a personal computer
that is physically connected to the sink(s), using Java program-
ming language. Java guarantees platform independence, running
on different operating systems for personal computing. Taking
advantage of the virtual machine provided with Contiki, the
development was made in Ubuntu Linux 8.04 LTS, and also
verified in Mac OS X 10.6.

The application interface is presented in Fig. 6. Part (&) lists all
networks found, while part (B) presents the assets of the selected
network. At any given time the user may change network name,
or select another network. From the @) view, the user selects a
node to monitor, and depending on the node’s assets, part (C) may
be shown (the sensors/actuators tab), or just the sensors or actuators
part. Part (D) presents the sensors or actuators the node has, while
part (B) presents information on the asset selected in part (D). Part ©
also enables node info view, through a dedicated button.

A thread is always searching for possibly connected sinks. Each
time a new sink is detected, it creates another thread that is
responsible for communicating with the sink according to the
protocol presented in Table 1. The application uses two libraries:
JfreeChart and JavaComm (RX-TX on Mac OS X). JfreeChart is
employed when drawing the 2D graphics, enabling construction
of several chart types like histograms, line charts, and pie charts.
JavaComm (RX-TX on Mac OS X) is used for USB communication
with the sink node. Past data is, in certain situations, more
important than current data, so this application also has the
functionality to review, in line chart form, past data from both
sensors and actuators.

Figure 7 presents the class diagram of SenselLab version 1.5.
Class Xmlserver is responsible for implementing an instance of
class Connection for each connection established through sockets
(mobile devices for instance), while class Connection implements
a thread for each connection, accepts requests for XML files and
serves as needed. Class MakeCom enables user-defined com-
mands to the sink, while DataTreatment deals with sensor and
actuator values parsing, delivering data to other classes that need
it. Class XMLParser grabs an array of characters and places it on

_File Options.

a user-defined xml schema, while class Popupmenu enables
popup for changing some attribute names, such as network
names. Nchoose implements the network view and allows selec-
tion of a given node for monitoring, while Nodelnfo implements
node interface and stores node information (this class is instan-
tiated once for each node).

The Main class is responsible for initialization, network choice,
graphical elements, and menus. Class NodeReader is responsible
for sink communication, it is where USB commands are sent to
the sink node, while SinkInfo implements sink interface. Chart
classes (ThermoChart, LightChart, PowerChart, TimeChartPanel,
BarChartPannel, and HumidityChart) implement the respective
graphical representations. Finally, Visualizer has several methods
that are used by other classes; Historic implements the interface
of historic data chart, and HideSeries is a class for the historic data
view that enables hiding data sources from the graph, for instance
disable the view of the temperature sensor values. SenselLab is
also responsible for managing the XML files, and sending them to

| [l Connection Ié—ol EXmISIrurI
|E MakeCom I | E DataTreatment I
|EAbout| | ENodeDataI | EXM.parserl

| ETImeChanPaml I | ﬁHumidizChan I

Fig. 7. SenseLab 1.5 class diagram.

NetworkiD: WSN.

Fig. 6. SenseLab 1.5 Desktop application main view.

20 P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24

the appropriate channels. Each XML file has a time stamp
attached to its name, enabling rapid identification. Since connec-
tion is made through sockets on a specific port, several clients
may be served, e.g. several mobile devices.

6. SenseLab mobile

This section describes the mobile application developed on top
of the .NET Compact Framework, using C#. This application
enables visualization of both sensor and actuator values in a
convenient and adequate way, suitable for the small display and
constrained hardware of a mobile device.

The mobile application captures XML data from the personal
computer, presenting the detected networks. The user selects one
network and a node to visualize current node’s attributes, as
shown in Fig. 8. Part (a) is the default view when a node is
selected, showing node’s information—IPv6 address, node type,
and node assets, namely sensors and actuators. Part (b) presents
the view of sensors, with several different views (number, bar and

5 | Senselab

ID: Node 1 NetwW: WSNL ID: Node 1

TP ;£280: 0000:0000: 0000: 02
12:7400:12e5:b493

NetW: WSN1

Temperatre -}

round gauge) of the detected sensors, and a small point graph of
the last received values. Finally part (c) is related to actuators, and
presents a similar approach to (b), presenting a listbox with the
actuators.

Depending on the node’s assets, the sensors and/or actuators
tab is selectable. In our example, toggling the green LED of TelosB
is the only actuator. At any moment the user may choose another
node on the network, or even a node from any of the other
detected networks.

The mobile application also enables history view of received
values, with time-based search criteria. Figure 9 presents historic
data view, namely on part (a) the selected node’s information,
part (b) the node sensors data and part (c) the node’s actuator
data. Despite only having an LED as an actuator, the actuator
value may be different from the binary values, as the graph shows,
since the actuator function on the WSAN may be customized to suit
the needs of the connected actuators. In our example if the actuation
is 0 the LED is off, and on otherwise. This visualization allows
rapid verification of the control function and abnormal operation
detection, thus being able to support alarm features if desired.

16/11/2009 - 12:37
ID: Node 1 NetW: WSNL

Node Type: TelosB

Node Resources

. m = = m ow
N R A R U

Sensors:

Temperature; Humidity;
Visible Light; Infra-Red Last
Light; Pover. value

20l PC

Actuators:

& A o
|
ON

Info | Sensors | Actuators

Info | Sensors ‘ {:tygi;gnjsJ

Fig. 8. SenseLab mobile application node visualization.

*» | Senselab

Historic: 25/01/2010 - 15:00
ID: Node 1 NetW: USNL TID: Node 1
Power
Natural Light
Temperature

£e80:0000:0000: 0000:02
12:7400:12e5:b433

IPv6:

Historic: 25/01/2010 - 15:00
Netw: UsNL

Historic: 25/01/2010 - 15:00
ID: Node 1 NetW: WSNL

Humidity

600

Node Type: TelosB

Node Resources BHE=)

Sensors: 400+
Temperature; Humidity;
Visible Light; Infra-Red 300
Light; Power.
200
Actuators:
Led. 100

[@I Sensors l Actuators l

Menu E Back

Info lSensurs‘ Actuators
"Menu iz Back

Info | Sensors | Actuators |
Meny =] Bk
e y—

Fig. 9. SenseLab mobile application historic data visualization.

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24 21

Network
Node - "
-idNetwork: string
-idNode: string -nameNetwork: string P
< 3 g rogram
-!pNode: str!ng -date: string -
-FNDGEI string -time: string +Main(): Void
-idNetwork: strong -localNetwork: string
-date: string -nNode
-time: string
-nodeType: string
-vSense: ArrayList \ 4
+setVSense(): void Connection FormMatworks
-n: Connection
Device +getConnection(): string -geral: ArrayList
— +parseXML(): ArrayList -activeNectworks: ArrayList
e / +rwDevice(): string -aDevices: ArrayList
-name: string

-date: string
-time: string
-sens: ArrayList
e

FormHistoryChoose

Y
FormHistory

-activeNodes: ArrayList

h 4
FormArch

-n: Connection

-geral: ArrayList
-activeNodes: ArrayList
-activeNetworks: ArrayList

-n: Connection —D Form
-8: string

+allPaint(): void

FormArchZoom

-activeNodes: ArrayList

-device: Device
-network: Network

-nodes: ArrayList [—P-activeNodes: ArrayList

-aDevices: ArrayList
-mote: Node
-network: Network
-device: Device
-filename: string

e

FormVisual

-node: Node
-device: Device

-nNode: int

-aDevice: ArrayList
-network: Network
—_—|

Fig. 10. SenseLab mobile application class diagram.

Figure 10 presents SenseLab mobile application’s class dia-
gram. Forms control the guided user interface—FormHistory is
responsible for presenting the historical view of data in graphical
form (Fig. 9(b) and (c)), FormHistoryChoose enables the selection
of a given search criterion of Fig. 9(a), FormVisual presents the
information on the selected node, and FormArch presents the
current network nodes (sing the Connection class), with
FormArchZoom enabling zoom over the network visualization
area. The Network class is responsible for receiving and parsing
the available networks, using the Connection class that connects
to the personal computer application through sockets. The Node
class has all nodes’ attributes, while Device has device’s attributes
(sensors and actuators designation, among other data).

7. WebSensor—ZenSens Web access

This section presents the Web server application that was
developed to disseminate WSAN functionality over the Web:
WebSens. Using Joomla! open source dynamic portal and content
management system (CMS) for World Wide Web publishing, a
suitable Web application for sensor and actuator data visualiza-
tion was created. The server can accept XML files from several
computers and store data on a local MySQL database.

A Java application was developed for accepting XML data,
parse and transfer into a MySQL local database. This database
stores all networks and mote’s data, while being accessed by the
Joomla! CMS. The database, depicted in Fig. 11 can hold several
network’s data, along with user authentication and privileges,
such as access to certain network’s data. The database can hold
several networks’ data, with user authentication information.
With this simple mechanism data access is controlled based on
group permissions. The remainder stores sensor and actuator data
for a given mote, while it is also possible to associate the
hardware with the manufacturer.

Figure 12 shows webpage interface, namely part (a) presents
current sensed values, while part (b) presents a historical view.

8. Real scenario tests and validation

This section elaborates on system validation by experimenting
with the several system layers. By segmenting the test and
validation procedures from bottom to top, one can go into the
upper layer with confidence about the previous layer functionality.

Starting with the WSAN level and command-line approach to
validate the sink’s and remote nodes’ firmware. On the sink node,
the serial communication protocol was tested and validated, by

22

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24

| Network_has_Groups ¥ sers v
- _| Groups v Ju
& Network_idNetwork INT Id_User INT
G d G INT =] Id_Group INT
& Groups_ld_Group | b » UserMame VARCHAR(100)
= = » Description VARCHAR(45) Hy :
< < Login VARCHAR(45)
g > > Password VARCHAR(45)
. @ Groups_Ild_Group INT
| Network ¥] Mote v 2
idNetwork INT idMate INT
» Description VARCHAR(100) > Description VARCHAR{100)] Actuator Data v
» Localization VARCHAR(50) L ‘> Nsensors INT » Value INT
» Name VARCHAR(45) > Nactuators INT —; TimeStamp DATETIME
NMotes VARCHARI45) & Network_idNetwork INT L & Actuators_idActuator INT
> & Manufacturer_idManufacturer INT » Mote_idMota INT
> > idActuator_Data VARC...
>
"] Sensors Data ¥ * L AREE
| Q v
> Value INT | j Mamutaot v |
> TimeStamp DATETIME | i |
& Sensors_IdSensor INT SO =L | idManufacturer INT |
» Mote_idMote INT O Hime Y ARCEARIS0) I _!
idSensors Data INT | » Country VARCHAR|45) |
3 l > |
; |
) A g o S| 1
T A N T
_] sensors ¥ "] Actuators v
idSensor INT idActuator INT
» Description VARCHAR(45) » Description VARCHAR(100)
> Tolerance VARCHAR(45) & Manufacturer_idManufacturer INT
@ Manufacturer_idManufacturer INT >
>

Fig. 11. WebSensor relational database EER diagram.

running a simple program based on serialdump (a tool included in
ContikiOS that enables serial communication through USB), and
continuously sending commands to a stand-alone sink. To emu-
late the presence of a single remote node, firmware changes were
made to debug without UDP communication.

After successful validation of the serial protocol, focus was
given to UDP communication. In this regard, the serial port was
used for debugging on both client and server, checking the
transmitted and received packets.

We noticed that, from four nodes up, the sink presents some
delay in serial command processing. However, we found no
erroneous conditions, even when seven motes were used at a
transmission period of 2 s (the system default). The LEDs were
also used for debugging, namely the blue LED is used for wireless
activity (toggling at each sent/received message) and the green
LED is used to signal good status (when off it signals a problem
was detected). As mentioned previously, the green LED is also
used for the identification function on the remote nodes, while
the red LED is used for actuator emulation.

The next phase is the introduction of SenseLab. On this
application focus was given to features validation and XML file
creation and transmission. Tests were issued with the test-bed
connected for 24 h and the results logged. By changing sensor
readings (increasing temperature, blocking light), system respon-
siveness and data were checked. Both SenseLab mobile and
WebSens draws its data from SenseLab, so testing and validation
were done almost in parallel. Figure 13 presents one of the tested
scenarios.

For proof of concept, a simple autonomous control system was
developed on the sink node, which basically lights the LED of
node ID 1 if nodes’ temperature is above 25 °C, node ID 2 if
humidity is below 80%, node 3 if visible light is below 50, and

node 4 if temperature readings from all sensors differ more than
2 °C. The results were logged and verified through a Microsoft™
Excel spreadsheet on the personal computer.

9. Conclusions and future work

This paper proposed an approach for IPv6-enabled wireless
sensor and actuator networks, featuring multi-channel monitor-
ing tools, Plug-and-Play node operation, and global access to data.
We believe that IPv6, namely through 6LoWPAN, will pave the
way for adoption of WSANs to power ubiquitous computing
and provide sensing and actuator services on a global scale. The
WSAN architecture proves that it is possible to create networks
with sinks that do not require more computational power than
sensor and actuator nodes, paving the way for cost-efficient
designs.

This work also enabled us to deal with real devices, and to test
and debug with a case study. The firmware present in the WSAN
nodes suffered several modifications, while some bugs were
corrected on the development phase. In this regard the MSPsim
emulator/simulator included in Contiki sped up the development
process, specifically on validation of small stand-alone (not
wireless communication related) functions and protothreads.

As future work concerns the architecture is going to be
expanded through inclusion of more functionalities on both the
USB and UDP protocols, and suppression of the portable computer
for a dedicated gateway. This approach leads to seamless Internet
connectivity as promised by IP over WSN.

SenseLab mobile will be ported to other platforms, namely
iPhone, leading to an architectural change, where the mobile
device connects directly to the Web server, retrieving data from

P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24 23

100

Doy i Tates

— Temperature

D i Tae]

Humidity Sensor

Light Sensor

‘ E Dayly MaxMin Tables!

Temperature Sensor Graph

S0

80

704
60

50

40

30

20

10

-10

-20

o 1 2 3 4 5

— Humidity

Humidity Sensor Graph

6 7 8 9 10 11

N

| 9 |
60 ——

0o 1 2 3 4 S5

6 7 8 9 10 11

Fig. 12. WebSensor view—(a) current sensor values and (b) historical data.

Fig. 13. Real scenario tests—SenseLab Desktop and Mobile application running.

almost everywhere, removing the limitation of sharing the same
Wi-Fi network as the Desktop system.

Acknowledgments

Part of this work has been supported by the Instituto de
Telecomunicac¢des, Next Generation Networks and Applications
Group (NetGNA), Covilha, Portugal, in the framework of BodySens
Project, and by the Euro-NF Network of Excellence from the
Seventh Framework Programme of EU, in the framework of
Specific Joint Research Project PADU.

References

Akyildiz IF, Melodia T, Chowdhury KR. A survey on wireless multimedia sensor
networks. Computer Networks 2007;51:921-60.

Al-Yasiri A, Sunley A. Data aggregation in wireless sensor networks using the soap
protocol. Journal of Physics: Conference Series—Sensors & their Applications
XIV (SENSORS07) 2007;76(1).

Baronti P, Pillai P, Chook V, Chessa S, Gotta A, Hu YF. Wireless sensor networks:
a survey on the state of the art and the 802.15.4 and zigbee standards.
Computer Communications 2007;30(7):1655-95.

Burri N, Rickenbach Pv, Wattenhofer R. Dozer: ultra-low power data gathering
in sensor networks. In: Proceedings of the sixth international symposium on
information processing in sensor networks, 2007 (IPSN 2007). Cambridge, MA;
2007. p. 450-9.

24 P.A. Neves et al. / Journal of Network and Computer Applications 37 (2014) 12-24

Cody-Kenny B, Guerin D, Ennis D, Carbajo RS, Huggard M, Goldrick CM. Perfor-
mance evaluation of the 6lowpan protocol on micaz and telosb motes. In:
International workshop on modeling analysis and simulation of wireless and
mobile systems. Proceedings of the fourth ACM workshop on performance
monitoring and measurement of heterogeneous wireless and wired networks.
Tenerife, Canary Islands, Spain; 2009. p. 25-30.

Crossbow. Crossbow moteworks software, 2009. ¢ http://www.xbow.com/).

Dunkels A, Gronvall B, Voigt T. Contiki—a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the 29th annual IEEE
international conference on local computer networks. IEEE Computer Society;
2004. p. 455-62.

Durvy M, Abeillé], Wetterwald P, O'Flynn C, Leverett B. Gnoske E, et al. Making
sensor networks ipv6 ready. In: Proceedings of the sixth ACM conference
on networked embedded sensor systems (ACM SenSys 2008) USA: ACM;
Rayleigh, NC; 2008.

Eriksson J. Dunkels A. Finne N. Osterlind F. Voigt T. Mspsim—an extensible
simulator for msp430-equipped sensor boards. In: Proceedings of the Eur-
opean conference on wireless sensor networks (EWSN 2007). Delft, The
Netherlands; 2007.

Eriksson], Osterlind F, Finne N, Tsiftes N, Dunkels A, Voigt T, et al. Cooja/mspsim:
interoperability testing for wireless sensor networks. In: Proceedings of the
second international conference on simulation tools and techniques (SIMU-
Tools ’'09). Brussels, Belgium, Rome, Italy: ICST (Institute for Computer
Sciences Social-Informatics and Telecommunications Engineering); 2009.
p. 1-7.

Han G, Ma M. Connecting sensor networks with ip using a configurable tiny tcp/ip
protocol stack. In: Sixth international conference on information, communica-
tions and signal processing. Singapore; 2007. p. 1-5.

Hui JW, Culler DE. Ip is dead long live ip for wireless sensor networks. In: Sixth
ACM conference on embedded network sensor systems (SenSys '08). Rayleigh,
NC, USA: ACM; 2008. p. 15-28.

Kopke A, Swigulski M, Wessel K, Willkomm D, Haneveld PTK, Parker TEV, et al.
Simulating wireless and mobile networks in omnet++ the mixim vision. In:
Proceedings of the first international conference on simulation tools and
techniques for communications, networks and systems & workshops (SIMU-
Tools 2008). Marseille, France; 2008.

Levis P, Madden S, Polastre |, Szewczyk R, Whitehouse K, Woo A, et al. Tinyos: an
operating system for wireless sensor networks. Ambient intelligence.
Springer-Verlag; 2004.

Montenegro G, Kushalnagar N, Hui], Culler D. Transmission of ipv6 packets over
ieee 802.15.4 networks. September 2007.

Neves P, Stachyra M, Rodrigues JJPC. Application of wireless sensor networks to
healthcare promotion. Journal of communications software and systems
(JCOMSS), Croatian Communications and Information Society, in cooperation
with FESB, University of Split 2008;4(3):181-90.

Neves PACS, Esteves AFF, Cunha RMF, Rodrigues JJPC. User-centric data gathering
multi-channel system for ipv6-enabled wireless sensor networks. Interna-
tional Journal of Sensor Networks (I[JSNet)—Special Issue on Technologies,
Recent Advances in Sensor Integration 2010a;8(3).

Neves PACS, Vaidya B, Rodrigues JJPC. User-centric plug-and-play functionality for
ipv6-enabled wireless sensor networks. In: IEEE international conference on
communications (ICC 2010). Cape Town, South Africa; 2010b.

Osterlind F, Dunkels A, Eriksson], Finne N, Voigt T. Cross-level sensor network
simulation with cooja. In: The 31st IEEE conference on local computer
networks (LCN 2006). Tampa, Fl, USA; 2006. p. 641-8.

Polastre], Szewczyk R, Culler D. Telos: enabling ultra-low power wireless research.
In: Proceedings of the fourth international symposium on information proces-
sing in sensor networks (IPSN 2005), Los Angeles, CA, USA; 2005. p. 364-369.

Ramanathan N, Chang K, Kapur R, Girod L, Kohler E, Estrin D. Sympathy for the
sensor network debugger. In: Proceedings of the 3rd international conference
on embedded networked sensor systems (Sensys 2005). San Diego, CA, USA;
2005. p. 255-67.

Rezgui A, Eltoweissy M. Service-oriented sensor-actuator networks: promises,
challenges, and the road ahead. Computer Communications 2007;30(13):
2627-48.

Rodrigues JJPC, Neves P. A survey on ip-based wireless sensor networks solutions.
International Journal of Communication Systems 2010;23(8):963-81.

Sensinode. Sensinode nodeview pro software, 2009. < http://www.sensinode.com/ .

Shelby Z, Bormann C. 6LoWPAN: the wireless embedded internet. Wiley Series in
communications networking & distributed systems. Wiley; 2009.

Silva JS, Ruivo R, Camilo T, Pereira G. Ip in wireless sensor networks—issues and
lessons learnt. In: Third international conference on communication systems,
software and middleware (COSMWARE 2008). Bangalore, India: [EEE Commu-
nication Society; 2008.

Singh D, Singh S, Singh M, Kew H-P, Jeoung D-U, Tiwary US, et al. Ip-based
ubiquitous sensor network for in-home healthcare monitoring. In: Interna-
tional conference on multimedia, signal processing and communication
technologies (IMPACT 2009). Aligarh, India; 2009. p. 201-4.

Stankovic JA. When sensor and actuator networks cover the world. ETRI Journal
2008;30(5):627-33.

Sung J, Kim Y, Kim T, Kim Y-J, Kim D. Internet metadata framework for plug and
play wireless sensor networks. In: Sensors applications symposium (SAS
2009). New Orleans, LA, USA; 2009. p. 320-4.

Xia F, Tian Y-C, Li Y, Sun Y. Wireless sensor/actuator network design for mobile
control applications. Sensors Journal 2007;(7):2157-73.

Yang S, Park S, Lee EJ, Ryu JH, Kim B-S, Kim HS. Dual addressing scheme in ipv6
over ieee 802.15.4 wireless sensor networks. ETRI Journal 2008;30(5):674-84.

Yu Y, Krishnamachari B, Prasanna VK. Energy-latency tradeoffs for data gathering
in wireless sensor networks. In: Proceedings of the INFOCOM 2004. 23rd
annual joint conference of the IEEE computer and communications societies.
Hong Kong; 2004. p. 244-55.

Zhou L, Naixue X, Shu L, Vasilakos A, Yeo S-S. Context-aware middleware for
multimedia services in heterogeneous networks. IEEE Intelligent Systems
2010a;99(March/April).

Zhou L, Wang X, Tu W, Muntean G-M, Geller B. Distributed scheduling scheme for
video streaming over multi-channel multi-radio multi-hop wireless networks.
IEEE Journal on Selected Areas in Communications 2010b;28(3):409-19.

