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Introduction Caching

Distributed caching
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Introduction Related works

Distributed caching
Related works

Operating system layer:
Application level [Memcached]

Existing applications have to be updated
Filesystem level [xFS, PAFS, Ceph]

Guest operating system have to use a specific
file system
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Incompatible with distributed file systems

Existing solutions are not “cloud aware”
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Our contribution: a generic approach to develop ditributed caches for cloud
computing
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Development of a distributed cache Constraints

Development of a distributed cache

Implementation constraints
Ensure genericity
⇒ Integration into the Linux kernel
Be non-intrusive

Performance constraints
Limit overhead
Minimise memory footprint
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Development of a distributed cache Remote caches
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Development of a distributed cache Architecture

Architecture
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Development of a distributed cache Details and optimizations

Metadata management
Problem: metadata management efficiency
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miss
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Solution: Bloom filter [Bloom’1970]
Probabilistic data structure
Compact
No false negative
False positive possible
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Development of a distributed cache Details and optimizations

Cache accesses management
Problem: sequential access detection
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Solution: prefetching
Sequential read detection
Read prediction
Read ahead of data

Amortized network latency
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Development of a distributed cache Details and optimizations

Communications management
Problem: network buffers memory footprint
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Solution: zero-copy
Avoid copying into the network stack
Decrease memory allocations
Avoid deadlocks
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Evaluation Experiment setup

Evaluation
Experiment setup

Virtualized platform
Intel Core i7-2600 (4 hyper-threaded cores), 8GB memory
Cache server (2 cores, 4GB)
Client (2 cores, 512MB)

Reads from local virtual hard drive

1Gbit/s virtual network (∼ 600µs RTT)

Micro-benchmark
32MB read
Each read is split into fragments from 512 bytes to 8MB
Each fragment is read at a random position from a file
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Evaluation Performance evaluation

Remote miss overhead
Empty remote cache
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Evaluation Performance evaluation

Performance peak
Data preloaded in remote cache
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Evaluation Performance evaluation

Performance with local memory full of data
Data preloaded in remotecache, full local memory
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Conclusion

Conclusion

Summary
Existing distributed caches are not ”cloud aware“
We propose an approach to develop distributed caches for the cloud
Working non-intrusive prototype
Promising: up to 8x performance improvement in random read

Future works
Realistics benchmarks: Memcached, dm-cache, bcache,. . .
Sequential read performance improvements
Consistency guarantees
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