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Abstract—Modern data generation is enormous; we now
capture events at increasingly fine granularity, and require
processing at rates approaching real-time. For graph analytics,
this explosion in data volumes and processing demands has
not been matched by improved algorithmic or infrastructure
techniques. Instead of exploring solutions to keep up with the
velocity of the generated data, most of today’s systems focus on
analyzing individually built historic snapshots. Modern graph
analytics pipelines must evolve to become viable at massive scale,
and move away from static, post-processing scenarios to support
on-line analysis. This paper presents our progress towards a
system that analyzes dynamic incremental graphs, responsive at
single-change granularity. We present an algorithmic structure
using principles of recursive updates and monotonic convergence,
and a set of incremental graph algorithms that can be imple-
mented based on this structure. We also present the required
middleware to support graph analytics at fine, event-level gran-
ularity. We envision that graph topology changes are processed
asynchronously, concurrently, and independently (without shared
state), converging an algorithm’s state (e.g. single-source shortest
path distances, connectivity analysis labeling) to its deterministic
answer. The expected long-term impact of this work is to enable a
transition away from offline graph analytics, allowing knowledge
to be extracted from networked systems in real-time.

I. INTRODUCTION

We are witnessing a massive rise in globally connected data
generated by an extremely diverse set of activities: from mod-
elling networked information like the World Wide Web, to social
networks and forums like Facebook and Reddit, to financial trans-
actions such as those occurring on the Bitcoin network. When
we analyze such connected data, we generally use a graph-based
representation. Past research has led to remarkable advances in
the processing speed and scalability of graph analytics; much
of this work has used HPC systems [1]][2][3] and is showcased
by the Graph500 [4] and GraphChallenge [5] competitions.
However, as these past solutions were designed for static
graphs, directly using them for dynamic graphs is not possible
without using coarse and problematically inefficient static
snapshots. This approach has multiple drawbacks: (i) it leads to
high overheads due to storing multiple copies of the entire graph
at different times [6][7] (or processing batch delta changes
[8]), (ii) it loses information by removing the ability to query
graph state in-between snapshots, and (iii) on occasion, it even
abandons correctness (such as when events in a delta-change
are modelled as concurrent, even when a total order exists).
Two factors drive our work: firstly, the increasing pressure to
deliver the fast responses demanded by many applications (e.g.
online recommendations, financial fraud detection, terrorism pro-
tection), and secondly, the need to model continuously evolving
real-world systems represented as graphs. As examples, Twitter
has seen a peak tweet rate of 143,199 tweets per second [9], the
payment network Visa has been shown to handle up to 24,000
financial transactions per second [10], Facebook has activity in
the range of 9,000 comments, 5,000 statuses, and 20,000 photos
every second [L1]], and new scalable cryptocurrencies such as

EOS have already seen transaction rates reach nearly 4,000 per
second [12]]. All these systems are naturally modelled as graphs.
To support analytics on such fast-evolving systems, graph
processing systems should support both: (i) maintaining the
topology of massive dynamic graphs, and (ii) near real-time ana-
lytics on these typologies. Dynamic graphs extend static graphs
such that vertices and edges may be added or removed, and
their attributes changed, at any point in time. Typical networked
systems, such as finances, social networks, forums, and the
World Wide Web all experience dynamism and evolve with time.
Money moves, new friendships are made, posts and comments
receive user interaction, and new web pages and hyperlinks are
created. Despite the dynamism exhibited in all these systems,
analytical tools that enable this dynamic nature to be captured
are a relatively unexplored area. Existing systems face issues of
scalability, adaptability, and latency — the existing systems that
attempt to offer solutions are typically constrained to a single
machine, and resort to batching or snapshotting [6][7][13]].
The existence of a potentially more efficient avenue that
avoids snapshotting, however, is suggested by past theoretical
work on on-line algorithms for dynamic graphs |'| [14][1S][8][16].
These algorithms dynamically maintain a (full or partial) solution
to a user query and update it as the graph evolves. Thus, we
hypothesize that new systems which aim to incorporate, support,
and analyze graphs dynamically in a scalable fashion are feasible
and will enable an entirely new class of opportunities for
analyzing dynamic graphs: (near) real-time answers to analytics
questions, and (near) real-time reactions to topology changes.
While being able to analyze and understand an evolving net-
worked system in real-time is tantalizing, it poses a challenging
problem: it is necessary to understand how to extrapolate common
algorithms for static graphs into dynamic ones, design algorithms
from scratch for such problems, or design entirely new algorithms
for problems that emerge only in a dynamic graph context. Many
graph problems such as Breadth First Search (BFS), are defined
only in static terms, i.e. “What is the level of all vertices?” while
the notion of “all vertices” has no clear definition in a dynamic
environment. These types of problems in a dynamic environment
are better thought of as time dependant. For example, in a human
readable format, instead of asking “What are all the vertices that I
can reach?” a dynamic algorithm would instead maintain “What
are all the vertices I can currently reach?” This algorithm then
gives a BFS result that changes over time, and hence, the answer
itself is dynamic in nature, or can be thought of as “observable.”
This format, wherein the observable problem solution evolves
over time with the state of the data, gives rise to a query-based
design for our system, where we can observe or query the

Unfortunately, this work makes assumptions about the underlying abstract
machine supporting these algorithms that preclude directly adopting these
solutions — more concretely, assuming that topology events are each sequentially
and atomically ingested precludes scaling to a distributed system, and may
generate high overheads even in a shared-memory setup.



real-time data. Furthermore, algorithms designed for dynamic
data can expand upon the traditional “What” questions, and
can also answer “When” questions — a notion involving time
that does not exist in a static environment. A simple example is
“When is vertex A connected to vertex B?” offering a response
in real-time based on when a condition has been met. This type
of behaviour offers the ability for a time-sensitive reaction to
occur. We target a design where the code implementing various
algorithms is separated from the underlying infrastructure
and multiple algorithms can be executed simultaneously (i.e.
maintain their state) on the same underlying dynamic data
structure, thus enabling support for multiple queries.

For this paper, we limit our inquiry to incremental “add-only”
topological changes. Restricting the problem space allows us
to focus on feasibility, algorithm design, and to explore the
performance limits achievable, before adding further complexity.
Additionally, many dynamic graphs in the real world are
incremental-only, due to the nature of time-based systems only
ever moving forward. For example, in discussion forums like
Reddit, the bipartite graph between posts and users is only
ever appended to as time moves forward; while a user/post
visibility might change (e.g. due to moderation or privacy
settings changes), the data itself is often never actually deleted.
As another example, in a financial transaction network, a
payment that happened in the past is never truly “reversed”
(i.e. modelled as a delete) — instead a new, second payment
is created for actions such as refunds or returning change.

This paper offers the following key contributions:

n Identification of a class of algorithms that can be supported in
an incremental graph context: This paper showcases four algo-
rithms, each designed to support live queries for incremental
graphs: Breadth First Search, Single Source Shortest Path, Con-
nected Components, and Multi S-T Connectivity (Section [[V).
These algorithms update the problem’s solution incrementally
and “on-the-fly,” reacting to individual topological changes.
These algorithms, which we dub REMoO algorithms, belong
to a class of algorithms that have key properties: recursive
updates and monotonic convergence (Section [[).

n The “When” in graph processing: We define and implement
dynamic queries, which can trigger a user-defined callback
on occurrence of a specified condition of an algorithm’s
vertex-local state (Section [[II-E). Different from global state
(i.e. the state of the algorithm over the entire graph topology,
which can also be discretized and collected as we show in
Section [[II-D)), triggers on local state offer the opportunity
to add near real-time user-defined callbacks for feedback and
analysis in a continuously evolving graph (Section [II).

u An event-based framework to support expressing and running
algorithms: Expanding upon a previous feasibility study for
implementing a dynamic graph infrastructure [17]], this paper
further builds the infrastructure, including abstractions for
several algorithm properties (Section [ITI).

» Evaluation: This paper exposes the overheads (but also the
opportunity) of executing static algorithms on a dynamically
evolving data-structure, as well as the overhead of carrying
a queryable, live algorithm state alongside real-time graph
construction. We show that the framework can support the
ingestion of hundreds of billions of edges with a maximum
real-time rate of up to 1.3 billion edges per second (Section
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Fig. 1: High level overview of the system. An incoming stream
of events (1) that modify a graph (4) are ingested. During this
process, an algorithm (2) hooks (3) into the stream, observing
events (5), and updating its dynamic state accordingly.
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[V). The showcased event rate suggests generous room for
additional algorithm complexity. The paper also investigates
the cost of global state collection, substantiating the intuition
that it is more efficient to maintain and dynamically update
algorithmic state as the graph evolves and collect it when
needed, rather than use a static algorithm to construct
on-demand algorithmic state from scratch (Section [V-C).

II. EVENT-BASED DESIGN FOR ReMo ALGORITHMS

To make reading easier, this section starts with a high-level
overview of the how the supporting infrastructure is envisioned
to work abstractly (with further detail in the subsequent section),
and only then continues with discussing the challenges of
supporting on-line algorithms on dynamic graphs and the
subclass of algorithms that are the focus of this paper: algorithms
that have two key properties, REcursion, and MOnotonicity,
which we call REMO algorithms.

A. Overview of Supporting Infrastructure

We have chosen to support on-line dynamic graph processing
through an event-centric design: when the graph structure or
vertex/edge attributes change, the infrastructure (i) updates the
topology information, and (ii) triggers an algorithmic event
that allows a user-defined callback to perform the necessary
algorithmic updates. Additionally, algorithmic events are not
only generated upon topology changes, but can also be created
by algorithmic-level behaviour as well.

We chose this event-based design for three key reasons: (i)
while previous dynamic solutions could support serial graph
changes [14]][[15]], these solutions are sequential — each event
is processed once the previous event has finished — while
the natural world matches more closely to a concurrent and
asynchronous system, (ii) an event-centric design enables
deployment on a shared-nothing compute architecture, to allow
scaling to support large graphs that need to be maintained in the
aggregate memory of the system, and (iii) it offers a good match
to a computing platform with multiple threads of computation.

This design is illustrated at a high level in Figure [T} a source
(1) initiates asynchronous, concurrent updates to the underlying
graph topology and attributes over one or multiple event streams.
Events in the same stream are ordered while events across
streams do not have a relative order. These events are observed
by the algorithm engine (2). The algorithm engine, observing
the topology/attribute change, executes user-defined logic (3)
which will be passed along with the graph topology/attribute
change to the storage layer which maintains state (4). Should



Algorithm 1: Recursive BFS Psuedocode

# Recursive BFS (recursive step)
def bfs_propagate (vertex, parent):
if (vertex.level > parent.level + 1):
vertex.level = parent.level + 1
for nbr in vertex.nbrs:
bfs_propagate (nbr, vertex)

# Setup for recursive BFS function (ba
# Queue for propagation excluded for bre
def bfs(graph, start_vertex):
for vertex in graph:
vertex.level = sys.maxsize
start_vertex.level =1
for nbr in start_vertex.nbrs:
bfs_propagate (nbr, start_vertex)
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the event require additional logic, it generates a new event that
feeds back into the algorithm engine (5).

Finally, we note that a vertex-centric solution to support
dynamic graphs would not realistically model graph evolution,
as most graph evolution is edge-centric: an edge may appear
between two already established vertices, and an edge may
disappear without removing a vertex.

An Example. As a trivial example, consider a simple query
that aims to track the degree of each vertex in a graph. In an event-
centric design, we simply implement a callback on edge insertion
and deletion: if an edge is added, increment a counter tracking
the vertex degree; if removed, decrement it. With proper infras-
tructure support, a programmer will only have to write these two
simple callbacks and be able to query a dynamic graph, resulting
in a real-time analysis of a specific vertices degree or enabling
a user-defined callback if the degree exceeds a certain threshold.

B. Recursive and Monotonic: ReMo Algorithms

At a high level, any algorithm designed for a dynamic graph
will have two key issues: (i) it must execute on, and be tolerant
of, graph topology and attribute changes, and (ii) it must return
an answer in finite time (guarantee termination) despite future
changes. These two properties make theoretical analysis of such
algorithms complex, and require a rigorous understanding of the
implications of a live state — as algorithm state can change at ver-
tex/edge granularity during the processing of concurrent events.

We target a class of algorithms which we refer as REMO
algorithms that have two key properties: REcursion, and
MoOnotonicity, which we explain in turn below. These two
properties guide algorithm implementation in an event-centric
system, and make it feasible to guarantee convergence to a
correct result with algorithm termination.

Recursive Event Propagation. We chose a dynamic version
of Breadth First Search (BFS) as our running example. BFS
is a key problem for graphs, as it effectively exposes the
overheads and behaviour associated with traversing a graph
through neighbour iteration and is a building block of other
common graph algorithms (e.g., Betweenness Centrality).

Consider an edge addition, where a new path in the graph
is created: a link from vertex A to vertex B. Upon creating
this link, one could imagine re-executing a static Breadth First
Search traversal from the original source vertex upon the entire
new graph to re-calculate the new level for all vertices. However,
this would waste a large amount of work, as re-computing
every value is the worst-case scenario.

Instead, consider the traditional top-down BFS algorithm
in its recursive form: upon calculating the level for a vertex,

propagate to all neighbours the calculated level. In a static
graph, this event propagation implementation of BFS computes
from the source vertex top-down, until termination, as shown in
Algorithm [T, When considered this way in a dynamic context,
this can extend to an edge addition event. Upon an edge addition,
a user-defined callback simply propagates the vertices BFS
level, as if it were the original source vertex, towards the newly
created path (the termination proof is the same as for BFS).

The elegance comes from the abstraction of using the
recursive step as the update function. The addition of an edge
need only create a single event — after which, the event can,
as defined by the callback, create and propagate new events
only if necessary. For the BFS example, this can be described
in a simple update event as follows in algorithm [2]

Algorithm 2: BFS update

# Hook into an edge being created from src to dst.
def add_event (dst, src):
update_event (dst, src)

# Propagating update event.
def update_event (vertex, parent):
if (vertex.level > parent.level + 1):
vertex.level = parent.level + 1
for nbr in vertex.nbrs:
update_event (nbr, vertex)
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This simple algorithm effectively becomes the BFS algorithm
update within the algorithm engine: the update is initially
activated by an edge event and can recursively propagate and
trigger the same update event at other vertices in the graph.
Note that the programmer does not have to consider how
the event propagates: the complexities of the graph topology
structure are hidden by the supporting framework.

This algorithm is efficient, resulting only in the execution of
the computation required to “fix” the BFS tree, with no additional
overhead. For example, imagine in the case where the event is
passed between vertices that have the same level — in this case,
the event will be triggered, but will not generate any additional
events. Further, if a new vertex is added with an edge, it needs
only a single step to calculate its own level. This is far more
efficient than a full-scale re-computation of the algorithm over
the whole graph upon each change (as we show in Section [V).

Convex Monotonicity: Achieving Minimum State. The second
property is monotonicity: a succession of events triggered by
a graph topology/attribute update, both during propagation and
once completed, impacts any state change of the algorithm only in
a single direction. Further, there is an upper/lower bound for that
state, and it is smooth — that is to say, the solution space is convex.

Monotonicity exists in BFS in the static top-down solution:
the state (i.e. the BFS level of a vertex, the minimum number of
hops required to reach that vertex) can only ever decrease. While
an intermediate solution may present a path with /N hops (thus
the vertices’ level being V), as the solution is refined it may only
decrease — if it finds a path of length N’ < N. At best, a vertex
can reach a minimum of one hop, if it finds it can connect directly
to the source. This property is what allows the BFS recursion to
terminate: at some point in time, each vertex achieves its mini-
mum state, and can make no further progress. The resulting state
is the deterministic level according to the topology of the graph.

A dynamic algorithm supporting incremental edges for BFS
can preserve the monotonicity property of the static algorithm.



When a new undirected edge is inserted between two vertices,
it will fall into one of three cases: (i) it links two vertices of
the same level, (ii) it links such that one’s level = other’s level
+ 1, or (iii) link such that one’s level > other’s level + 1. (In
the case of directed BFS, there are a few more trivial cases.) In
case (i), the current BFS solution continues to be valid and no
changes need to be made. In case (ii), the current solution also
continues to be valid — a vertex has a new possible parent. In
case (iii), we have a situation where a vertex has a new, shorter
path to the source. In this case, the recursion event starts at
this vertex, as mentioned previously, and repairs the solution.
However, all changes made continue to monotonically converge
to the minimum state possible.

REMO Properties for Other Incremental Algorithms.
Incremental algorithms for Single Source Shortest Path (SSSP),
Connected Components (CC), and S-T Connectivity (S-T)
can be designed in a similar way once the state that evolves
monotonically is identified, as follows:

n SSSP. Monotonically evolving state: at each vertex the cost of
the current minimal path to the source is stored. An algorithm
to support edge addition for SSSP converges in the same
way as for BFS, with the path being instead the sum of
edge weights rather than the number of hops away from the
source. Similar logic applies for edge updates limited only
to reducing edge weight. In this case, the solution space is
convex as any vertex may only become closer to the source,
and there is a lower bound.

» CC. Monotonically evolving state: at each vertex the state is
the vertex ID with the smallest label in the component it can
reach. In the case of an edge addition, only one of two cases
can occur: (i) the new edge connects vertices within the same
component, or (ii) the new edge connects vertices between
two components. In case (i) the change is trivial. In case
(ii), the component with the minimum state will propagate to
the other component, and recursively apply the new possible
minimum state into that component. This preserves the
monotonicity of vertex state only ever decreasing convexly.

» S-T. Monotonically evolving state: each vertex stores the
connectivity status to the source vertex. When adding new
edges, a vertex may only become connected to target source
vertex, directly or indirectly, and the state only evolves toward
this connectivity. The state could be described by each vertex
having an associated bit, where a 1 denotes no connectivity,
and connecting flips it to a 0, creating a convex solution
space. The same argument can be extended to multi S-T
connectivity by using a bitmap.

C. Algorithm State: Global and Local State

An important facet of supporting algorithms with an event-based
design is collecting results and presenting them to the application
or user. We define two types of algorithm state collection:
global and local state. These differ as follows.

Local state is defined as a state that can be observed on
a per-vertex (and its associated edges) basis. At this level of
granularity it is trivial to obtain a consistent view (by just making
sure that no other events process the same vertex at the same
time). Local state can be observed immediately, at a low cost,
during algorithm execution. As an example, local state could be
a vertex’s connectivity: and a trigger/action functionality such as

“When the T vertex has a path to vertex S, perform this user-defined
function” can supported. This is further discussed in section [III-E

Global state is defined as the collective vertex and edge
algorithm-related state after a defined set of events have been
ingested and processed. As an example, it could refer to the entire
BFES tree, and, as implied, contains global data: each vertex has
a data point referring to its level in the BFS tree and its parent
vertex. Global state is similar to the traditional data collection
done in static graph analysis, and can be defined in terms similar
to snapshotting: it is data associated with a discrete point in time,
after some discrete set of events have been ingested. Designs for
implementing this discretization are presented in section [I[II-D

D. Asynchronous Event Propagation

Asynchronous/concurrent event propagation does not impact
the correctness of the above algorithms, as the algorithm state
can only move in a single direction (towards minimum state),
with potentially conflicting events being either independent
or order-irrelevant: they change different parts of the graph
independently, or the consequence of the two events can be
combined or squashed. The effective solution space, when
defined as convex, allows the resulting global algorithm state
to arrive at the global minimum. This property is what allows
concurrent events to be treated in parallel, and allows multiple
update cascades to proceed concurrently.

We note that nondeterminism can be eliminated in a similar
way as for static algorithms. For example, in BFS, if a vertex
obtains two new possible parents, the one with minimum state
will always be chosen regardless of the order of operations.
However, if the parents are of equal state, and the algorithm
designer wishes for a deterministic BFS tree, they need only
define a second clause to discriminate between the two potential
parents (similar to static algorithms, such as choosing the parent
with the lowest vertex ID). With this clause, the global state
at a specific time will become completely deterministic.

III. INFRASTRUCTURE SUPPORT

Enabling support for expressing and executing dynamic algo-
rithms, as well as optimizing the distributed data structure that
efficiently maintains the dynamic graph topology, are complex
issues. Some of the challenges that emerge can be highlighted
based on our understanding of challenges shown to emerge for
static graph processing. First, graph algorithms have low compute-
to-memory access ratio, which exposes fetching/updating the state
of vertices (or edges) and fetching vertices topology information
as the major overheads. Second, graph processing exhibits
irregular and data-dependent memory access patterns, which lead
to poor memory locality and reduces the effectiveness of caches
and pre-fetching mechanisms. Finally, many graphs have a highly
heterogeneous node degree distribution (i.e. they have power-
law degree distribution, and are commonly named “scale-free”)
which makes partitioning the work among the processing nodes
for access locality and load-balancing difficult. Enabling graph
evolution further compounds these challenges, as locality and data
placement optimizations need to be decided at run-time, and are
not only dependent on algorithm behaviour but now also on topol-
ogy evolution and time. As we model the behaviour of incoming
edge-centric graph structure changes as events, we introduce
new computation and storage requirements when operating in a
distributed manner. The infrastructure must handle updating the



graph representation, generating and handling the corresponding
application-level events, and triggering user-defined callbacks.

The rest of this section presents our event-centric programming
model (Section [III-A), the infrastructure to maintain the
dynamically evolving graph topology (Section [II-B), our
solution for global and local state collection (Sections [II-DJ

and [[II-E)), and our prototype implementation (Section [[II-Fj.

A. Programming Model

We provide a simple event-based programming model.
Algorithms are designed as a set of used-defined callbacks
triggered by events generated either by graph topology/attribute
changes, or by other callbacks. We identify three key eventsE]
that are the minimum requirements to implement an incremental
algorithm on a dynamic graph.

» Edge Add Event: The topology change of an edge addition
triggers an add event at the source vertex of a directed edge
(or at the first added vertex of an undirected edge, in which
case the reverse-add always follows). Topology maintenance
(Section is handled directly by the framework for edge
add/reverse-add events.

w Edge Reverse-Add Event: In the case of an undirected
(bi-directional) edge, the second vertex obtains a special
notification event which enables it to add the edge as well.

» Update Event: This event does not represent a topology
change, and is generated by user-defined behaviour. This
mechanism gives a callback processing a vertex the ability
to generate additional events, propagating information to all
or to a selection of neighbouring vertices.

For each event, the programmer has the ability to define a
callback to derive desired local algorithm state. Further, the
programmer can decide exactly how the update event propagates:
whether it is specifically across all edges to each neighbour, or
only to some, and for which conditions. Along with all passed
events, the programmer has access to key vertex properties to
drive their algorithm: the visiting vertex being the identifier of
the vertex creating the event, and it’s current property at the
time of event (i.e. it’s own local state).

B. Node-local Topology Maintenance

Even with the large memory capacities of HPC systems, many
graph applications require additional out-of-core storage. Such
large memory requirements can result from a large graph, rich
properties that decorate the topology, or large algorithm state.
To accommodate such a data structure, we have incorporated
a truly dynamic graph data structure called DegAwareRHH
[[L8]. This graph structure adopts open addressing and compact
hash tables with Robin Hood Hashing, and offers good data
locality for vertices with a large degree. DegAwareRHH is
degree aware, and uses a separate, compact data structure for
low-degree vertices. This, in combination with the high degree
access, allows distinct improvements in the number of accesses
to out-of core storage (e.g. NVRAM) when needed.

The importance of this structure to store the dynamic graph
data is twofold. First, the structure allows compressed, dynamic
graph data to be stored in memory and spill to NVRAM

2For brevity we do not detail here additional events related to other topology
changes: vertex related (which are set of edge changes), or attribute updates
(which are similar to an addition).

only when needed, and second, it significantly improves the
performance over a baseline implementation.

C. Dynamic Partitioning

Partitioning the dynamic graph over a distributed set of compute
nodes is challenging: since the graph is dynamic, there is no a pri-
ori information available to inform partitioning. As a first solution
to explore, we have chosen a random partitioning technique for
implementation simplicity and to obtain a baseline performance.

Our solution works as follows. To determine which process
will be the owner of a particular vertex at run time, we use
a simple form of consistent hashing [19]] where we assume a
cluster with a static process count P, and assign a vertex with
ID V to a process via hash(V)modulo(P). This way, as each
process uses the same hash function, any process can determine
in constant time which process owns a vertex. Consistent
hashing produces a balanced, uniform partitioning in terms of
the number of vertices, yet the resulting edge distribution may
not be balanced — since we allocate vertices to processes, the
power-law nature of many graphs [20] may create an uneven
balance, with some processes responsible for vertices with
many edges. However, our initial goal is simplicity; this naive
strategy allows a primary focus on the key issues related to
supporting on-line algorithms and, importantly, provides a
baseline lower bound for the performance that could be achieved
using dynamic load balancing techniques in future work.

The key advantage of the above partitioning technique is
that any process is able to insert a new directed edge at any
time. (The directed edge will be co-located with the source
vertex, since the source vertex must know it has an edge to
the destination.) This makes it possible to support asynchronous
directed edge creation and deletion.

A byproduct of this design is that we can enable the
infrastructure to split the stream of incoming graph update events
among all the participating nodes: each process can independently
ingest pairs of [source, destination] graph structure changes (edge
events) to increase ingestion throughput. However, when using
multiple or split data streams, two important assumptions are
made: (i) each individual stream presents its own events in-order,
and (ii) events on different streams are treated as concurrent.

The mechanism we have described so far works directly for
directed graphs, yet it requires additional attention for undirected
graphs: since undirected edge creation leads to state updates
at two vertices, these updates must be coordinated to maintain
a consistent view of graph state. To this end, it is necessary to
“serialize” undirected edge creation: process P sends the creation
of edge [a, b] to the owner A of vertex a, and then process A is
responsible to send the reverse: the knowledge for the creation
edge of [b, a] to process B, owner of vertex b. Since the channel
between processes A and B is first-in first-out (FIFO), and only
the two processes are able to use the edge, we thus ensure that
the edge is created before it is used at either end.

D. Collecting Global State

There are two main approaches to collect global state (previously
defined as the collective vertex and edge algorithm-related state
after a defined set of events have been ingested and processed
in Section [[I-C). As the system handles events continuously,
before actual collection occurs the desired time point must be
discretized. This can be done by identifying an event for each



stream that is the last event to be processed in this collection.
Then, the simple approach would be to wait for a period of
quiescence. When no more events are generated as the outcome
of previous events, the collection has concluded and the global
state can be saved as a snapshot.

However, this simple approach would require pausing the
incoming event stream. To avoid this, a continuous approach
can use a variant of the Chandy-Lamport snapshot algorithm
[21]. To this end, we also begin with a discretized time point,
but do not halt or delay new events; instead, topology change
events in the incoming event stream are tagged with a previous
or new version identifier. When a vertex receives an event
with a new version, the algorithm-related state of the vertex
is split into Spre, and Sye. The events associated with the
new version are only applied to Sy,.,,. If a vertex receives an
event with a previous version then both the Sp,e, and the Speq
state versions apply the state modifier. Subsequent algorithmic
events generated as a result of the current event inherit the
same version identifier. Then, akin to the simple approach, once
all events associated with the previous version have concluded,
the discretized state Sp,¢, can be saved as a snapshot.

E. Observing Local State and Handling Queries

Local algorithm state, as opposed to global state, is not
consistent from a global viewpoint, but is rather the viewpoint
of each individual vertex. Local state informs global state in
a causally consistent way, and informs any user-defined queries;
when a query is defined, for example as “When the current
vertex is connected to source S” local state can observe the
instantiation of this property in constant time, and notify a
user-defined event handler. These user-defined queries aim to
offer real-time analysis to the programmer.

For REMO algorithms, when the local state observed is the
algorithm state that guarantees convex monotonicity, one can
guarantee two important properties: first, there are no false
positives; for example, if S connects to T at some point in time,
in the future it will not become unconnected (as a reminder,
for now we operate in an edge add-only environment). Second,
as a consequence of the same monotonic reasoning, the event
triggering will also only occur once.

Defining a query based on the monotonic state of the algorithm
is, admittedly, limiting. An example query that is not supported
by the S-T connectivity algorithm would be “Notify once all of N
vertices have a path to S.” This query is not possible based on lo-
cal state only, as the source does not have the knowledge of which
vertices are currently connected to it, only the destination vertices
know if they are connected to the source. As such, algorithm
design and query design must go hand-in-hand to achieve the de-
sired results: this query could instead be implemented on an algo-
rithm that accumulates state on .S, rather than propagates from S.

F. Prototype Implementation on Top of HavoqGT

To support our design, we have built on top of HavoqGT
(Highly Asynchronous Visitor Queue Graph Toolkit) [22], an
open-source graph analytics framework that targets parallel
and distributed environments and large scale-free graphs. Past
work [18]][23][22] has demonstrated that this abstraction and its
implementation provide good scalability for static graphs. A high-
level architectural view of our prototype is presented in Figure [2]

v Vv Vv
Vv Vv Vv
Visitor Visitor Visitor
Queue Queue Queue
Storage Storage Storage

Fig. 2: High-level structure of our prototype based on HavoqGT’s
visitor abstraction. Each process communicates with each other
over MPI, using Visitor objects. These visitors are queued
before entering the compute and storage layers of a process.

A key enabler is HavoqGT’s as a foundation is the visitor
abstraction. This abstraction allows defining vertex-centric
procedures that execute on vertex state, and offers a vertex the
ability to create new ‘“visitor” messages and pass them to its
neighbours. HavoqGT is implemented on top of MPI and handles
visitor message creation, as well as queue management for these
messages. When an algorithm begins, an initial set of visitors
are pushed on the queue and may generate other visitors in turn.
Processing completes when all visitors have completed, which is
determined by a distributed quiescence detection algorithm [24].

Our prototype extends HavoqGT to support dynamic graphs:
it hides the complexities of ingesting, routing, and managing
of the algorithmic events generated, and instead offers a simple
programming abstraction for dynamic algorithm implementation
as described in Section [[II-A] Algorithm [3] presents, at the
high-level, how the topology evolution and algorithm-related
events link into the HavoqGT infrastructure.

Prototype Limitations. Our current implementation has two
major limitations: first, while the intention and design is to sup-
port multiple algorithms concurrently while analyzing an evolving
graph topology, the current prototype only supports hooking in
one algorithm. Second, our global state collection is a preliminary
implementation of the algorithm described in Section

IV. DYNAMIC ALGORITHMS

We describe in detail four incremental REMO algorithms we
have implemented based on our event-centric design (Section
and programming model (Section |[II-A).

1. Breadth First Search: As previously described, BFS can be
thought of as a recursive algorithm (Algorithm [T). In order to
maintain a Breadth First search query upon an edge addition,
we simply apply the recursive step starting from the new edge
source (and using the edge source’s present level). This recursive
step becomes the update propagation event, and will flow to the
component newly connected by the edge addition, terminating
when the component is visited or the visited vertices all have
closer or equal proximity to the source. This design, built upon
the dynamic infrastructure, is shown in algorithm [ Note the
specification of the init() function, which needs to be called once
to specify the source vertex, and can be initiated at any time.
2. Single Source Shortest Path: SSSP is similar to BFS,
and unsurprisingly, uses almost identical code. The notable
difference is the implication of edge weights; as SSSP evaluates



Algorithm 3: Dynamic Algorithm Infrastructure

Algorithm 5: Single Source Shortest Path

class Vertex:

1
2 int ID, value
3 # Neighbour properties (e.g. 1 per edge).
4 map[int nbr_ID, int nbr_value] nbrs
5 static Graph=* graph
6 static Queuex* g
7
8 def VISIT (int
vis_ID, int vis_val, enum VISIT_TYPE, int weight):
9 switch (VISIT_TYPE) :
10 case /INIT':
11 init ()
12 case "ADD’ :
13 graph.insertEdge (vis_ID, this.ID, weight, this.nbrs)
14 add (vis_ID, vis_val, weight)
15 g.insert (vis_ID,
this.ID, this.value, weight, ’'REVERSE_ADD’)
16 case 'REVERSE_ADD’ :
17 graph.insertEdge (vis_ID, this.ID, weight, this.nbrs)
18 this.nbrs.set (vis_ID, vis_val)
19 reverse_add (vis_ID, vis_val, weight)
20 case 'UPDATE’ :
21 this.nbrs.set (vis_ID, vis_val)
22 update (vis_ID, vis_val, weight)
23
24 def update_nbrs (int property) :
25 for (nbr : this.nbrs.iterator())
26 g.insert (nbr, this.ID, property,
graph.getEdgeWeight (this.ID, nbr), ’'UPDATE’)
27
28 def update_single_nbr (int vertex_ID, int property):
29 g.insert (vertex_ID, this.ID, property,
graph.getEdgeWeight (this.ID, vertex_ID), ’'UPDATE’)
30
31 virtual init();
32 virtual add(int vis_ID, int vis_val, int weight);
33 virtual
reverse_add (int vis_ID, int vis_val, int weight);
34 virtual update (int vis_ID, int vis_val, int weight);
Algorithm 4: Breadth First Search
1 class BFSVertex: public Vertex:
2 def init () : # Begin traversal from this vertex.
3 this.value = 1;
4 update_nbrs (this.value);
5
6 def add(int vis_ID, int vis_val, int weight):
7 # If we are a new vertex, ensure level is inf.
8 if (this.value == 0):
9 this.value = MAX_INTEGER
10
11 def reverse_add(int vis_ID, int vis_val, int weight):
12 # If we are a new vertex, ensure level is inf.
13 if (this.value == 0):
14 this.value = MAX_INTEGER
15 # The rest of the logic is the same as update step.
16 update (vis_ID, vis_val)
17
18 def update (int vis_ID, int vis_val, int weight):
19 # Check if we have a lower level. (hop offset)
20 if (this.value < vis_val - 1):
21 # Notify back the visitor.
22 update_single_nbr (vis_ID, this.value)
23
24 # Check if they have a lower level. (hop offset)
25 elif (this.value > vis_val + 1):
26 this.value = vis_val + 1
27 # Need to send our new level to all neighbours.
28 update_nbrs (this.value)
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the path distance from source to all vertices, the resulting “cost
of a vertex relative to the source is the minimum sum of edge
weights required to reach the source. SSSP is implemented in the
same way as BFS — with a recursive update step. When an edge
is added to the graph, the source vertex already has a minimum
cost to the destination vertex, and thus, the update effectively
flows downward to update the newly connected vertices to, if
possible, reduce their cost to the source. (Algorithm [3). The stark
similarity in code to BFS is evident, however the actual execution
path of an instantiated algorithm is more data dependant, as the

1 class SSSPVertex: public Vertex:

2 def init(): # Begin traversal from this vertex.

3 this.value = 1

4 update_nbrs (this.value)

5

6 def add(int vis_ID, int vis_val, int weight):

7 # If we are a new vertex, ensure cost is inf.

8 if (this.value == 0):

9 this.value = MAX_INTEGER

10

11 def reverse_add(int vis_ID, int vis_val, int weight):
12 # If we are a new vertex, ensure cost is inf.

13 if (this.value == 0):

14 this.value = MAX_INTEGER;

15 # The rest of the logic is the same as update step.
16 update (vis_ID, vis_val, weight)

17

18 def update (int vis_ID, int vis_val, int weight):

19 # Check if we have a lower cost.

20 if (this.value < vis_val - weight):

21 # Notify back the visitor.

22 update_single_nbr (vis_ID, this.value);
23
24 # Check if they have a lower cost.
25 elif (this.value > vis_val + weight):
26 this.value = vis_val + weight
27 # Need to send our new cost to all neighbours.
28 update_nbrs (this.value)
Algorithm 6: Connected Components

1 class CCVertex: public Vertex {
2 def add(int vis_ID, int vis_val, int weight):
3 # If we are a new vertex, label us.
4 if (this.value == 0):
5 this.value = hash(this.ID)
6
7 def reverse_add(int vis_ID, int vis_val, int weight):
8 # If we are unlabeled (new), label us.
9 # (We know other vertex

dominates us, since same hash for order of add.)
10 if (this.value == 0):
11 this.value = vis_val
12 else:
13 # Otherwise, logic is same as update step.
14 update (vis_ID, vis_val, weight)
15
16 def update (int vis_ID, int vis_val, int weight) :
17 # Check if our component is the dominator.
18 if (this.value > vis_val):
19 # Notify back the visitor.
20 update_single_nbr (vis_ID, this.value)
21
22 # Their component is the dominator.
23 elif (this.value < vis_val):
24 this.value = vis_val
25 # Need to send our new label to all neighbours.
26 update_nbrs (this.value)

edge weights play a key role in the topology. This can cause
an entirely different data traversal pattern compared to BFS.

3. Connected Components: The CC algorithm does not require
an initiating vertex. However, the algorithm still maintains the
REMO properties like BFS and SSSP, by retaining a similar
recursive update step. For CC, this involves a form of label
propagation — each vertex primarily assumes it will “dominate”
the component it is attached to, and contacts all neighbours,
which will either accept and attempt to propagate the label further,
or reject it and reply back with their own label (Algorithm [).
Notably, this algorithm requires more logic upon the addition
of an edge (instead of through an inif() function), where the
algorithm applies a label to any new vertex added to the graph.
4. Multi S-T Connectivity: From a given source vertex S, a flow
outwards is established, and any vertex 7' can identify if they are
connected to the source. For our implementation of multi S-T con-
nectivity, we can vary the set of sources .S, and compute their con-
nectivity for all participating vertices (i.e. T is the set of all V).



Algorithm 7: Multi S-T Connectivity

class STVertex: public Vertex:
def init(): # Begin a source from this vertex.
this.value = this.value U this.ID
update_nbrs (this.value)

# Do nothing but wait.
def add(int vis_ID, int vis_val, int weight) :;

def reverse_add(int vis_ID, int vis_val, int weight):
# The logic is the same as update step.
update (vis_ID, vis_val, weight)

def update (int vis_ID, int vis_val, int weight):
if (this.value == vis_val):
pass # do nothing
# Check if our set is a pure SUPERset of theirs.
elif ((this.value U vis_val) == this.value):
# Notify back the visitor.
update_single_nbr (vis_ID, this.value)

g VS i g
SOCRXTITAUNRWN—~DOOETIRNN R WN —

21 # Check if our set is a pure SUBset of theirs.
22 elif ((this.value U vis_val) == vis_val):

23 # Apply their set, send to all neighbours.
24 this.value = this.value U vis_val

25 update_nbrs (this.value)

26

27 # There is a mix. Apply, broadcast to all.

28 else:

29 this.value = this.value U vis_val

30 update_nbrs (this.value)

The implementation of Multi S-T Connectivity is shown in algo-
rithm[7} When a vertex becomes connected to another, each shares
the subsets of .S that they have connectivity to, and each compare.
If a vertex is a superset (i.e. it already has connectivity to all
sources that the other had) it does nothing. If a vertex is a subset
(opposed to the other being the superset) it broadcasts its new con-
nectivity. Finally, if there is a mix of connectivity, it also broad-
casts, eventually causing an exchange of sets between the two.
Algorithm Design Insights. The above algorithms are
supported well in an incrementally dynamic system, as each can
be represented as a REMO strategy. Each employs some recursion:
a base case (an edge change), followed by a propagation step
(recursive update events). The second factor, monotonicity, is
unique for each — each algorithm has a distinct, correct answer
for a static graph (or a dynamic graph at some time 7'), and
a different way to derive that answer. However, in all cases this
answer is both convex and can be reached refined monotonically.

These REMO commonalities enable each algorithm to support
concurrent, asynchronous updates, as each algorithm effectively
“converges” to the correct state (i.e. the global minimum in
the convex solution space); there is no need to keep track of
ordering of events that impact different parts of the graph (only
relative ordering is needed), and events that impact the same
vertex are ordered in the infrastructure layer by the built-in
visitor queue in FIFO ordering.

V. EVALUATION

To fully evaluate the system, it is important to: (i) define
a credible baseline, as well as (ii) demonstrate the ability to
scale to realistically-sized workloads. To this end, this section
presents: (i) the comparison and analysis of the dynamic
infrastructure compared to a static equivalent (executing based
on the same framework), and (ii) scaling results when increasing
the compute resources and size of the resulting data.

A. Experimental Platform, Methodology, Workload

Experimental platform. The experimental platform is the Cata-
lyst cluster at Lawrence Livermore National Laboratory. Catalyst

TABLE I: Graphs used in experiments. RMAT graphs (Graph500
parameters) have a 16x undirected (32x directed) edge factor.
Graphs are made undirected with reverse edges where needed.

Name #Vertices #Edges  OnDiskSpace
Friendster [25] 65,608,366 3,612,134,270 61 GB
Twitter [20] 41,652,230 2,936,729,768 49 GB
SK2005 [26] 50,636,059 3,860,585,896 65 GB
Webgraph [27] 3,563,602,686  257,473,828,334 5.1 TB
RMAT(SCALE) 2(SCALE)  »(SCALE) 4 39

e.g. RMAT31 2,147,483,648 68,719,476,736

is an experimental data-intensive platform that has for each node
dual 12-core Intel Xeon E5-2695v2 (2.4 GHz) processors, 128
GB of memory, and Intel 910 PCI-attached NAND Flash. In
plots, one node means parallel MPI ranks over all 24 cores.
Experimental methodology. Plots of runtime present averages
over 10 runs. For algorithms with an initiation vertex, a vertex is
randomly pre-chosen so that is known to eventually lie within the
largest connected component, and the same vertex is chosen if
comparing across methods (e.g. static vs. dynamic). For dynamic
executions, edges are pre-randomized and ingested by reading
[source, destination] pairs from disk: these edges are read as
fast as possible (parallelized into one stream per MPI rank), in
order to understand the limitations of the dynamic construction
system by feeding it as much as it can handle — each rank
“pulling” a topology event as soon as local work is completed.
This is thus a saturation test, representing the maximum possible
event processing throughput. Any offered load lower than the
reported maximum performance can be handled in real-time.
Workloads. For evaluation we use large real world and
synthetic graphs, including the largest publicly-available
real-world graphs. These are presented in detail in Table [[| Note
that dynamic ingestion of static graphs is done randomly, as
these datasets provide only topology information.

B. Baseline Performance

Figure 3] showcases the result of several key runtime comparisons
on a single node. There are several comparisons in this figure:
first, the comparison of static construction (including compression
from input presented as [src, dst] pairs to Compressed Sparse
Row (CSR) format, and partitioning the components of the CSR
structure: one per MPI process) to dynamic construction (bottom
parts on the left and center bars); second, the comparison between
running the static algorithm run-time on top of the optimized
static graph construction and the graph constructed dynamically
(top parts on the left and center bars); and, third, comparing
both strategies mentioned so far (left and center, full bars) with
building the graph and updating the BFS solution while doing
it (right bar). We highlight the following comparisons.

Static vs. Dynamic — Graph Construction: One surprising
result is that constructing the static graph for use with algorithms
is only approximately 2x faster than the construction of a fully
dynamic graph. As expected [28]], the time to construct dwarfs
algorithm time for BFS; however, for static graphs, a relatively
large time to build the graph is often considered acceptable, as the
construction need only occur once and the resulting graph can be
used for multiple algorithms. This argument can also be applied
to the construction time of the dynamic data-structure: as shown,
one can use the constructed dynamic data-structure and execute
any known static algorithm on top of it. However, the dynamic
data-structure offers two clear advantages: (i) any change to
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Fig. 3: A comparison of static vs. dynamic strategies (1 node
i.e. 24 cores / MPI ranks, Twitter dataset). Y-axis represents
time to completion (seconds), and the X-axis the strategy used.
The first bar presents the static processing time: the time to
fully load the graph in memory (and perform the available
optimizations, e.g. using the CSR format), stacked with one
BFS execution. The second bar presents a scenario where the
graph is loaded as a dynamic graph (ingesting edges) and one
static BFS execution on the resulting final graph after all edges
have been ingested. The third bar presents a dynamic case that
overlaps graph construction with the BFS algorithm, keeping
a live, real-time queryable result during graph evolution.

the graph can be applied incrementally as a set of events, at
low cost, then any static algorithm can be applied to the new
graph, and (ii) a live algorithm can offer an observable solution
based on live events, where a query for local or global state can
be initiated at any time before, during, or after construction.
Static vs. Dynamic — Algorithms: In Figure [3] we also present
two different algorithms: static BFS executed on either the static
or the dynamically built graph data—structureEL (top bars, left
and center) as well as a dynamic BFS query representing an
observable query across the entire life span of graph construction
(right bar). There is a clear overhead in executing a static
algorithm on top of the dynamic structure, and the primary reason
is that the static construction has an advantage of compression.
As static graphs know a priori the degree of a vertex, and know it
will not change, we can use the CSR format — decreasing memory
requirements, and thus improving locality for neighbour iteration.
A second advantage is state storage: the static BFS writes to a pre-
defined buffer of size V' € P, the vertices within the given parti-
tion. This further increases locality for data writes for the static
case. However, for the static BFS on the dynamic data-structure,
each write is to a dynamic location within the DegAwareRHH
structure (represented as a vertex property)[18], as the size of V/
is dynamic. Future work could target improving this performance
for the static-on-dynamic use case, for example by intelligently
gathering a local vertex count, allocating a static query buffer
for the execution, and storing data there temporarily instead.
The right bar in Figure [3] presents the dynamic case that
overlaps graph construction and maintains a live, real-time
queryable result during graph evolution for the BFS algorithm.
The key takeaway is that while there is no observable overhead
compared to dynamically building the entire graph and then

3Unlike the static graph, the dynamic graph data-structure is built one edge
at the time, without any information about future edges in the stream (what they
are or how many there will be). Thus the possible data layout and partitioning
optimizations are severely limited.
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Fig. 4: An evaluation of global algorithm state collection for
BFS (16 nodes, RMAT edge generation). The X-axis represents
different intervals (in seconds from beginning ingestion), and the
Y-axis (left) the time for the solution to complete at that interval.
The left bars (the precise numbers presented in callouts) present
the dynamic state collection solution: the latency from asking for
the global algorithm state, to the concluded state collected across
all nodes. The right bars present how long it would take, given the
same graph topology and execution environment, to run the algo-
rithm statically (with no further edge ingestion). The size of the
graph (in edges) at the interval is presented on the Y-axis (right).

executing the static BFS (center bar), this strategy offers the
key advantage that the algorithm state is observable during
construction. This enables, for example, (i) simply triggering a
callback immediately after a node is connected to the source (or
has a path shorter than a specified length to the BFS source), or
(ii) collecting BFS algorithm state, i.e. the BFS tree, at any point
during construction, at a low cost, as we demonstrate below.

C. Global State Collection

In section [[II-D} we explained how global algorithm state can be
collected on-demand. To showcase the of this, in Figure EL we
perform an experiment ingesting random RMAT edges, and every
15 seconds, do two things: first, we measure the latency from
requesting an on-the-fly collection at the interval’s occurrence,
until the dynamic global state has converged (i.e. the dynamically
maintained algorithm data for BFS at that discrete time point is
finalized). Second, we run a traditional static BFS algorithm on
the given topology (as if it were a pre-loaded snapshot), in order
to give a reference of how long it would take to compute the
algorithm state from scratch. Note that in this comparison, the
topology is in memory to begin with — a traditional snapshotting
solution would first have to load topology, adding overhead.
As Figure [] shows, the latency from the user-defined
time-point until the global algorithm state is collected is in the
order of hundreds of milliseconds, which is in stark contrast
to the high overhead of computing a static algorithm on the
same topology from scratch. We note that part of this advantage
is obtained with high probability, but not guaranteed: an
adversarial graph and query could be constructed to achieve
a worst case scenario. For example, the event ingested right
before initiating the collection of global state could trigger large
cascading BFS events; in this case, the static algorithm presents
an upper bound. A further limitation is prioritization between
topology and algorithmic events: in the best case there is no
overhead, but for shared resources there is a small tradeoff
between latency and maximum event ingestion rate. For this
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Fig. 5: Performance results for queries on real-world graphs. The Y-axis denotes events per second (log scale), while the X-axis
denotes the graph and algorithm applied (CON being construction only). Each bar represents the performance for scaling node
count. Note: due to its size, the Webgraph only fits in memory on 128 nodes.
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Fig. 6: Synthetic scaling results, scaling up RMAT graph size
and node count. The BFS algorithm state is maintained during
the dynamic construction. The Y-axis (log scale) denotes events
per second, while the X-axis (log scale) denotes the compute
node count. The key take-away is that, given similar graph
structure, the size of the graph does not impact event processing
rate (good weak scaling).

evaluation, we highlight absolute costs from ingestion saturation,

but future work could seek to explore this tradeoff.

D. Dynamic Algorithm Query on Real Graphs

Figure [5] showcases each algorithm across the real-world
datasets. The experiments highlight two key points: first, the
cost of maintaining an algorithm with observable results during
the construction had a low impact on performance compared
to the construction-only execution (labeled CON). The reason
for this is, by overlapping the graph construction with the
updating algorithm, the cost of messaging a neighbour to update
their state is often amortized by latching to the construction
of the edge to that neighbour. Second, the resulting structure
and topology of the dynamic graph created a slightly different
performance pattern for each dataset, for both construction
alone as well as with a dynamic algorithm.

E. Strong and Weak Scaling for Incremental BFS

Figure [6] shows the result of scaling on the synthetic RMAT
datasets, while maintaining the BFS algorithm. The result shows
good scalability: with an almost linear speedup with compute
node count for the same graph, and, more importantly, the
size of the graph did not significantly impact maximum event
rate. This means scalability on two fronts: first, for a single
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Fig. 7: Scaling of multiple sources in S-T Connectivity, on
the Twitter dataset. The Y-axis denotes events per second (log
scale), while the X-axis denotes the compute node count. Each
line represents a number of independent connectivity sources:
from 0 (construction only) to 64.

event stream, doubling the node count will almost double the
maximum ingestion rate. Second, as a graph grows in size over
time, the maximum event rate is not significantly impacted due
to the increased scale. In other words, the event ingestion rate
is more closely tied with the structure of the graph topology
(noting the differences in the real world graphs in figure ),
rather than the growth of the graph.

These properties are extremely desirable for this type of
framework, as improving performance in a dynamic environment
is paramount not only for the “wait for an answer” time, but
also the source event rate which the system can handle. For
these results, we show the system can scale to handle event rates
of at least 400 million, and at best 1.3 billion edge events per
second for a single, queryable algorithm on 128 nodes (3,072
cores). This high event processing rate suggests significant
room to add complexity to algorithms, while remaining within
processing requirements of real-time event sources.

F. Multi S-T Connectivity

The S-T Connectivity algorithm was designed to support multiple
sources, and allows each vertex to independently know its con-
nectivity status to any source S;. Each source has an independent
“flow” associated with it, and thus it makes a good baseline to
gauge increasing the number of available queries: the connectivity
queries enabled by this algorithm are dependant on the number



of sources chosen, as a query can execute user-defined behaviour
when connectivity occurs from any vertex to any S; € S.

In figure[7] we show the impact of increasing the number of con-
nectivity sources maintained dynamically, with a baseline of zero
(construction only), on the Twitter dataset. The figure shows that,
similar to the scaling results, doubling the node count gives a near
doubling of maximum event rate, although the performance does
taper off when the available work per node decreases too much.
When doubling the number of sources however, the performance
suffers non-linearly: the first few added sources do not greatly
impact performance (for example, from one source to two induced
less than a 10% cost), but the performance nearly halves after dou-
bling the set of sources. The likely explanation for the difference
in performance rate is due to seeing bottlenecks in messaging or
buffer sizes. Regardless, the system is able to scale to over 160
million maximum events per second, for 64 concurrent sources.

VI. DISCUSSION

While this paper demonstrates the feasibility and the benefits of (i)
a graph processing system that maintains live algorithm state up-
dated dynamically as a result of topology changes, and (ii) a class
of algorithms that can be implemented in this style for incremen-
tal graphs, there are two important questions that should be dis-
cussed. The first is "Why is this better than a batching solution?”
and the second is, "How would one support delete events?”

A. Comparison to Snapshot/Batching Solutions

Although difficult to quantitatively evaluate beyond the arguments
brought forward in the previous section, it is important to stress
the advantages of the approach we propose. In our system, if
a user queries for global state at a discrete time point, the result
returned is functionally equivalent to a snapshot (or processing
of a batch) that ended at that specific time point. In figure i we
chose specific intervals for global state collection — however, the
design we provide supersedes a snapshotting solution, as it is
continuous: (i) at any time desired a global state snapshot can be
collected on-the-fly and in near real-time, and (ii) it further offers
the ability to query and generate trigger events based on local
vertex state over time. The vertex information offered via local
state can be critical for real-time sensitive systems, and while
the latency for snapshot systems offering a response is the entire
time between snapshots, the continuous solution we present both
captures causality and offers consistent, minimal latency.

In the experimental evaluation, we mostly focused on the
event processing rate. It is important to make clear, however,
that during each dynamic experiment the following system
properties always held true:

= Any vertices’ local state can be observed in constant time.

= Any user-defined callback could have been triggered whenever
any vertices’ local state matches a user-defined value.

= Any change(s) to the topology of the graph can be applied
immediately, at any time.

= Any known static graph algorithm (not restricted to the set of
algorithms presented here) could be applied on the dynamic
graph whose evolution is paused or concluded.

» Global algorithm state can be collected at any discrete time
before, during, or after modifications, without pausing or
significantly affecting the on-going computations (as it can
be done asynchronously in parallel).

B. Supporting Decremental Events

Although delete events are typically rarer in dynamic graphs
(with many having none), an algorithm designer may wish to
handle their occurrence asynchronously and concurrently with
add events (note that it is trivial, yet costly, to handle delete
events synchronously, by using a stop-the-world strategy). Here
we outline a strategy that would provide this functionality.

Our solution for the REMO algorithms is based on two of
their properties: (i) each topology event (i.e. edge-add) can only
monotonically move an identified algorithmic property towards a
lower state, and (ii) upon recursion termination, the solution will
converge to the minimum state possible, which is also the solution
of the problem. These properties do not hold true anymore once
we introduce delete events (e.g. in the case of BFS, while edge-
add events will always reduce or maintain constant distance
between the source and any graph node — thus maintaining
monotonicity — edge deletes may increase this distance).

To address this issue we introduce state generations. We define
the new monotonic state to be determined: (i) firstly by the gener-
ation of the algorithmic state, and only secondly by (ii) the actual
algorithmic state. By having the generation as the primary factor,
we can avoid situations that would otherwise break monotonicity:
if an algorithmic action would break monitonicity (e.g., an edge
delete leads to increasing distance to BFS source) we move the
state into a new generation. Effectively, the action creates a new
total state that is within a convex space lower than all possible
other states within the current generation, and thus despite
increasing its algorithm state, it is overall in a more minimal state.

While deletion events done in this generational fashion may
have a high overhead, generally, the ratio of delete to add events
is low, and many delete events can be treated as special cases
(e.g. deletion of singletons, or edges connecting a leaf node).
Further, a rewriting of data at this magnitude may also happen in
an incremental only solution — but, similarly, only in the worst
case. While we initially discuss here an operation that may often
cause cascades, this provides a correct solution as a starting point
and future optimizations will reduce complexity and reduce the
occurrences of worst-case scenarios (e.g. such as maintaining
spanning trees [135]] and only reacting on tree cutting).

VII. RELATED WORK

Dynamic graphs have been well explored in a sequential context,
with previous work being done to bound per-update timings for
algorithms such as connectivity and spanning trees [14] [15].
This past work assumes global access to state (i.e. through
shared memory or synchronization), and each edge change is
processed atomically and synchronously. Rather than serializing
events, our work targets real-time performance with concurrent
asynchronous updates to topology — and thus requires an entirely
different design space for algorithms that must be resilient to
complex asynchronous interactions.

Comparison to other works, especially regarding performance,
is difficult, with much of the previous work on “dynamic graphs”
actually being solutions that use snapshotting rather than true
on-line processing [6][7][13]. The closest related work is that of
STINGER, a shared memory solution which can ingest structural
changes at a rate of 10 million events per second with an updating
kernel peak rate of around 1 million events per second [8]][L6].
Notably, in our implementation the algorithms run concurrently



with graph structure changes, so our events per second metrics

presented are more closely comparable to the updating kernel rate.

There are multiple fundamental differences between
STINGER and our work: (i) we do not batch or serialize
events (each of our events are treated asynchronously, with
the relative ordering defined: events in the same stream are
ordered, events in different streams are not), (ii) we do not use
shared memory (nor locking or atomics), (iii) our solution is
real-time and on-line, thus none of our algorithms or designs
require stopping the world (i.e. the event stream) for any reason,
and (iv) the initialization or instantiation of our algorithms is
done implicitly and at any time (as opposed to requiring update
kernels), regardless of the current state of the world.

An algorithmic model for streaming graphs was also recently
presented [29], which explores a similar design philosophy to
our work, showing a set of algorithms that can be updated in a
concurrent manner and maintain validity. Like our design, they

target algorithms running concurrently with structural changes.

However, the key difference in our philosophy is that of avoiding

batching of update events and the avoidance of shared memory.

With our REMO design, we show that if an algorithm can be made
to always monotonically move towards a deterministic solution,
the event concurrency can always be satisfied. Unfortunately,

this work did not present an implementation to compare against.

VIII. CONCLUSION

As this work shows, offering better support for on-line algorithms
on dynamically evolving graphs is a path that continues to
be fruitful. First, this work demonstrates that many common
graph algorithms belong to a class of algorithms that have two
key properties, recursive updates and monotonic convergence,
which enables their ability to support incremental processing
and live queries. Second, this work presents an event-based
framework to support this class of algorithms, demonstrating
a good performance range compared to static solutions, and
exceeds the existing event rates in existing systems by several
orders of magnitude. Third, a dynamic graph data-structure is
feasible to build and scale, while offering key advantages against
static ones: namely, any change to the graph can be applied at
low cost, then any static algorithm can be applied to the new
graph, and any live algorithm can be observed at any time before,
during, or after dynamic construction or modifications. Finally,
the evaluation in this paper shows promising scalability results:
the event-based framework scales nearly linearly, and shows
support for real-time analysis on up to 1.3 billion edge events per
second on 128 compute nodes — suggesting that a large amount
of room for additional algorithmic complexity is available.
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