Integro: Leveraging Victim Prediction for Robust Fake
Account Detection in Large Scale OSNs

Yazan Boshmaf** Dionysios Logothetis®, Georgos Siganos?, Jorge Leria,
Jose Lorenzod, Matei Ripeanu®, Konstantin Beznosov®, Hassan Halawa®

*Qatar Computing Research Institute, HBKU, Doha, Qatar
b Telefonica Research, Barcelona, Spain
¢ University of British Columbia, Vancouver, Canada
4 Tuenti, Telefonica Digital, Madrid, Spain

Abstract

Detecting fake accounts in online social networks (OSNs) protects both
OSN operators and their users from various malicious activities. Most de-
tection mechanisms attempt to classify user accounts as real (i.e., benign,
honest) or fake (i.e., malicious, Sybil) by analyzing either user-level activi-
ties or graph-level structures. These mechanisms, however, are not robust
against adversarial attacks in which fake accounts cloak their operation with
patterns resembling real user behavior.

In this article, we show that victims—real accounts whose users have
accepted friend requests sent by fakes—form a distinct classification category
that is useful for designing robust detection mechanisms. In particular, we
present Integro—a robust and scalable defense system that leverages victim
classification to rank most real accounts higher than fakes, so that OSN
operators can take actions against low-ranking fake accounts. Integro starts
by identifying potential victims from user-level activities using supervised
machine learning. After that, it annotates the graph by assigning lower
weights to edges incident to potential victims. Finally, Integro ranks user
accounts based on the landing probability of a short random walk that starts
from a known real account. As this walk is unlikely to traverse low-weight
edges in a few steps and land on fakes, Integro achieves the desired ranking.

*Corresponding author. Tel.: +1 (604) 822-2872.
Email address: boshmaf@ece.ubc.ca (Yazan Boshmaf).
Work done while at the University of British Columbia.

Preprint submitted to Computers € Security May 29, 2016

boshmaf@ece.ubc.ca

We implemented Integro using widely-used, open-source distributed com-
puting platforms, where it scaled nearly linearly. We evaluated Integro against
SybilRank, which is the state-of-the-art in fake account detection, using real-
world datasets and a large-scale deployment at Tuenti—the largest OSN in
Spain with more than 15 million active users. We show that Integro signifi-
cantly outperforms SybilRank in user ranking quality, with the only require-
ment that the employed victim classifier is better than random. Moreover,
the deployment of Integro at Tuenti resulted in up to an order of magnitude
higher precision in fake account detection, as compared to SybilRank.

Keywords: Online social networks, fake account detection, victim account
prediction, social infiltration, socialbots

1. Introduction

The rapid growth of online social networks (OSNs), such as Facebook,
Tuenti, RenRen, and LinkedIn, has been followed by an increased interest in
abusing them. Due to their open nature, OSNs are particularly vulnerable
to the Sybil attack [1], where an attacker creates multiple fake accounts, each
called a Sybil, and joins a target OSN for various adversarial objectives.

1.1. Motwwation

In its 2014 earnings report, Facebook estimated that 15 millions (1.2%) of
its monthly active users are in fact “undesirable,” representing fake accounts
that are used in violation of the site’s terms of service [2]. For such OSNs, the
existence of fakes leads advertisers, developers, and investors to distrust their
reported user metrics, which negatively impacts their revenues [3]. Attackers
create and automate fake accounts for various malicious activities, including
social spamming [4], malware distribution [5], private data collection [6], and
even political astroturfing [7]. It is thus important for OSNs to detect fake
accounts as quickly and accurately as possible.

1.2. Research Problem

Most OSNs employ defense systems that automatically flag fake accounts
by analyzing user-level activities or graph-level structures. As automated
account suspension is inapplicable in practice [§], these accounts are pooled
for manual verification by experienced analysts, who maintain a ground-truth
for fake and real accounts [9].

Traditionally, there are two main approaches for detecting fake accounts.
In the first approach, unique features are extracted from user activities (e.g.,
frequency of friend requests, fraction of accepted requests), after which they
are applied to a binary fake account classifier that has been trained offline us-
ing machine learning techniques [9]. In the second approach, an OSN is mod-
eled as a graph, with nodes representing user accounts and edges representing
social relationships (e.g., friendships). Given the assumption that fakes can
befriend only few real accounts, the graph is partitioned into two regions sep-
arating real accounts from fakes, with a narrow passage between them [10].
While these techniques are effective against naive attacks, various studies
showed they are inaccurate in practice and can be easily evaded [11], 6], 12].
For example, an attacker can cheaply create fakes that resemble real users,
circumventing feature-based detection, or use simple social engineering tac-
tics to befriend a large number of real users, invalidating the assumption
behind graph-based detection.

To accommodate these shortcomings, we consider attackers who can cre-
ate and automate fake accounts on a large scale (i.e., operate of network of
malicious socialbots [6} [15]). Each automated fake account can perform so-
cial activities similar to those of real users, including befriending other users.
As such, we tackle the following question under this threat model: “How can
we design an effective and efficient defense mechanism that aids OSNs in
detecting automated fake accounts?”

1.3. Importance and Implications

If an OSN can detect fakes efficiently and effectively, it can improve the
experience of its users by thwarting spam messages and other abusive con-
tent. In addition, the OSN can increase the credibility of its user metrics
and enable third parties to consider its user accounts as authentic digital
identities [I3]. Moreover, the OSN can better utilize the time of its ana-
lysts who manually inspect and validate accounts. For example, Tuenti—the
largest OSN in Spain with 15M active users—estimates that only 5% of the
accounts inspected based on user reports are in fact fake, which signifies the
inefficiency of this manual process [8]. The OSN can also selectively enforce
abuse mitigation techniques, such as CAPTCHA challenges [9] and photo-
based social authentication [14], to suspicious accounts while running at a
lower risk of annoying benign, real users.

1.4. Proposed Solution

We present Integro—a robust and scalable defense system that helps OSN
operators identify fake accounts, which can befriend many real accounts, via
a user ranking scheme We designed Integro for OSNs whose users declare
bidirectional social relationships (e.g., Tuenti, Facebook, RenRen, LinkedIn),
with the ranking process being completely transparent to users. While the
ranking scheme is graph-based, the graph is preprocessed first and annotated
with information derived from feature-based detection techniques. This new
approach of integrating user-level activities into graph-level structures posi-
tions Integro as the first feature-and-graph-based detection mechanism.

Our design is based on the observation that victims—real accounts whose
users have accepted friend requests sent by fakes—are useful for designing
robust fake account detection mechanisms. In particular, Integro uses basic
account features, which are cheap to extract from user-level activities (e.g.,
gender, number of friends, time since last update), to train a victim classi-
fier in order to identify potential victims in the OSNs. As attackers do not
control victim accounts nor their activities, a victim classifier is inherently
more resilient to adversarial attacks than a similarly-trained fake account
classifier. Moreover, as victims are directly connected to fakes in the graph,
they represent a natural “borderline” that separates real accounts from fakes.

Integro makes use of this observation by assigning lower weights to edges
incident to potential victims, after which it ranks user accounts based on
the landing probability of a modified random walk that starts from a known
real account. In particular, the walk is “short,” as it is terminated early
before it converges. The walk is also “supervised,” as it is biased towards
traversing nodes that are reachable through higher-weight paths. Therefore,
this modified random walk is likely to stay within the subgraph consisting
of real accounts, and so most real accounts receive higher ranks than fakes.
Unlike SybilRank [8], which is the state-of-the-art in fake account detection,
we do not assume sparse connectivity between real and fake accounts. This
makes Integro the first fake account detection system that is robust against
social infiltration, where fakes befriend a large number of real accounts [15].

'In Spanish, the word “integro” means integrated, which suites our approach of inte-
grating user-level activities into graph-level structures.

1.5. Security Guarantee

For an OSN consisting of n accounts, Integro takes O(nlogn) time to
complete its computation. For attackers who randomly establish a set E,
of edges between victim and fake accounts, Integro guarantees that at most
O(vol(E,)logn) fakes are assigned ranks similar to or higher than real ac-
counts in the worst case, where the volume vol(E,) is the sum of weights on
edges in E,. This bound represents an improvement factor of O (| E,|/vol(E,))
over SybilRank. In addition, even with a random victim classifier that labels
each account as a victim with 0.5 probability, Integro ensures that vol(E,) is
at most equals to |E,|, resulting in the same asymptotic bound as SybilRank.

In other words, Integro outperforms SybilRank using a victim classifier
that is better than random and yields the same performance if a random
victim classifier is employed. For a complete formal analysis of the security

guarantee provided by Integro, we refer the interested reader to
[A] and [Appendix B}

1.6. Ewvaluation Results

We systematically evaluated Integro against SybilRank under different at-
tack scenarios using real-world datasets collected from Facebook and Tuenti,
in addition to a large-scale deployment on the latter OSN. We chose Sybil-
Rank among others because it was shown to outperform known contenders [§],
including EigenTrust [16], SybilGuard [I7], SybilLimit [I§], Sybillnfer [19],
Mislove’s method [20], and GateKeeper [21]. In addition, as SybilRank de-
pends on a user ranking scheme that is similar to ours—although on an
unweighted graph—evaluating against SybilRank allowed us to clearly show
the impact of leveraging victim classification on fake account detection.

The evaluation results show that Integro consistently outperforms Sybil-
Rank in ranking quality, especially as the fakes infiltrate an increasing num-
ber of victims, that is, as F, grows large. In particular, Integro resulted in
up to 30% improvement over SybilRank in the area under ROC curve (AUC)
of the ranking, which represents the probability that a random real account
is ranked higher than a random fake account [20]. In fact, Integro achieved
an AUC greater than 0.92 as |E,| increased, while SybilRank resulted in an
AUC as low as 0.71 under the same setting.

In practice, the deployment of Integro at Tuenti resulted in up to an order
of magnitude higher precision in fake account detection, where ideally fakes
should be located at the bottom of the ranked list. In particular, for the
bottom 20K low-ranking users, Integro achieved 95% precision, as compared

to 43% by SybilRank and 5% by Tuenti’s user-based abuse reporting sys-
tem. More importantly, the precision significantly decreased as we inspected
higher ranks in the list, which means Integro consistently placed most of the
fakes at the bottom of the list, unlike SybilRank. The only requirement for
Integro to outperform SybilRank is to train a victim classifier that is better
than random. This can be easily achieved during the cross-validation phase
by deploying a victim classifier with an AUC greater than 0.5. In our de-
ployment, the victim classifier was 52% better than random with an AUC of
0.76, although it was trained using low-cost features.

We implemented Integro on top of Mahou and Girap, which are widely
deployed, open-source distributed machine learning and graph processing
systems, respectively. Using a synthetic benchmark of an OSN consisting of
up to 160M users, Integro scaled nearly linearly with number of users. For
the largest graph with 160M nodes, it took Integro less than 30 minutes to
finish its computation on 33 commodity machines.

1.7. Contributions
In summary, this work makes the following contributions:

o Leveraging victim classification for fake account detection. We designed
and analyzed Integro—a fake account detection system that relies on
a novel technique for integrating user-level activities into graph-level
structures. Integro uses supervised machine learning with features ex-
tracted from user-level activities to identify potential victims of fakes.
By weighting the graph such that edges incident to potential victims
have lower weights than others, Integro guarantees that most real ac-
counts are ranked higher than fakes. These ranks are derived from the
landing probability of a modified random walk that starts from a known
real account. To our knowledge, Integro is the first detection system
that is robust against adverse manipulation of the graph, where fakes
follow an adversarial strategy to befriend a large number of accounts,
real or fake, in order to evade detection (Sections [3] and [4)).

o Implementation and evaluation. We implemented Integro on top of
open-source distributed systems that run on commodity machines with-

Zhttp://mahout.apache.org
3http://giraph.apache.org

http://mahout.apache.org
http://giraph.apache.org

out specialized hardware. We evaluated Integro against SybilRank us-
ing real-world datasets and a large-scale deployment at Tuenti. In
practice, Integro has allowed Tuenti to detect at least 10 times more
fakes than their current user-based abuse reporting system, where re-
ported users are not ranked. With an average of 16K flagged accounts
a day [8], Integro has saved Tuenti hundreds of man hours in manual
verification by robustly ranking user accounts (Sections [5| and @

2. Background and Related Work

We first outline the threat model we assume in this work. We then present
required background and related work on automated fake account detection,
social infiltration, analyzing victim accounts in OSNs, abuse mitigation, and
maintaining a ground-truth.

2.1. Threat Model

We focus on OSNs such as Facebook, RenRen, and Tuenti, which are open
to all and allow users to declare bilateral relationships (i.e., friendships).

2.1.1. Capabilities

We consider attackers who are capable of creating and automating user
accounts, or fakes, on a large scale [15]. Each fake account, also referred to
as a socialbot [22], can perform social activities similar to those of real users.
This includes sending friend requests and posting social content. We do not
consider attackers who are capable of hijacking real accounts, as there are
existing detection systems that tackle this threat, such as COMPA [23]. We
focus on detecting fake accounts that can befriend a large number of benign
users in order to mount subsequent attacks, as we describe next.

2.1.2. Objectives

The objectives of an attacker include distributing spam and malware,
misinforming the public, and collecting private user data on a large scale. To
achieve these objectives, the attacker has to infiltrate the target OSN by using
the fakes to befriend a large number of real accounts. Such an infiltration
is required because isolated fake accounts cannot directly interact with or
promote content to users in the OSN [15]. This is also evident by a thriving
underground market for social infiltration. For example, attackers can have
their fake accounts befriend 1K users on Facebook for $26 or less [24].

2.1.3. Victims

We refer to accounts whose users have accepted friend requests from fake
accounts as victims. We refer to friendships between victim and fake accounts
as attack edges. Victim accounts are a subset of real accounts, which are
accounts created and controlled by benign users who socialize with others
in a non-adversarial setting. Also, we refer to accounts whose users are
more susceptible to social infiltration and are likely to be victims as potential
victims. We use the terms “account,” “profile,” and “user” interchangeably
but make the distinction when deemed necessary.

2.2. Fake Account Detection

From a systems design perspective, most of today’s fake account detection
mechanisms are either feature-based or graph-based, depending on whether
they utilize machine learning or graph analysis techniques in order to identify
fakes. Next, we discuss each one of these approaches in detail.

2.2.1. Feature-based detection

This approach relies on user-level activities and its account details (i.e.,
user logs, profiles). By identifying unique features of an account, one can clas-
sify each account as fake or real using various machine learning techniques.
For example, Facebook employs an “immune system” that performs real-time
checks and classification for each read and write action on its database, which
are based on features extracted from user accounts and their activities [9).

Yang et al. used a ground-truth provided by RenRen to train an SVM
classifier in order to detect fake accounts [25]. Using simple features, such as
frequency of friend requests, fraction of accepted requests, and per-account
clustering coefficient, the authors were able to train a classifier with 99%
true-positive rate (TPR) and 0.7% false-positive rate (FPR).

Stringhini et al. used honeypot accounts to collect data describing various
user activities in OSNs [26]. By analyzing the collected data, they were able
to build a ground-truth for real and fake accounts, with features similar to
those outlined above. The authors trained two random forests classifiers to
detect fakes in Facebook and Twitter, ending up with 2% FPR and 1% false-
negative rate (FNR) for Facebook, and 2.5% FPR and 3% FNR for Twitter.

Wang et al. used a click-stream dataset provided by RenRen to cluster
user accounts into “similar” behavioral groups, corresponding to real or fake
accounts [27]. The authors extracted both session and clicks features, includ-
ing average clicks per session, average session length, the percentage of clicks

used to send friend requests, visit photos, and share content. With these
features, the authors were able to calibrate a cluster-based classifier with 3%
FPR and 1% FNR, using the METIS clustering algorithm [2§].

Fire et al. developed the Social Privacy Protector (SPP) software, which
is a set of applications for Facebook that aim to improve user account pri-
vacy [29]. The applications analyze a user’s friends list in order to determine
accounts that may pose a risk to the user’s privacy. Such accounts could then
be restricted by users from accessing their profile information. Using data
collected from the SSP deployment on Facebook, the authors tested several
machine learning classifiers to detect fake accounts, including Naive Bayes,
Rotation Forest and Random Forest.

Viswanath et al. used unsupervised anomaly detection techniques in or-
der to identify accounts that demonstrate malicious behavior, such as fake,
compromised or colluding accounts [30]. The authors presented a technique
that is able to accurately model the typical behavior of user accounts and
to correctly identify significant deviations from the norm, based on Principle
Component Analysis (PCA). The presented technique makes use of temporal,
spatial and spatio-temporal features as input features. Using ground-truth
data from Facebook, the authors evaluated the PCA-based classifier demon-
strating a detection rate of over 66% with a FPR of less than 0.3%.

Other approaches to detect fake accounts are based on the observation
that, in a variety of OSN applications, fake accounts tend to perform loosely
synchronized actions from a limited set of IP addresses. Based on this ob-
servation, Cao et al. designed and implemented a feature-based malicious
account detection system called SynchroTrap [31]. SynchroTrap uses a single-
linkage hierarchical clustering algorithm to detect similarities in user actions
in order to identify fake accounts. The authors deployed SynchroTrap at
Facebook, where it was able to detect more than two million fake accounts.
Similarly, Stringhini et al. developed EvilCohort [32], a system that is ca-
pable of detecting accounts that are accessed by a common set of infected
machines such as a botnet. EvilCohort only requires that a mapping exists
between online accounts and IP addresses in order to detect malicious ac-
counts on any type of online web service (e.g., OSNs, webmail). only builds
a bipartite graph between the set of online accounts and the set of IP ad-
dresses, and performs clustering in order to find account communities that
are accessed by a common set of IP addresses. The authors evaluated Evil-
Cohort on two real-world datasets, and it was able to identify more than one
million malicious accounts.

Even though feature-based detection scales to large OSNs, it is still rela-
tively easy to circumvent. This is because it depends on features describing
activities of known fakes in order to identify unknown ones. In other words,
attackers can evade detection by adversely modifying the content and ac-
tivity patterns of their fakes, leading to an arms race [33], 34, B5]. Also,
feature-based detection does not provide any formal security guarantees and
often results in a high FPR in practice. This is partly attributed to the large
variety and unpredictability of behaviors of users in adversarial settings [§].

With Integro, we use feature-based detection to identify potential victims
i a non-adversarial setting. In particular, the dataset used to train a victim
classifier includes features of only known real accounts that have either ac-
cepted or rejected friend requests send by known fakes. As real accounts are
controlled by benign users who are not adversarial, a feature-based victim ac-
count classifier is harder to circumvent than a similarly-trained fake account
classifier. As we discuss in Section 4] we only require the victim classification
to be better than random in order to outperform the state-of-the-art in fake
account, detection.

2.2.2. Graph-based detection

As a response to the lack of formal security guarantees in feature-based
detection, the state-of-the-art in fake account detection utilizes a graph-based
approach instead. In this approach, an OSN is modeled as a finite graph, with
nodes representing user accounts and edges between nodes representing social
relationship. Assuming that fake accounts can establish a small and limited
number of attack edges, the subgraph induced by the set of all real accounts
is sparsely connected to fakes, that is, the cut over attack edges is sparse.ﬁ
Graph-based detection mechanisms make this assumption, and attempt to
find such a sparse cut with formal guarantees [36], 37, [38]. For example, Tuenti
employs SybilRank to rank accounts according to their perceived likelihood
of being fake, based on structural properties of its social graph [§].

Yu et al. were among the first to utilize social networks to defend against
Sybil attacks in peer-to-peer and other distributed systems (e.g., DHTSs) [17,
I18]. The authors developed a technique that labels each account as either fake
or real based on multiple, modified random walks. This binary classification

4A cut is a partition of nodes into two disjoint subsets. Visually, it is a line that cuts
through or crosses over a set of edges in the graph (see Fig. .

10

is used to partition the graph into two smaller subgraphs that are sparsely
interconnected via attack edges, separating real accounts from fakes. They
also proved that in the worst case O(|E,|logn) fakes can be misclassified,
where |E,| is the number of attack edges and n is the number of accounts in
the graph. Accordingly, it is sufficient for the attacker to establish Q(n/logn)
attack edges in order to evade this detection scheme with 0% TPR.

Fire et al. proposed a technique that allows for the detection of malicious
profiles, such as fake and spam accounts, using topological features extracted
from a social network [39]. Based on the observation that OSNs are scale-free
and have a community structure where legitimate users are typically members
of only a small group of communities, the approach uses the social graph’s
topology to detect malicious accounts that randomly connect to other users
from different communities. The proposed technique was evaluated on several
social networks, including Google+, and was demonstrated to be effective in
detecting fake and spam accounts.

In order to detect fake accounts that engage in friend request spamming
in OSNs, Cao et al. proposed a system called Rejecto [40]. Rejecto is based
on the premise that friend request rejections could potentially be used to
identify fake accounts. The authors propose a technique that partitions a
social graph into two regions: friend spammers (fake accounts) and legitimate
users. The partitioning is done such that the aggregate acceptance rate of
friend requests between the two partitions is minimized. The authors extend
the Kerninghan-Lin heuristic in order to obtain the graph cut, and thus, were
able to detect fake accounts that engage in friend spamming.

Viswanath et al. employed traditional community detection techniques to
identify fake accounts in OSNs [20]. In general, community detection decom-
poses a given graph into a number of tightly-knit subgraphs that are loosely
connected to each other, where each subgraph is called a community |41}, [42].
By expanding a community starting with known real accounts [43], the au-
thors were able to identify the subgraph which contains mostly real accounts.
Recently, however, Alvisi et al. showed that such a local community detec-
tion technique can be easily circumvented if fake accounts establish sparse
connectivity among themselves [10].

As binary classification often leads to high FPR [20], Cao et al. proposed
user ranking instead so that most fake accounts are ranked lower than real
accounts [8]. The authors developed SybilRank, a fake account detection
system that assigns each account a rank describing how likely it is to be fake
based on a modified random walk, in which a lower rank means the account is

11

more likely to be fake. They also proved that O(|E,|logn) fakes can outrank
real accounts in the worst case, given the fakes establish |E,| attack edges
with victims at random.

Cao et. al proposed SybilFence [44], which improves on prior social graph-
based Sybil detection techniques. In essence, SybilFence is based on the ob-
servation that fake accounts will inevitably receive a significant amount of
negative user feedback over the course of their operation. As such, the au-
thors proposed discounting the weights on the social edges of users that have
received negative feedback with the goal of limiting the impact of the attack
edges of Sybil accounts. This weighted-graph ranking model thus attempts
to reduce the aggregate value of Sybil attack edges thereby improving Sybil
account detection accuracy. The authors adapted SybilRank [§] in order to
implement the negative feedback user weighting scheme and, through simula-
tions, demonstrated an improvement of up to 20% in terms of the probability
of ranking non-Sybil users higher than Sybils.

While graph-based detection offers the desirable security guarantees, real-
world social graphs do not conform with the main assumption on which it
depends. In particular, various studies confirmed that attackers can infiltrate
OSNs on a large scale by deceiving users into befriending their fakes [11], 6]
12]. As we discuss next, social infiltration renders graph-based fake account
detection ineffective in practice.

With Integro, we do not assume fake accounts are limited by how many
attack edges they can establish. Instead, we identify potential victims of fakes
and leverage this information to weight the graph. Through a user ranking
scheme, we bound the security guarantee by the aggregate weight on attack
edges, vol(E,), rather than their number, |E,|. By assigning lower weights
to edges incident to potential victims, we were able to upper bound the value
of vol(E,) by |E,|, as we show in Section [4

2.8. Social Infiltration: A Case Study on Facebook

In early 2011, we conducted a study to evaluate how easy it is to infiltrate
large OSNs such as Facebook [6]. We used 100 automated fake accounts to
send friend requests to 9.6K real users, where each user received exactly one
request. We summarize the main results and implications in what follows.

2.3.1. Main results
We found that users are not careful in befriending other users, especially
when they share mutual friends with the requester. This behavior was ex-

12

ploited by the fakes to achieve large-scale social infiltration with a success
rate of up to 80%, in which case the fakes shared at least 11 mutual friends
with the victims. In particular, we reported two main results that are im-
portant for designing fake account detection systems. First, some users are
more likely to be victims than others, which partly depends on factors related
to their social structure. As shown in Fig. [B.Ta], the more friends a user had,
the more likely the user was to accept friend requests sent by fakes posing
as strangers, regardless of their gender or number of mutual friends. Second,
attack edges are generally easy to establish in OSN such as Facebook. As
suggested in Fig. B.Ib an attacker can establish enough attack edges such
that there is no sparse cut separating real accounts from fakes [38].

2.3.2. Implications

The study suggests that one can identify potential victims in OSNs from
user-level activities using low-cost features (e.g., number of friends). In ad-
dition, the study shows that graph-based detection mechanisms that rely
solely on the graph structure are not robust against social infiltration. As
social infiltration is prominent in other OSNs [45] 46], one should extend the
threat model of fake account detection to consider attackers who are capable
of large-scale social infiltration.

2.4. Analyzing Victim Accounts

While we are the first to use potential victims to separate fakes from real
accounts, others have analyzed victim accounts as part of the larger cyber
criminal ecosystem in OSNs [47].

Wagner et al. developed predictive models to identify users who are more
susceptible to social infiltration in Twitter [I2]. They found that susceptible
users, also called potential victims, tend to use Twitter for conversational
purposes, are more open and social since they communicate with many dif-
ferent users, use more socially welcoming words, and show higher affection
than non-susceptible users.

Yang el al. studied the cyber criminal ecosystem on Twitter [48]. They
found that victims fall into one of three categories. The first are social butter-
flies who have large numbers of followers and followings, and establish social
relationships with other accounts without careful examination. The second
are social promoters who have large following-follower ratios, larger following
numbers, and a relatively high URL ratios in their tweets. These victims use
Twitter to promote themselves or their business by actively following other

13

accounts without consideration. The last are dummies who post few tweets
but have many followers. In fact, these victims are dormant fake accounts at
an early stage of their abuse.

2.5. Abuse Mitigation and the Ground-truth

Due to the inapplicability of automated account suspension, OSNs employ
abuse mitigation techniques, such as CAPTCHA challenges [9] and photo-
based social authentication [14], in order to rate-limit accounts that have
been automatically flagged as fake. These accounts are pooled for manual
inspection by experienced analysts who maintain a ground-truth for real
and fake accounts along with their features, before suspending or removing
verified fake accounts 9] 25] 8] [49].

While maintaining an up-to-date ground-truth is important for retraining
deployed classifiers and estimating their effectiveness in practice, it is rather a
time-consuming and non-scalable task. For example, on an average day, each
analyst at Tuenti inspects 250-350 accounts an hour, and for a team of 14
employees, up to 30K accounts are inspected per day [§]. It is thus important
to rank user accounts in terms of how likely they are to be fake in order to
prioritize account inspection by analysts. Integro offers this functionality
and consequently leads to a faster reaction against potential abuse by fakes,
benefiting both OSN operators and their users.

3. Intuition, Goals, and Model

We now introduce Integro, an automated fake account detection system
that is robust against social infiltration. We first present the intuition of our
design, followed by its goals and model.

8.1. Intuition

We start with the premise that some users are more likely to be victims
than others. If we can train a classifier to identify potential victims with
high probability, we may be able to use this information to find the cut
which separates fakes from real accounts in the graph. As victims are benign
users who are not adversarial, the output of this classifier represents a reliable
information which we can integrate in the graph.

To find such a cut, we can define a graph weighting scheme that assigns
edges incident to potential victims lower weights than others, where weight
values are calculated from victim classification probabilities. In a weighted

14

graph, the sparsest cut is the cut with the smallest volume, which is the sum
of weights on edges across the cut. Given an accurate victim classifier, this
cut is expected to cross over some or all attack edges, effectively separating
real accounts from fakes, even if the number of attack edges is large. We aim
to find such a cut using a ranking scheme that ideally assigns higher ranks
to nodes in one side of the cut than the other, which represents one way to
separate real accounts from fakes. This ranking scheme is inspired by similar
graph partitioning algorithms proposed by Spielman et al. [50], Yu [36], and
recently by Cao et al. [§].

3.2. Design Goals

Integro aims to help OSN operators in detecting fake accounts through a
user ranking scheme. In particular, Integro has the following design goals:

o High-quality user ranking (effectiveness). The system should ideally
assign higher ranks to real accounts than fakes. If not, it should limit
the number of fakes that might rank similar to or higher than real
accounts. In practice, the ranking should have an area under ROC
curve (AUC) that is greater than 0.5 and closer to 1, where the AUC
represents the probability of a random real accounts to rank higher
than a random fake account [20]. Also, the system should be robust
against social infiltration under real-world attack strategies. Given a
ranked list of users, a high percentage of the users at the bottom of the
list should be fake. This percentage, which represents the precision of
detection, should significantly decrease as we go up in the list.

e Scalability (efficiency). The system should have a practical computa-
tional cost which allows it to scale to large OSNs. In other words, it
should scale nearly linearly with number of user accounts in the OSN,
and deliver ranking results in only few minutes. The system should
be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their
existing computer clusters.

3.3. System Model

As shown in Fig. [B.2] we model an OSN as an undirected, finite graph
G = (V, E), where each node v; € V represents a user account and each edge
{vi,v;} € E represents a bilateral social relationship among v; and v;. In the
graph G, there are n = |V| nodes and m = |E| edges.

15

3.3.1. Attributes

Each node v; has a degree deg(v;) that is equal to the sum of weights on
edges incident to it. Also, v; has a feature vector A(v;), where each entry
a; € A(v;) describes a feature or an attribute of the account v;. Each edge
{vi,v;} € E has a weight w(v;,v;) € (0, 1], which is initially set to 1.

3.3.2. Regions

The node set V' is divided into two disjoint sets, V, and V}, representing
real and fake accounts, respectively. We refer to the subgraph induced by
V.. as the real region G, which includes all real accounts and the friendships
between them. Likewise, we refer to the subgraph induced by V; as the fake
region G . The regions are connected by a set of attack edges E, between
victim and fake accounts. We assume the OSN operator is aware of a small set
of trusted accounts V;, also called seeds, which are known to be real accounts
and are not victims.

4. System Design

In what follows, we describe in detail the design behind Integro. We start
with a short overview of our approach, after which we proceed with a detailed
description of each system component.

4.1. Overview

At first, Integro trains a victim classifier using low-cost features extracted
from user-level activities. This feature-based classifier is used to identify po-
tential victims in the graph, each with some probability (Section [4.2]). After
that, Integro calculates new edge weights from the probabilities computed
by the victim classifier, so that edges incident to potential victims have lower
weights than others. Integro then ranks user accounts based on the landing
probability of a modified random walk that starts from a trusted account, or
a seed node, picked at random from all trusted accounts (Section .

The random walk is “short” because it is terminated after O(logn) steps,
early before it converges. The walk is “supervised,” as it is biased towards
traversing nodes which are reachable via higher-weight paths. This modified
random walk has a higher probability to stay in the real region of the graph,
as it is highly unlikely to escape into the fake region in few steps through low-
weight attack edges. Therefore, Integro ranks most of real accounts higher

16

than fakes, given a seed selection strategy that considers existing community
structures in the real region (Section |4.4]).

Integro takes O(nlogn) time to complete its computation (Section .
In addition, it formally guarantees that at most O(vol(E,)logn) fake ac-
counts can have the same or higher ranks than real accounts in the worst
case, given the fakes establish |E,| attack edges at random (Section [4.6).

4.2. Identifying Potential Victims

For each account v;, Integro extracts a feature vector A(v;) from its user-
level activities. A subset of the feature vectors is selected to train a binary
classifier in order to identify potential victims in the OSN using supervised
machine learning, as follows.

4.2.1. Feature engineering

Extracting and selecting useful features from user-level activities can be
both challenging and time consuming. To be efficient, we seek low-cost fea-
tures which could be extracted in O(1) time per user. One candidate location
for extracting such features is the profile page of user accounts, where fea-
tures are readily available (e.g., a Facebook profile page). However, low-cost
features are expected to be statistically “weak,” which means they may not
strongly correlate with the label of a user account (i.e., victim or not). As
we explain later, we require the victim classifier to be better than random in
order to deliver robust fake account detection. This requirement, fortunately,
is easy to satisfy. In particular, we show in Section [5| that an OSN can train
and cross-validate a victim classifier that is up to 52% better than random,
using strictly low-cost features.

4.2.2. Supervised machine learning

For each user v;, Integro computes a vulnerability score p(v;) € (0,1) that
represents the probability of v; to be a victim. Given an operating threshold
a € (0,1) with a default value of o = 0.5, we say v; is a potential victim if
p(v;) > a. To compute vulnerability scores, Integro uses random forests (RF)
learning algorithm [5] to train a victim classifier, which given A(v;) and «,
decides whether the user v; is a potential victim with a score p(v;). We picked
the RF learning algorithm because it is both efficient and robust against
model over-fitting [52]. Integro takes O(nlogn) time to extract n feature
vectors and train an RF victim classifier. It also takes O(n) to compute a
vulnerability score for all users, given their feature vectors and the trained
victim classifier.

17

4.2.3. Robustness

As attackers do not control victims, a victim classifier is inherently more
resilient to adversarial attacks than similarly-trained fake account classifier.
Let us consider one concrete example. In the “boiling-frog” attack [33], fake
accounts can force a classifier to tolerate abusive activities by slowly intro-
ducing similar activities to the OSN. Because the OSN operator has to retrain
deployed classifiers in order to capture new behaviors, a fake account classifier
will learn to tolerate more and more abusive activities, until the attacker can
launch a full-scale attack without detection [6]. When identifying potential
victims, however, this is only possible if the real accounts used for training
the victim classifier have been hijacked. This situation can be avoided by
verifying the accounts, as described in Section [2.5]

4.8. Leveraging Victim Classification for Robust User Ranking

To rank user accounts in the OSN, Integro computes the probability of a
modified random walk to land on each user v; after k steps, where the walk
starts from a trusted user account picked at random. For simplicity, we refer
to the probability of a random walk to land on a node as its trust value, so the
probability distribution of the walk at each step can be modeled as a trust
propagation process [53]. In this process, a weight w(v;,v;) represents the
rate at which trust may propagate from either side of the edge {v;,v,} € E.
We next describe this process in detail.

4.8.1. Trust propagation

Integro utilizes the power iteration method to efficiently compute trust
values [54]. This method involves successive matrix multiplications where
each element of the matrix is the transition probability of the random walk
from one node to another. Each iteration computes the trust distribution
over nodes as the random walk proceeds by one step. Let Ty(v;) denote the
trust collected by each node v; € V after k iterations. Initially, the total
trust, denoted by 7 > 1, is evenly distributed among the trusted nodes in V;:

{T/Wt\ if v; € Vi,

To(vi) = (1)

0 otherwise.

The process then proceeds as follows:

Ti(v) = Y Tialvy) - %

{Ui,”L}j}EE

18

where in iteration k, each node v; propagates its trust Ty_i(v;) from iteration
k—1 to each neighbour v;, proportionally to the ratio w(v;, v;)/ deg(v;). This
is required so that the sum of the propagated trust equals Tj_1(v;). The node
v; then collects the trust propagated similarly from each neighbour v; and
updates its trust Tx(v;). Throughout this process, 7 is preserved such that
for each iteration k > 1 we have:

Z Tk_l(vi) = Z Tk(vl) =T. (3)

v; €V v; EV

Our goal is to ensure that most real accounts collect higher trust than
fake accounts. That is, we seek to limit the portion of 7 that escapes the real
region G, and enters the fake region Gy. To achieve this property, we make
the following modifications.

4.8.2. Adjusted propagation rates

In each iteration k, the aggregate rate at which 7 may enter G/ is strictly
limited by the sum of weights on the attack edges, which we denote by the
volume vol(E,). Therefore, we aim to adjust the weights in the graph such
that vol(E,) € (0,|E,|], without severely restricting trust propagation in
G,. We accomplish this by assigning smaller weights to edges incident to
potential victims than other edges. In particular, each edge {v;,v;} € E
keeps the default weight w(v;,v;) = 1 if v; and v; are not potential victims.
Otherwise, we modify the weight as follows:

w(vi, vj) = min {1, 8- (1 = max{p(v;), p(v;)})} , (4)

where [is a scaling parameter with a default value of 3 = 2. Now, when
vol(E,) — 0, the portion of 7 that enters G reaches zero as desired.

For proper degree normalization, we introduce a self-loop {v;,v;} with
weight w(v;,v;) = (1 — deg(v;)) /2 whenever deg(v;) < 1. Notice that self-
loops are considered twice in degree calculation.

4.8.3. Early termination

In each iteration k, the trust vector Ty, (V') = (Ty(v1), ..., Tk(v,)) describes
the distribution of 7 throughout the graph. As k — oo, the vector converges
to a stationary distribution 7, (V'), as follows [55]:

deg(vy) deg(vy,)
Te(V) = <T Cvol(V) i vol(V) > ’ (5)

19

where the volume vol(V') in this case is the sum of degrees of nodes in V.
In particular, Ti(V') converges after k reaches the mizing time of the graph,
which is much larger than O(logn) iterations for various kinds of social net-
works [56], 57, [4T]. Accordingly, we terminate the propagation process early
before it converges after w = O(logn) iterations.

4.8.4. Degree normalization

As described in Equation [b] trust propagation is influenced by individual
node degrees. As k grows large, the propagation starts to bias towards high
degree nodes. This implies that high degree fake accounts may collect more
trust than low degree real accounts, which is undesirable for effective user
ranking. To eliminate this bias, we normalize the trust collected by each
node by its degree. That is, we assign each node v; € V after w = O(logn)
iterations a rank value T, (v;) that is equal to its degree-normalized trust:

T (vi) = Toy(vy)/ deg(v;). (6)
Finally, we sort the nodes by their ranks in a descending order.

4.3.5. Example

Fig. B.3|depicts trust propagation in a graph. In this example, we assume
each account has a vulnerability score of 0.05 except the victim F, which has
a score of p(F) = 0.95. The graph is weighted using a = 0.5 and § = 2, and
a total trust 7 = 1000 in initialized over the trusted nodes {C, D}.

In Fig. B.3p, after w = 4 iterations, all real accounts {A, B,C, D, E'}
collect more trust than fake accounts {F,G, H,I}. Moreover, the nodes
receive the correct ranking of (D, A, B,C, E,F,G, H, 1), as sorted by their
degree-normalized trust. In particular, all real accounts have higher rank
values than fakes, where the smallest difference is T (E)—T,;(F) > 40. Notice
that real accounts that are not victims have similar rank values, where the
largest difference is T;(D) — T;(C) < 12. These sorted rank values, in fact,
could be visualized as a stretched-out step function that has a significant
drop near the victim’s rank value.

If we allow the process to converge after k£ > 50 iterations, the fakes collect
similar or higher trust than real accounts, following Equation [5] as shown in
Fig. B.3k. In either case, the attack edges E, = {{E,G},{E,F},{E,H}}
have a volume of vol(E,) = 0.3, which is 10 times lower than its value if the
graph had unit weights, with vol(E,) = 3.

20

As we show in Section [J], early termination and propagation rate adjust-
ment are essential for robustness against social infiltration.

4.4. Selecting Trusted Accounts with Fxisting Community Structures

Integro is robust against social infiltration, as it limits the portion of 7
that enters G by the rate vol(E,), regardless of the number of attack edges,
|E,|. For the case when there are few attack edges so that G, and G are
sparsely connected, vol(E,) is already small, even if one keeps w(v;,v;) =1
for each attack edge {v;,v;} € E,. However, G, is likely to contain com-
munities [58, 4], where each represents a dense subgraph that is sparsely
connected to the rest of the graph. In this case, the propagation of 7 in G,
becomes restricted by the sparse inter-community connectivity, especially if
V; is contained exclusively in a single community. We therefore seek a seed
selection strategy for trusted accounts, which takes into account the existing
community structure in the graph.

4.4.1. Seed selection strategy

We pick trusted accounts as follows. First, before rate adjustment, we
estimate the community structure in the graph using a community detection
algorithm called the Louvain method [59]. Second, after rate adjustment, we
exclude potential victims and pick small samples of nodes from each detected
community at random. Third and last, we inspect the sampled nodes in order
to verify they correspond to real accounts that are not victims. We initialize
the trust only between the accounts that pass manual verification by experts.

In addition to coping with the existing community structure in the graph,
this selection strategy is designed to also reduce the negative impact of seed-
targeting attacks. In such attacks, fakes befriend trusted accounts in order
to adversely improve their ranking, as the total trust 7 is initially distributed
among trusted accounts. By choosing the seeds at random, however, the
attacker is forced to guess the seeds among a large number of nodes. More-
over, by choosing multiple seeds, the chance of correctly guessing the seeds is
further reduced, while the amount of trust assigned to each seed in lowered.
In practice, the number of seeds depends on available resources for manual
account verification, with a minimum of one seed per detected community.

4.4.2. Community detection

We picked the Louvain method as it is both efficient and produces high-
quality partitions. The method iteratively groups closely connected commu-
nities together to greedily improve the modularity of the partition [60], which

21

is a measure for partition quality. In each iteration, every node represents
one community, and well-connected neighbors are greedily combined into the
same community. At the end of the iteration, the graph is reconstructed by
converting the resulting communities into nodes and adding edges that are
weighted by inter-community connectivity. Each iteration takes O(m) time,
and only a small number of iterations is required to find the community
structure which greedily maximizes the modularity.

While one can apply community detection to identify fake accounts [20],
doing so hinges on the assumption that fakes always form tightly-knit com-
munities, which is not necessarily true [25]. This also means fakes can easily
evade detection if they establish sparse connectivity among themselves [10].
With Integro, we do not make such an assumption. In particular, we consider
an attacker who can befriend a large number of real or fake accounts, without
any formal restrictions.

4.5. Computational Cost

For an OSN with n users and m friendships, Integro takes O(nlogn) time
to complete its computation, end-to-end. We next analyze the running time
of Integro in detail.

Recall that users have a limit on how many friends they can have (e.g.,
5K in Facebook, 1K in Tuenti), so we have O(m) = O(n). Identifying poten-
tial victims takes O(nlogn) time, where it takes O(nlogn) time to train an
RF classifier and O(n) time to compute vulnerability scores. Also, weighting
the graph takes O(m) time. Detecting communities takes O(n) time, where
each iteration of the Louvain method takes O(m) time, and the graph rapidly
shrinks in O(1) time. Propagating trust takes O(nlogn) time, as each itera-
tion takes O(m) time and the propagation process iterates for O(logn) times.
Ranking and sorting users by their degree-normalized trust takes O(nlogn)
time. So, the running time is O(nlogn).

4.6. Security Guarantees

For the upcoming security analysis, we consider attackers who establish
attack edges with victims uniformly at random. For analytical tractability,
we assume the real region is fast mizing. This means that it takes O(log |V;|)
iterations for trust propagation to converge in the real region. We refer
the reader to [Appendix A|and [Appendix Bl for a complete formal analysis,
including theoretical background and formal proofs.

22

4.6.1. Sensitivity to mixing time

Similar to SybilRank [8], the ranking quality of Integro does not rely on
the absolute value of the mixing time in the real region of the social graph.
Instead, Integro only requires that the whole graph has a longer mixing time
than the real region. Under this condition, the early-terminated propagation
process results in a gap between the degree-normalized trust of fakes and real
accounts. Ideally, the number of iterations that Integro performs is set equal
to the mixing time of the real region. Regardless of whether the mixing time
of the real region is O(logn) or longer, setting the number of iterations to
this value results in almost uniform degree-normalized trust among the real
accounts [§]. If the mixing time of the real region is larger than O(logn), the
trust that “escapes” to the fake region is further limited. However, we also
run at the risk of starving real accounts that are loosely connected to trusted
accounts via few edges. This risk is mitigated by placing the trusted accounts
in many communities and by dispersing multiple seeds in each community,
thereby ensuring that the trust is initiated somewhere close to those real
accounts, as described in Section [4.4]

4.6.2. Main theoretical result
The main security guarantee provided by Integro is captured by the fol-
lowing theoretical result:

Theorem 1. Given a social graph with a fast mizing real region and an
attacker who randomly establishes attack edges, the number of fake accounts
that rank similar to or higher than real accounts after O(logn) iterations is
O (vol(E,)logn).

Proof sketch. Consider an undirected graph G = (V| F) with a fast mixing
real region G,. As weighting a graph changes its mixing time by a constant
factor (see Lemmall)), G, remains fast mixing after rate adjustment.

After O(logn) iterations, the trust vector T,(V') does not reach its sta-
tionary distribution 7T, (V). Since trust propagation starts from G,., the fake
region Gy gets only a fraction f < 1 of the aggregate trust it should receive
in T (V). On the other hand, as the trust 7 is conserved during the propa-
gation process (Equation , G, gets ¢ > 1 times higher aggregate trust than
it should receive in T (V).

As G, is fast mixing, each real account v; € V, receives approximately
identical rank value of T) (v;) = ¢ - 7/vol(V'), where 7/vol(V) is the degree-
normalized trust value in T (V') (Equations [p| and [6). Knowing that G is

23

controlled by the attacker, each fake v; € V} receives a rank value T (v,)
that depends on how the fakes inter-connect to each other. However, since
the aggregate trust in Gy is bounded, each fake receives on average a rank
value of T/ (v;) = f - 7/vol(V'), which is less than that of a real account. In
the worst case, an attacker can arrange a set V,,, C V; of fake accounts in G
such that each v, € V,,, receives a rank value of T/ (vg) = ¢ - 7/vol(V'), while
the remaining fakes receive a rank value of zero. Such a set cannot have more
than (f/c) - vol(Vy) = O (vol(E,) logn) accounts, as otherwise, f would not
be less than 1 and G would receive more than it should in 7,(V). O

4.6.3. Improvement over SybilRank

Integro shares many design traits with SybilRank. In particular, modi-
fying Integro by setting w(v;,v;) = 1 for each (v;,v;) € E will result in a
ranking similar to that computed by SybilRank [8]. It is indeed the incorpora-
tion of victim classification into user ranking that differentiates Integro from
other proposals, giving it the unique advantages outlined earlier.

As stated by Theorem (1, the bound on ranking quality relies on vol(E,),
regardless of how large the set F, grows. As we weight the graph based on
the output of the victim classifier, our bound is sensitive to its classification
performance. We next prove that if an OSN operator uses a victim classifier
that is uniformly random, which means each user account v; € V' is equally
vulnerable with p(v;) = 0.5, then Integro is as good as SybilRank in terms
of ranking quality:

Corollary 1. For a uniformly random victim classifier, the number of fakes
that rank similar to or higher than real accounts after O(logn) iterations is

O(|E,|logn).

Proof. This classifier assigns each user account v;