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Abstract

Detecting fake accounts in online social networks (OSNs) protects both
OSN operators and their users from various malicious activities. Most de-
tection mechanisms attempt to classify user accounts as real (i.e., benign,
honest) or fake (i.e., malicious, Sybil) by analyzing either user-level activi-
ties or graph-level structures. These mechanisms, however, are not robust
against adversarial attacks in which fake accounts cloak their operation with
patterns resembling real user behavior.

In this article, we show that victims—real accounts whose users have
accepted friend requests sent by fakes—form a distinct classification category
that is useful for designing robust detection mechanisms. In particular, we
present Íntegro—a robust and scalable defense system that leverages victim
classification to rank most real accounts higher than fakes, so that OSN
operators can take actions against low-ranking fake accounts. Íntegro starts
by identifying potential victims from user-level activities using supervised
machine learning. After that, it annotates the graph by assigning lower
weights to edges incident to potential victims. Finally, Íntegro ranks user
accounts based on the landing probability of a short random walk that starts
from a known real account. As this walk is unlikely to traverse low-weight
edges in a few steps and land on fakes, Íntegro achieves the desired ranking.
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We implemented Íntegro using widely-used, open-source distributed com-
puting platforms, where it scaled nearly linearly. We evaluated Íntegro against
SybilRank, which is the state-of-the-art in fake account detection, using real-
world datasets and a large-scale deployment at Tuenti—the largest OSN in
Spain with more than 15 million active users. We show that Íntegro signifi-
cantly outperforms SybilRank in user ranking quality, with the only require-
ment that the employed victim classifier is better than random. Moreover,
the deployment of Íntegro at Tuenti resulted in up to an order of magnitude
higher precision in fake account detection, as compared to SybilRank.

Keywords: Online social networks, fake account detection, victim account
prediction, social infiltration, socialbots

1. Introduction

The rapid growth of online social networks (OSNs), such as Facebook,
Tuenti, RenRen, and LinkedIn, has been followed by an increased interest in
abusing them. Due to their open nature, OSNs are particularly vulnerable
to the Sybil attack [1], where an attacker creates multiple fake accounts, each
called a Sybil, and joins a target OSN for various adversarial objectives.

1.1. Motivation
In its 2014 earnings report, Facebook estimated that 15 millions (1.2%) of

its monthly active users are in fact “undesirable,” representing fake accounts
that are used in violation of the site’s terms of service [2]. For such OSNs, the
existence of fakes leads advertisers, developers, and investors to distrust their
reported user metrics, which negatively impacts their revenues [3]. Attackers
create and automate fake accounts for various malicious activities, including
social spamming [4], malware distribution [5], private data collection [6], and
even political astroturfing [7]. It is thus important for OSNs to detect fake
accounts as quickly and accurately as possible.

1.2. Research Problem
Most OSNs employ defense systems that automatically flag fake accounts

by analyzing user-level activities or graph-level structures. As automated
account suspension is inapplicable in practice [8], these accounts are pooled
for manual verification by experienced analysts, who maintain a ground-truth
for fake and real accounts [9].
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Traditionally, there are two main approaches for detecting fake accounts.
In the first approach, unique features are extracted from user activities (e.g.,
frequency of friend requests, fraction of accepted requests), after which they
are applied to a binary fake account classifier that has been trained offline us-
ing machine learning techniques [9]. In the second approach, an OSN is mod-
eled as a graph, with nodes representing user accounts and edges representing
social relationships (e.g., friendships). Given the assumption that fakes can
befriend only few real accounts, the graph is partitioned into two regions sep-
arating real accounts from fakes, with a narrow passage between them [10].
While these techniques are effective against naïve attacks, various studies
showed they are inaccurate in practice and can be easily evaded [11, 6, 12].
For example, an attacker can cheaply create fakes that resemble real users,
circumventing feature-based detection, or use simple social engineering tac-
tics to befriend a large number of real users, invalidating the assumption
behind graph-based detection.

To accommodate these shortcomings, we consider attackers who can cre-
ate and automate fake accounts on a large scale (i.e., operate of network of
malicious socialbots [6, 15]). Each automated fake account can perform so-
cial activities similar to those of real users, including befriending other users.
As such, we tackle the following question under this threat model: “How can
we design an effective and efficient defense mechanism that aids OSNs in
detecting automated fake accounts?”

1.3. Importance and Implications
If an OSN can detect fakes efficiently and effectively, it can improve the

experience of its users by thwarting spam messages and other abusive con-
tent. In addition, the OSN can increase the credibility of its user metrics
and enable third parties to consider its user accounts as authentic digital
identities [13]. Moreover, the OSN can better utilize the time of its ana-
lysts who manually inspect and validate accounts. For example, Tuenti—the
largest OSN in Spain with 15M active users—estimates that only 5% of the
accounts inspected based on user reports are in fact fake, which signifies the
inefficiency of this manual process [8]. The OSN can also selectively enforce
abuse mitigation techniques, such as CAPTCHA challenges [9] and photo-
based social authentication [14], to suspicious accounts while running at a
lower risk of annoying benign, real users.
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1.4. Proposed Solution
We present Íntegro—a robust and scalable defense system that helps OSN

operators identify fake accounts, which can befriend many real accounts, via
a user ranking scheme.1 We designed Íntegro for OSNs whose users declare
bidirectional social relationships (e.g., Tuenti, Facebook, RenRen, LinkedIn),
with the ranking process being completely transparent to users. While the
ranking scheme is graph-based, the graph is preprocessed first and annotated
with information derived from feature-based detection techniques. This new
approach of integrating user-level activities into graph-level structures posi-
tions Íntegro as the first feature-and-graph-based detection mechanism.

Our design is based on the observation that victims—real accounts whose
users have accepted friend requests sent by fakes—are useful for designing
robust fake account detection mechanisms. In particular, Íntegro uses basic
account features, which are cheap to extract from user-level activities (e.g.,
gender, number of friends, time since last update), to train a victim classi-
fier in order to identify potential victims in the OSNs. As attackers do not
control victim accounts nor their activities, a victim classifier is inherently
more resilient to adversarial attacks than a similarly-trained fake account
classifier. Moreover, as victims are directly connected to fakes in the graph,
they represent a natural “borderline” that separates real accounts from fakes.

Íntegro makes use of this observation by assigning lower weights to edges
incident to potential victims, after which it ranks user accounts based on
the landing probability of a modified random walk that starts from a known
real account. In particular, the walk is “short,” as it is terminated early
before it converges. The walk is also “supervised,” as it is biased towards
traversing nodes that are reachable through higher-weight paths. Therefore,
this modified random walk is likely to stay within the subgraph consisting
of real accounts, and so most real accounts receive higher ranks than fakes.
Unlike SybilRank [8], which is the state-of-the-art in fake account detection,
we do not assume sparse connectivity between real and fake accounts. This
makes Íntegro the first fake account detection system that is robust against
social infiltration, where fakes befriend a large number of real accounts [15].

1In Spanish, the word “íntegro” means integrated, which suites our approach of inte-
grating user-level activities into graph-level structures.
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1.5. Security Guarantee
For an OSN consisting of n accounts, Íntegro takes O(n log n) time to

complete its computation. For attackers who randomly establish a set Ea
of edges between victim and fake accounts, Íntegro guarantees that at most
O(vol(Ea) log n) fakes are assigned ranks similar to or higher than real ac-
counts in the worst case, where the volume vol(Ea) is the sum of weights on
edges inEa. This bound represents an improvement factor ofO (|Ea|/vol(Ea))
over SybilRank. In addition, even with a random victim classifier that labels
each account as a victim with 0.5 probability, Íntegro ensures that vol(Ea) is
at most equals to |Ea|, resulting in the same asymptotic bound as SybilRank.

In other words, Íntegro outperforms SybilRank using a victim classifier
that is better than random and yields the same performance if a random
victim classifier is employed. For a complete formal analysis of the security
guarantee provided by Íntegro, we refer the interested reader to Appendix
A and Appendix B.

1.6. Evaluation Results
We systematically evaluated Íntegro against SybilRank under different at-

tack scenarios using real-world datasets collected from Facebook and Tuenti,
in addition to a large-scale deployment on the latter OSN. We chose Sybil-
Rank among others because it was shown to outperform known contenders [8],
including EigenTrust [16], SybilGuard [17], SybilLimit [18], SybilInfer [19],
Mislove’s method [20], and GateKeeper [21]. In addition, as SybilRank de-
pends on a user ranking scheme that is similar to ours—although on an
unweighted graph—evaluating against SybilRank allowed us to clearly show
the impact of leveraging victim classification on fake account detection.

The evaluation results show that Íntegro consistently outperforms Sybil-
Rank in ranking quality, especially as the fakes infiltrate an increasing num-
ber of victims, that is, as Ea grows large. In particular, Íntegro resulted in
up to 30% improvement over SybilRank in the area under ROC curve (AUC)
of the ranking, which represents the probability that a random real account
is ranked higher than a random fake account [20]. In fact, Íntegro achieved
an AUC greater than 0.92 as |Ea| increased, while SybilRank resulted in an
AUC as low as 0.71 under the same setting.

In practice, the deployment of Íntegro at Tuenti resulted in up to an order
of magnitude higher precision in fake account detection, where ideally fakes
should be located at the bottom of the ranked list. In particular, for the
bottom 20K low-ranking users, Íntegro achieved 95% precision, as compared
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to 43% by SybilRank and 5% by Tuenti’s user-based abuse reporting sys-
tem. More importantly, the precision significantly decreased as we inspected
higher ranks in the list, which means Íntegro consistently placed most of the
fakes at the bottom of the list, unlike SybilRank. The only requirement for
Íntegro to outperform SybilRank is to train a victim classifier that is better
than random. This can be easily achieved during the cross-validation phase
by deploying a victim classifier with an AUC greater than 0.5. In our de-
ployment, the victim classifier was 52% better than random with an AUC of
0.76, although it was trained using low-cost features.

We implemented Íntegro on top of Mahout2 and Giraph3, which are widely
deployed, open-source distributed machine learning and graph processing
systems, respectively. Using a synthetic benchmark of an OSN consisting of
up to 160M users, Íntegro scaled nearly linearly with number of users. For
the largest graph with 160M nodes, it took Íntegro less than 30 minutes to
finish its computation on 33 commodity machines.

1.7. Contributions
In summary, this work makes the following contributions:

• Leveraging victim classification for fake account detection. We designed
and analyzed Íntegro—a fake account detection system that relies on
a novel technique for integrating user-level activities into graph-level
structures. Íntegro uses supervised machine learning with features ex-
tracted from user-level activities to identify potential victims of fakes.
By weighting the graph such that edges incident to potential victims
have lower weights than others, Íntegro guarantees that most real ac-
counts are ranked higher than fakes. These ranks are derived from the
landing probability of a modified random walk that starts from a known
real account. To our knowledge, Íntegro is the first detection system
that is robust against adverse manipulation of the graph, where fakes
follow an adversarial strategy to befriend a large number of accounts,
real or fake, in order to evade detection (Sections 3 and 4).

• Implementation and evaluation. We implemented Íntegro on top of
open-source distributed systems that run on commodity machines with-

2http://mahout.apache.org
3http://giraph.apache.org
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out specialized hardware. We evaluated Íntegro against SybilRank us-
ing real-world datasets and a large-scale deployment at Tuenti. In
practice, Íntegro has allowed Tuenti to detect at least 10 times more
fakes than their current user-based abuse reporting system, where re-
ported users are not ranked. With an average of 16K flagged accounts
a day [8], Íntegro has saved Tuenti hundreds of man hours in manual
verification by robustly ranking user accounts (Sections 5 and 6).

2. Background and Related Work

We first outline the threat model we assume in this work. We then present
required background and related work on automated fake account detection,
social infiltration, analyzing victim accounts in OSNs, abuse mitigation, and
maintaining a ground-truth.

2.1. Threat Model
We focus on OSNs such as Facebook, RenRen, and Tuenti, which are open

to all and allow users to declare bilateral relationships (i.e., friendships).

2.1.1. Capabilities
We consider attackers who are capable of creating and automating user

accounts, or fakes, on a large scale [15]. Each fake account, also referred to
as a socialbot [22], can perform social activities similar to those of real users.
This includes sending friend requests and posting social content. We do not
consider attackers who are capable of hijacking real accounts, as there are
existing detection systems that tackle this threat, such as COMPA [23]. We
focus on detecting fake accounts that can befriend a large number of benign
users in order to mount subsequent attacks, as we describe next.

2.1.2. Objectives
The objectives of an attacker include distributing spam and malware,

misinforming the public, and collecting private user data on a large scale. To
achieve these objectives, the attacker has to infiltrate the target OSN by using
the fakes to befriend a large number of real accounts. Such an infiltration
is required because isolated fake accounts cannot directly interact with or
promote content to users in the OSN [15]. This is also evident by a thriving
underground market for social infiltration. For example, attackers can have
their fake accounts befriend 1K users on Facebook for $26 or less [24].
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2.1.3. Victims
We refer to accounts whose users have accepted friend requests from fake

accounts as victims. We refer to friendships between victim and fake accounts
as attack edges. Victim accounts are a subset of real accounts, which are
accounts created and controlled by benign users who socialize with others
in a non-adversarial setting. Also, we refer to accounts whose users are
more susceptible to social infiltration and are likely to be victims as potential
victims. We use the terms “account,” “profile,” and “user” interchangeably
but make the distinction when deemed necessary.

2.2. Fake Account Detection
From a systems design perspective, most of today’s fake account detection

mechanisms are either feature-based or graph-based, depending on whether
they utilize machine learning or graph analysis techniques in order to identify
fakes. Next, we discuss each one of these approaches in detail.

2.2.1. Feature-based detection
This approach relies on user-level activities and its account details (i.e.,

user logs, profiles). By identifying unique features of an account, one can clas-
sify each account as fake or real using various machine learning techniques.
For example, Facebook employs an “immune system” that performs real-time
checks and classification for each read and write action on its database, which
are based on features extracted from user accounts and their activities [9].

Yang et al. used a ground-truth provided by RenRen to train an SVM
classifier in order to detect fake accounts [25]. Using simple features, such as
frequency of friend requests, fraction of accepted requests, and per-account
clustering coefficient, the authors were able to train a classifier with 99%
true-positive rate (TPR) and 0.7% false-positive rate (FPR).

Stringhini et al. used honeypot accounts to collect data describing various
user activities in OSNs [26]. By analyzing the collected data, they were able
to build a ground-truth for real and fake accounts, with features similar to
those outlined above. The authors trained two random forests classifiers to
detect fakes in Facebook and Twitter, ending up with 2% FPR and 1% false-
negative rate (FNR) for Facebook, and 2.5% FPR and 3% FNR for Twitter.

Wang et al. used a click-stream dataset provided by RenRen to cluster
user accounts into “similar” behavioral groups, corresponding to real or fake
accounts [27]. The authors extracted both session and clicks features, includ-
ing average clicks per session, average session length, the percentage of clicks
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used to send friend requests, visit photos, and share content. With these
features, the authors were able to calibrate a cluster-based classifier with 3%
FPR and 1% FNR, using the METIS clustering algorithm [28].

Fire et al. developed the Social Privacy Protector (SPP) software, which
is a set of applications for Facebook that aim to improve user account pri-
vacy [29]. The applications analyze a user’s friends list in order to determine
accounts that may pose a risk to the user’s privacy. Such accounts could then
be restricted by users from accessing their profile information. Using data
collected from the SSP deployment on Facebook, the authors tested several
machine learning classifiers to detect fake accounts, including Naïve Bayes,
Rotation Forest and Random Forest.

Viswanath et al. used unsupervised anomaly detection techniques in or-
der to identify accounts that demonstrate malicious behavior, such as fake,
compromised or colluding accounts [30]. The authors presented a technique
that is able to accurately model the typical behavior of user accounts and
to correctly identify significant deviations from the norm, based on Principle
Component Analysis (PCA). The presented technique makes use of temporal,
spatial and spatio-temporal features as input features. Using ground-truth
data from Facebook, the authors evaluated the PCA-based classifier demon-
strating a detection rate of over 66% with a FPR of less than 0.3%.

Other approaches to detect fake accounts are based on the observation
that, in a variety of OSN applications, fake accounts tend to perform loosely
synchronized actions from a limited set of IP addresses. Based on this ob-
servation, Cao et al. designed and implemented a feature-based malicious
account detection system called SynchroTrap [31]. SynchroTrap uses a single-
linkage hierarchical clustering algorithm to detect similarities in user actions
in order to identify fake accounts. The authors deployed SynchroTrap at
Facebook, where it was able to detect more than two million fake accounts.
Similarly, Stringhini et al. developed EvilCohort [32], a system that is ca-
pable of detecting accounts that are accessed by a common set of infected
machines such as a botnet. EvilCohort only requires that a mapping exists
between online accounts and IP addresses in order to detect malicious ac-
counts on any type of online web service (e.g., OSNs, webmail). only builds
a bipartite graph between the set of online accounts and the set of IP ad-
dresses, and performs clustering in order to find account communities that
are accessed by a common set of IP addresses. The authors evaluated Evil-
Cohort on two real-world datasets, and it was able to identify more than one
million malicious accounts.
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Even though feature-based detection scales to large OSNs, it is still rela-
tively easy to circumvent. This is because it depends on features describing
activities of known fakes in order to identify unknown ones. In other words,
attackers can evade detection by adversely modifying the content and ac-
tivity patterns of their fakes, leading to an arms race [33, 34, 35]. Also,
feature-based detection does not provide any formal security guarantees and
often results in a high FPR in practice. This is partly attributed to the large
variety and unpredictability of behaviors of users in adversarial settings [8].

With Íntegro, we use feature-based detection to identify potential victims
in a non-adversarial setting. In particular, the dataset used to train a victim
classifier includes features of only known real accounts that have either ac-
cepted or rejected friend requests send by known fakes. As real accounts are
controlled by benign users who are not adversarial, a feature-based victim ac-
count classifier is harder to circumvent than a similarly-trained fake account
classifier. As we discuss in Section 4, we only require the victim classification
to be better than random in order to outperform the state-of-the-art in fake
account detection.

2.2.2. Graph-based detection
As a response to the lack of formal security guarantees in feature-based

detection, the state-of-the-art in fake account detection utilizes a graph-based
approach instead. In this approach, an OSN is modeled as a finite graph, with
nodes representing user accounts and edges between nodes representing social
relationship. Assuming that fake accounts can establish a small and limited
number of attack edges, the subgraph induced by the set of all real accounts
is sparsely connected to fakes, that is, the cut over attack edges is sparse.4
Graph-based detection mechanisms make this assumption, and attempt to
find such a sparse cut with formal guarantees [36, 37, 38]. For example, Tuenti
employs SybilRank to rank accounts according to their perceived likelihood
of being fake, based on structural properties of its social graph [8].

Yu et al. were among the first to utilize social networks to defend against
Sybil attacks in peer-to-peer and other distributed systems (e.g., DHTs) [17,
18]. The authors developed a technique that labels each account as either fake
or real based on multiple, modified random walks. This binary classification

4A cut is a partition of nodes into two disjoint subsets. Visually, it is a line that cuts
through or crosses over a set of edges in the graph (see Fig. B.2).
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is used to partition the graph into two smaller subgraphs that are sparsely
interconnected via attack edges, separating real accounts from fakes. They
also proved that in the worst case O(|Ea| log n) fakes can be misclassified,
where |Ea| is the number of attack edges and n is the number of accounts in
the graph. Accordingly, it is sufficient for the attacker to establish Ω(n/ log n)
attack edges in order to evade this detection scheme with 0% TPR.

Fire et al. proposed a technique that allows for the detection of malicious
profiles, such as fake and spam accounts, using topological features extracted
from a social network [39]. Based on the observation that OSNs are scale-free
and have a community structure where legitimate users are typically members
of only a small group of communities, the approach uses the social graph’s
topology to detect malicious accounts that randomly connect to other users
from different communities. The proposed technique was evaluated on several
social networks, including Google+, and was demonstrated to be effective in
detecting fake and spam accounts.

In order to detect fake accounts that engage in friend request spamming
in OSNs, Cao et al. proposed a system called Rejecto [40]. Rejecto is based
on the premise that friend request rejections could potentially be used to
identify fake accounts. The authors propose a technique that partitions a
social graph into two regions: friend spammers (fake accounts) and legitimate
users. The partitioning is done such that the aggregate acceptance rate of
friend requests between the two partitions is minimized. The authors extend
the Kerninghan-Lin heuristic in order to obtain the graph cut, and thus, were
able to detect fake accounts that engage in friend spamming.

Viswanath et al. employed traditional community detection techniques to
identify fake accounts in OSNs [20]. In general, community detection decom-
poses a given graph into a number of tightly-knit subgraphs that are loosely
connected to each other, where each subgraph is called a community [41, 42].
By expanding a community starting with known real accounts [43], the au-
thors were able to identify the subgraph which contains mostly real accounts.
Recently, however, Alvisi et al. showed that such a local community detec-
tion technique can be easily circumvented if fake accounts establish sparse
connectivity among themselves [10].

As binary classification often leads to high FPR [20], Cao et al. proposed
user ranking instead so that most fake accounts are ranked lower than real
accounts [8]. The authors developed SybilRank, a fake account detection
system that assigns each account a rank describing how likely it is to be fake
based on a modified random walk, in which a lower rank means the account is
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more likely to be fake. They also proved that O(|Ea| log n) fakes can outrank
real accounts in the worst case, given the fakes establish |Ea| attack edges
with victims at random.

Cao et. al proposed SybilFence [44], which improves on prior social graph-
based Sybil detection techniques. In essence, SybilFence is based on the ob-
servation that fake accounts will inevitably receive a significant amount of
negative user feedback over the course of their operation. As such, the au-
thors proposed discounting the weights on the social edges of users that have
received negative feedback with the goal of limiting the impact of the attack
edges of Sybil accounts. This weighted-graph ranking model thus attempts
to reduce the aggregate value of Sybil attack edges thereby improving Sybil
account detection accuracy. The authors adapted SybilRank [8] in order to
implement the negative feedback user weighting scheme and, through simula-
tions, demonstrated an improvement of up to 20% in terms of the probability
of ranking non-Sybil users higher than Sybils.

While graph-based detection offers the desirable security guarantees, real-
world social graphs do not conform with the main assumption on which it
depends. In particular, various studies confirmed that attackers can infiltrate
OSNs on a large scale by deceiving users into befriending their fakes [11, 6,
12]. As we discuss next, social infiltration renders graph-based fake account
detection ineffective in practice.

With Íntegro, we do not assume fake accounts are limited by how many
attack edges they can establish. Instead, we identify potential victims of fakes
and leverage this information to weight the graph. Through a user ranking
scheme, we bound the security guarantee by the aggregate weight on attack
edges, vol(Ea), rather than their number, |Ea|. By assigning lower weights
to edges incident to potential victims, we were able to upper bound the value
of vol(Ea) by |Ea|, as we show in Section 4.

2.3. Social Infiltration: A Case Study on Facebook
In early 2011, we conducted a study to evaluate how easy it is to infiltrate

large OSNs such as Facebook [6]. We used 100 automated fake accounts to
send friend requests to 9.6K real users, where each user received exactly one
request. We summarize the main results and implications in what follows.

2.3.1. Main results
We found that users are not careful in befriending other users, especially

when they share mutual friends with the requester. This behavior was ex-
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ploited by the fakes to achieve large-scale social infiltration with a success
rate of up to 80%, in which case the fakes shared at least 11 mutual friends
with the victims. In particular, we reported two main results that are im-
portant for designing fake account detection systems. First, some users are
more likely to be victims than others, which partly depends on factors related
to their social structure. As shown in Fig. B.1a, the more friends a user had,
the more likely the user was to accept friend requests sent by fakes posing
as strangers, regardless of their gender or number of mutual friends. Second,
attack edges are generally easy to establish in OSN such as Facebook. As
suggested in Fig. B.1b, an attacker can establish enough attack edges such
that there is no sparse cut separating real accounts from fakes [38].

2.3.2. Implications
The study suggests that one can identify potential victims in OSNs from

user-level activities using low-cost features (e.g., number of friends). In ad-
dition, the study shows that graph-based detection mechanisms that rely
solely on the graph structure are not robust against social infiltration. As
social infiltration is prominent in other OSNs [45, 46], one should extend the
threat model of fake account detection to consider attackers who are capable
of large-scale social infiltration.

2.4. Analyzing Victim Accounts
While we are the first to use potential victims to separate fakes from real

accounts, others have analyzed victim accounts as part of the larger cyber
criminal ecosystem in OSNs [47].

Wagner et al. developed predictive models to identify users who are more
susceptible to social infiltration in Twitter [12]. They found that susceptible
users, also called potential victims, tend to use Twitter for conversational
purposes, are more open and social since they communicate with many dif-
ferent users, use more socially welcoming words, and show higher affection
than non-susceptible users.

Yang el al. studied the cyber criminal ecosystem on Twitter [48]. They
found that victims fall into one of three categories. The first are social butter-
flies who have large numbers of followers and followings, and establish social
relationships with other accounts without careful examination. The second
are social promoters who have large following-follower ratios, larger following
numbers, and a relatively high URL ratios in their tweets. These victims use
Twitter to promote themselves or their business by actively following other
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accounts without consideration. The last are dummies who post few tweets
but have many followers. In fact, these victims are dormant fake accounts at
an early stage of their abuse.

2.5. Abuse Mitigation and the Ground-truth
Due to the inapplicability of automated account suspension, OSNs employ

abuse mitigation techniques, such as CAPTCHA challenges [9] and photo-
based social authentication [14], in order to rate-limit accounts that have
been automatically flagged as fake. These accounts are pooled for manual
inspection by experienced analysts who maintain a ground-truth for real
and fake accounts along with their features, before suspending or removing
verified fake accounts [9, 25, 8, 49].

While maintaining an up-to-date ground-truth is important for retraining
deployed classifiers and estimating their effectiveness in practice, it is rather a
time-consuming and non-scalable task. For example, on an average day, each
analyst at Tuenti inspects 250–350 accounts an hour, and for a team of 14
employees, up to 30K accounts are inspected per day [8]. It is thus important
to rank user accounts in terms of how likely they are to be fake in order to
prioritize account inspection by analysts. Íntegro offers this functionality
and consequently leads to a faster reaction against potential abuse by fakes,
benefiting both OSN operators and their users.

3. Intuition, Goals, and Model

We now introduce Íntegro, an automated fake account detection system
that is robust against social infiltration. We first present the intuition of our
design, followed by its goals and model.

3.1. Intuition
We start with the premise that some users are more likely to be victims

than others. If we can train a classifier to identify potential victims with
high probability, we may be able to use this information to find the cut
which separates fakes from real accounts in the graph. As victims are benign
users who are not adversarial, the output of this classifier represents a reliable
information which we can integrate in the graph.

To find such a cut, we can define a graph weighting scheme that assigns
edges incident to potential victims lower weights than others, where weight
values are calculated from victim classification probabilities. In a weighted
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graph, the sparsest cut is the cut with the smallest volume, which is the sum
of weights on edges across the cut. Given an accurate victim classifier, this
cut is expected to cross over some or all attack edges, effectively separating
real accounts from fakes, even if the number of attack edges is large. We aim
to find such a cut using a ranking scheme that ideally assigns higher ranks
to nodes in one side of the cut than the other, which represents one way to
separate real accounts from fakes. This ranking scheme is inspired by similar
graph partitioning algorithms proposed by Spielman et al. [50], Yu [36], and
recently by Cao et al. [8].

3.2. Design Goals
Íntegro aims to help OSN operators in detecting fake accounts through a

user ranking scheme. In particular, Íntegro has the following design goals:

• High-quality user ranking (effectiveness). The system should ideally
assign higher ranks to real accounts than fakes. If not, it should limit
the number of fakes that might rank similar to or higher than real
accounts. In practice, the ranking should have an area under ROC
curve (AUC) that is greater than 0.5 and closer to 1, where the AUC
represents the probability of a random real accounts to rank higher
than a random fake account [20]. Also, the system should be robust
against social infiltration under real-world attack strategies. Given a
ranked list of users, a high percentage of the users at the bottom of the
list should be fake. This percentage, which represents the precision of
detection, should significantly decrease as we go up in the list.

• Scalability (efficiency). The system should have a practical computa-
tional cost which allows it to scale to large OSNs. In other words, it
should scale nearly linearly with number of user accounts in the OSN,
and deliver ranking results in only few minutes. The system should
be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their
existing computer clusters.

3.3. System Model
As shown in Fig. B.2, we model an OSN as an undirected, finite graph

G = (V,E), where each node vi ∈ V represents a user account and each edge
{vi, vj} ∈ E represents a bilateral social relationship among vi and vj. In the
graph G, there are n = |V | nodes and m = |E| edges.
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3.3.1. Attributes
Each node vi has a degree deg(vi) that is equal to the sum of weights on

edges incident to it. Also, vi has a feature vector A(vi), where each entry
aj ∈ A(vi) describes a feature or an attribute of the account vi. Each edge
{vi, vj} ∈ E has a weight w(vi, vj) ∈ (0, 1], which is initially set to 1.

3.3.2. Regions
The node set V is divided into two disjoint sets, Vr and Vf , representing

real and fake accounts, respectively. We refer to the subgraph induced by
Vr as the real region Gr, which includes all real accounts and the friendships
between them. Likewise, we refer to the subgraph induced by Vf as the fake
region Gf . The regions are connected by a set of attack edges Ea between
victim and fake accounts. We assume the OSN operator is aware of a small set
of trusted accounts Vt, also called seeds, which are known to be real accounts
and are not victims.

4. System Design

In what follows, we describe in detail the design behind Íntegro. We start
with a short overview of our approach, after which we proceed with a detailed
description of each system component.

4.1. Overview
At first, Íntegro trains a victim classifier using low-cost features extracted

from user-level activities. This feature-based classifier is used to identify po-
tential victims in the graph, each with some probability (Section 4.2). After
that, Íntegro calculates new edge weights from the probabilities computed
by the victim classifier, so that edges incident to potential victims have lower
weights than others. Íntegro then ranks user accounts based on the landing
probability of a modified random walk that starts from a trusted account, or
a seed node, picked at random from all trusted accounts (Section 4.3).

The random walk is “short” because it is terminated after O(log n) steps,
early before it converges. The walk is “supervised,” as it is biased towards
traversing nodes which are reachable via higher-weight paths. This modified
random walk has a higher probability to stay in the real region of the graph,
as it is highly unlikely to escape into the fake region in few steps through low-
weight attack edges. Therefore, Íntegro ranks most of real accounts higher
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than fakes, given a seed selection strategy that considers existing community
structures in the real region (Section 4.4).

Íntegro takes O(n log n) time to complete its computation (Section 4.5).
In addition, it formally guarantees that at most O(vol(Ea) log n) fake ac-
counts can have the same or higher ranks than real accounts in the worst
case, given the fakes establish |Ea| attack edges at random (Section 4.6).

4.2. Identifying Potential Victims
For each account vi, Íntegro extracts a feature vector A(vi) from its user-

level activities. A subset of the feature vectors is selected to train a binary
classifier in order to identify potential victims in the OSN using supervised
machine learning, as follows.

4.2.1. Feature engineering
Extracting and selecting useful features from user-level activities can be

both challenging and time consuming. To be efficient, we seek low-cost fea-
tures which could be extracted in O(1) time per user. One candidate location
for extracting such features is the profile page of user accounts, where fea-
tures are readily available (e.g., a Facebook profile page). However, low-cost
features are expected to be statistically “weak,” which means they may not
strongly correlate with the label of a user account (i.e., victim or not). As
we explain later, we require the victim classifier to be better than random in
order to deliver robust fake account detection. This requirement, fortunately,
is easy to satisfy. In particular, we show in Section 5 that an OSN can train
and cross-validate a victim classifier that is up to 52% better than random,
using strictly low-cost features.

4.2.2. Supervised machine learning
For each user vi, Íntegro computes a vulnerability score p(vi) ∈ (0, 1) that

represents the probability of vi to be a victim. Given an operating threshold
α ∈ (0, 1) with a default value of α = 0.5, we say vi is a potential victim if
p(vi) ≥ α. To compute vulnerability scores, Íntegro uses random forests (RF)
learning algorithm [51] to train a victim classifier, which given A(vi) and α,
decides whether the user vi is a potential victim with a score p(vi). We picked
the RF learning algorithm because it is both efficient and robust against
model over-fitting [52]. Íntegro takes O(n log n) time to extract n feature
vectors and train an RF victim classifier. It also takes O(n) to compute a
vulnerability score for all users, given their feature vectors and the trained
victim classifier.
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4.2.3. Robustness
As attackers do not control victims, a victim classifier is inherently more

resilient to adversarial attacks than similarly-trained fake account classifier.
Let us consider one concrete example. In the “boiling-frog” attack [33], fake
accounts can force a classifier to tolerate abusive activities by slowly intro-
ducing similar activities to the OSN. Because the OSN operator has to retrain
deployed classifiers in order to capture new behaviors, a fake account classifier
will learn to tolerate more and more abusive activities, until the attacker can
launch a full-scale attack without detection [6]. When identifying potential
victims, however, this is only possible if the real accounts used for training
the victim classifier have been hijacked. This situation can be avoided by
verifying the accounts, as described in Section 2.5.

4.3. Leveraging Victim Classification for Robust User Ranking
To rank user accounts in the OSN, Íntegro computes the probability of a

modified random walk to land on each user vi after k steps, where the walk
starts from a trusted user account picked at random. For simplicity, we refer
to the probability of a random walk to land on a node as its trust value, so the
probability distribution of the walk at each step can be modeled as a trust
propagation process [53]. In this process, a weight w(vi, vj) represents the
rate at which trust may propagate from either side of the edge {vi, vj} ∈ E.
We next describe this process in detail.

4.3.1. Trust propagation
Íntegro utilizes the power iteration method to efficiently compute trust

values [54]. This method involves successive matrix multiplications where
each element of the matrix is the transition probability of the random walk
from one node to another. Each iteration computes the trust distribution
over nodes as the random walk proceeds by one step. Let Tk(vi) denote the
trust collected by each node vi ∈ V after k iterations. Initially, the total
trust, denoted by τ ≥ 1, is evenly distributed among the trusted nodes in Vt:

T0(vi) =

{
τ/|Vt| if vi ∈ Vt,
0 otherwise.

(1)

The process then proceeds as follows:

Tk(vi) =
∑

{vi,vj}∈E

Tk−1(vj) ·
w(vi, vj)

deg(vj)
, (2)
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where in iteration k, each node vi propagates its trust Tk−1(vi) from iteration
k−1 to each neighbour vj, proportionally to the ratio w(vi, vj)/ deg(vi). This
is required so that the sum of the propagated trust equals Tk−1(vi). The node
vi then collects the trust propagated similarly from each neighbour vj and
updates its trust Tk(vi). Throughout this process, τ is preserved such that
for each iteration k ≥ 1 we have:∑

vi∈V

Tk−1(vi) =
∑
vi∈V

Tk(vi) = τ. (3)

Our goal is to ensure that most real accounts collect higher trust than
fake accounts. That is, we seek to limit the portion of τ that escapes the real
region Gr and enters the fake region Gf . To achieve this property, we make
the following modifications.

4.3.2. Adjusted propagation rates
In each iteration k, the aggregate rate at which τ may enter Gf is strictly

limited by the sum of weights on the attack edges, which we denote by the
volume vol(Ea). Therefore, we aim to adjust the weights in the graph such
that vol(Ea) ∈ (0, |Ea|], without severely restricting trust propagation in
Gr. We accomplish this by assigning smaller weights to edges incident to
potential victims than other edges. In particular, each edge {vi, vj} ∈ E
keeps the default weight w(vi, vj) = 1 if vi and vj are not potential victims.
Otherwise, we modify the weight as follows:

w(vi, vj) = min {1, β · (1−max{p(vi), p(vj)})} , (4)

where β is a scaling parameter with a default value of β = 2. Now, when
vol(Ea)→ 0, the portion of τ that enters Gf reaches zero as desired.

For proper degree normalization, we introduce a self-loop {vi, vi} with
weight w(vi, vi) = (1− deg(vi)) /2 whenever deg(vi) < 1. Notice that self-
loops are considered twice in degree calculation.

4.3.3. Early termination
In each iteration k, the trust vector Tk(V ) = 〈Tk(v1), . . . , Tk(vn)〉 describes

the distribution of τ throughout the graph. As k →∞, the vector converges
to a stationary distribution T∞(V ), as follows [55]:

T∞(V ) =

〈
τ · deg(v1)

vol(V )
, . . . , τ · deg(vn)

vol(V )

〉
, (5)
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where the volume vol(V ) in this case is the sum of degrees of nodes in V .
In particular, Tk(V ) converges after k reaches the mixing time of the graph,
which is much larger than O(log n) iterations for various kinds of social net-
works [56, 57, 41]. Accordingly, we terminate the propagation process early
before it converges after ω = O(log n) iterations.

4.3.4. Degree normalization
As described in Equation 5, trust propagation is influenced by individual

node degrees. As k grows large, the propagation starts to bias towards high
degree nodes. This implies that high degree fake accounts may collect more
trust than low degree real accounts, which is undesirable for effective user
ranking. To eliminate this bias, we normalize the trust collected by each
node by its degree. That is, we assign each node vi ∈ V after ω = O(log n)
iterations a rank value T ′ω(vi) that is equal to its degree-normalized trust:

T ′ω(vi) = Tω(vi)/ deg(vi). (6)

Finally, we sort the nodes by their ranks in a descending order.

4.3.5. Example
Fig. B.3 depicts trust propagation in a graph. In this example, we assume

each account has a vulnerability score of 0.05 except the victim E, which has
a score of p(E) = 0.95. The graph is weighted using α = 0.5 and β = 2, and
a total trust τ = 1000 in initialized over the trusted nodes {C,D}.

In Fig. B.3b, after ω = 4 iterations, all real accounts {A,B,C,D,E}
collect more trust than fake accounts {F,G,H, I}. Moreover, the nodes
receive the correct ranking of (D,A,B,C,E, F,G,H, I), as sorted by their
degree-normalized trust. In particular, all real accounts have higher rank
values than fakes, where the smallest difference is T ′4(E)−T ′4(F ) > 40. Notice
that real accounts that are not victims have similar rank values, where the
largest difference is T ′4(D) − T ′4(C) < 12. These sorted rank values, in fact,
could be visualized as a stretched-out step function that has a significant
drop near the victim’s rank value.

If we allow the process to converge after k > 50 iterations, the fakes collect
similar or higher trust than real accounts, following Equation 5, as shown in
Fig. B.3c. In either case, the attack edges Ea = {{E,G}, {E,F}, {E,H}}
have a volume of vol(Ea) = 0.3, which is 10 times lower than its value if the
graph had unit weights, with vol(Ea) = 3.
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As we show in Section 5, early termination and propagation rate adjust-
ment are essential for robustness against social infiltration.

4.4. Selecting Trusted Accounts with Existing Community Structures
Íntegro is robust against social infiltration, as it limits the portion of τ

that enters Gf by the rate vol(Ea), regardless of the number of attack edges,
|Ea|. For the case when there are few attack edges so that Gr and Gf are
sparsely connected, vol(Ea) is already small, even if one keeps w(vi, vj) = 1
for each attack edge {vi, vj} ∈ Ea. However, Gr is likely to contain com-
munities [58, 41], where each represents a dense subgraph that is sparsely
connected to the rest of the graph. In this case, the propagation of τ in Gr

becomes restricted by the sparse inter-community connectivity, especially if
Vt is contained exclusively in a single community. We therefore seek a seed
selection strategy for trusted accounts, which takes into account the existing
community structure in the graph.

4.4.1. Seed selection strategy
We pick trusted accounts as follows. First, before rate adjustment, we

estimate the community structure in the graph using a community detection
algorithm called the Louvain method [59]. Second, after rate adjustment, we
exclude potential victims and pick small samples of nodes from each detected
community at random. Third and last, we inspect the sampled nodes in order
to verify they correspond to real accounts that are not victims. We initialize
the trust only between the accounts that pass manual verification by experts.

In addition to coping with the existing community structure in the graph,
this selection strategy is designed to also reduce the negative impact of seed-
targeting attacks. In such attacks, fakes befriend trusted accounts in order
to adversely improve their ranking, as the total trust τ is initially distributed
among trusted accounts. By choosing the seeds at random, however, the
attacker is forced to guess the seeds among a large number of nodes. More-
over, by choosing multiple seeds, the chance of correctly guessing the seeds is
further reduced, while the amount of trust assigned to each seed in lowered.
In practice, the number of seeds depends on available resources for manual
account verification, with a minimum of one seed per detected community.

4.4.2. Community detection
We picked the Louvain method as it is both efficient and produces high-

quality partitions. The method iteratively groups closely connected commu-
nities together to greedily improve the modularity of the partition [60], which
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is a measure for partition quality. In each iteration, every node represents
one community, and well-connected neighbors are greedily combined into the
same community. At the end of the iteration, the graph is reconstructed by
converting the resulting communities into nodes and adding edges that are
weighted by inter-community connectivity. Each iteration takes O(m) time,
and only a small number of iterations is required to find the community
structure which greedily maximizes the modularity.

While one can apply community detection to identify fake accounts [20],
doing so hinges on the assumption that fakes always form tightly-knit com-
munities, which is not necessarily true [25]. This also means fakes can easily
evade detection if they establish sparse connectivity among themselves [10].
With Íntegro, we do not make such an assumption. In particular, we consider
an attacker who can befriend a large number of real or fake accounts, without
any formal restrictions.

4.5. Computational Cost
For an OSN with n users and m friendships, Íntegro takes O(n log n) time

to complete its computation, end-to-end. We next analyze the running time
of Íntegro in detail.

Recall that users have a limit on how many friends they can have (e.g.,
5K in Facebook, 1K in Tuenti), so we have O(m) = O(n). Identifying poten-
tial victims takes O(n log n) time, where it takes O(n log n) time to train an
RF classifier and O(n) time to compute vulnerability scores. Also, weighting
the graph takes O(m) time. Detecting communities takes O(n) time, where
each iteration of the Louvain method takes O(m) time, and the graph rapidly
shrinks in O(1) time. Propagating trust takes O(n log n) time, as each itera-
tion takes O(m) time and the propagation process iterates for O(log n) times.
Ranking and sorting users by their degree-normalized trust takes O(n log n)
time. So, the running time is O(n log n).

4.6. Security Guarantees
For the upcoming security analysis, we consider attackers who establish

attack edges with victims uniformly at random. For analytical tractability,
we assume the real region is fast mixing. This means that it takes O(log |Vr|)
iterations for trust propagation to converge in the real region. We refer
the reader to Appendix A and Appendix B for a complete formal analysis,
including theoretical background and formal proofs.
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4.6.1. Sensitivity to mixing time
Similar to SybilRank [8], the ranking quality of Íntegro does not rely on

the absolute value of the mixing time in the real region of the social graph.
Instead, Íntegro only requires that the whole graph has a longer mixing time
than the real region. Under this condition, the early-terminated propagation
process results in a gap between the degree-normalized trust of fakes and real
accounts. Ideally, the number of iterations that Íntegro performs is set equal
to the mixing time of the real region. Regardless of whether the mixing time
of the real region is O(log n) or longer, setting the number of iterations to
this value results in almost uniform degree-normalized trust among the real
accounts [8]. If the mixing time of the real region is larger than O(log n), the
trust that “escapes” to the fake region is further limited. However, we also
run at the risk of starving real accounts that are loosely connected to trusted
accounts via few edges. This risk is mitigated by placing the trusted accounts
in many communities and by dispersing multiple seeds in each community,
thereby ensuring that the trust is initiated somewhere close to those real
accounts, as described in Section 4.4.

4.6.2. Main theoretical result
The main security guarantee provided by Íntegro is captured by the fol-

lowing theoretical result:

Theorem 1. Given a social graph with a fast mixing real region and an
attacker who randomly establishes attack edges, the number of fake accounts
that rank similar to or higher than real accounts after O(log n) iterations is
O (vol(Ea) log n).

Proof sketch. Consider an undirected graph G = (V,E) with a fast mixing
real region Gr. As weighting a graph changes its mixing time by a constant
factor (see Lemma 1), Gr remains fast mixing after rate adjustment.

After O(log n) iterations, the trust vector Tω(V ) does not reach its sta-
tionary distribution T∞(V ). Since trust propagation starts from Gr, the fake
region Gf gets only a fraction f < 1 of the aggregate trust it should receive
in T∞(V ). On the other hand, as the trust τ is conserved during the propa-
gation process (Equation 3), Gr gets c > 1 times higher aggregate trust than
it should receive in T∞(V ).

As Gr is fast mixing, each real account vi ∈ Vr receives approximately
identical rank value of T ′ω(vi) = c · τ/vol(V ), where τ/vol(V ) is the degree-
normalized trust value in T∞(V ) (Equations 5 and 6). Knowing that Gf is
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controlled by the attacker, each fake vj ∈ Vf receives a rank value T ′ω(vj)
that depends on how the fakes inter-connect to each other. However, since
the aggregate trust in Gf is bounded, each fake receives on average a rank
value of T ′ω(vj) = f · τ/vol(V ), which is less than that of a real account. In
the worst case, an attacker can arrange a set Vm ⊂ Vf of fake accounts in Gf

such that each vk ∈ Vm receives a rank value of T ′ω(vk) = c · τ/vol(V ), while
the remaining fakes receive a rank value of zero. Such a set cannot have more
than (f/c) · vol(Vf ) = O (vol(Ea) log n) accounts, as otherwise, f would not
be less than 1 and Gf would receive more than it should in Tω(V ).

4.6.3. Improvement over SybilRank
Íntegro shares many design traits with SybilRank. In particular, modi-

fying Íntegro by setting w(vi, vj) = 1 for each (vi, vj) ∈ E will result in a
ranking similar to that computed by SybilRank [8]. It is indeed the incorpora-
tion of victim classification into user ranking that differentiates Íntegro from
other proposals, giving it the unique advantages outlined earlier.

As stated by Theorem 1, the bound on ranking quality relies on vol(Ea),
regardless of how large the set Ea grows. As we weight the graph based on
the output of the victim classifier, our bound is sensitive to its classification
performance. We next prove that if an OSN operator uses a victim classifier
that is uniformly random, which means each user account vi ∈ V is equally
vulnerable with p(vi) = 0.5, then Íntegro is as good as SybilRank in terms
of ranking quality:

Corollary 1. For a uniformly random victim classifier, the number of fakes
that rank similar to or higher than real accounts after O(log n) iterations is
O(|Ea| log n).

Proof. This classifier assigns each user account vi ∈ V a score p(vi) = 0.5.
By Equation 4, each edge {vi, vj} ∈ E is assigned a unit weight w(vi, vj) = 1,
where α = 0.5 and β = 2. By Theorem 1, the number of fake accounts that
rank similar to or higher than real accounts after ω = O(log n) iterations is
O (vol(Ea) log n) = O(|Ea| log n).

By Corollary 1, Íntegro can outperform SybilRank in its ranking quality
by a factor of O (|Ea|/vol(Ea)), given the used victim classifier is better than
random. This can be achieved during the cross-validation phase of the victim
classifier, which we thoroughly describe and evaluate in what follows.
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5. System Evaluation

We analyzed and evaluated Íntegro against SybilRank using real-world
datasets recently collected from Facebook, Tuenti, and arXiv. We also com-
pared both systems through a large-scale deployment at Tuenti in collabora-
tion with its “Site Integrity” team, which has 14 full-time account analysts
and 10 full-time software engineers who fight spam and other forms of abuse.

5.1. Compared System
We chose SybilRank for two reasons. First, as discussed in Section 4.6,

SybilRank uses a power iteration method on an unweighted version of the
graph to rank user accounts. This similarity allowed us to clearly show the
impact of leveraging victim classification on fake account detection. Sec-
ond, SybilRank was shown to outperform other contenders [8], including
EigenTrust [16], SybilGuard [17], SybilLimit [18], SybilInfer [19], Mislove’s
method [20], and GateKeeper [21]. In what follows, we contrast these systems
to both SybilRank and Íntegro.

SybilGuard [17] and SybilLimit [18] identify fake accounts based on a
large number of modified random walks, where the computational cost is
O(
√
mn log n) in centralized setting like OSNs. SybilInfer [19], on the other

hand, uses Bayesian inference techniques to assign each user account a prob-
ability of being fake in O(n(log n)2) time per trusted account. The system,
however, does not provide analytical bounds on its ranking quality.

GateKeeper [21], which is a flow-based detection approach, improves over
SumUp [62]. It relies on strong assumptions that require balanced graphs
and costs O(n log n) time per trusted account, referred to as a “ticket source.”

Viswanath et al. used Mislove’s algorithm [43] to greedily expand a local
community around known real accounts in oder to partition the graph into
two communities representing real and fake regions [20]. This algorithm,
however, costs O(n2) time and its detection can be easily evaded if the fakes
establish sparse connectivity among themselves [10].

Compared to these detection systems, SybilRank provides an equivalent
or tighter security bound and is more computationally efficient, as it requires
O(n log n) time regardless of the number of trusted accounts. Compared
to SybilRank, Íntegro provides O(|Ea|/vol(Ea)) improvement on its secu-
rity bound, requires the same O(n log n) time, and is robust against social
infiltration, unlike SybilRank and all other systems.
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5.2. Datasets
We used datasets collected from multiple sources. Each dataset contained

either profile pages or a social graph consisting of a specific number of users,
as summarized in Table B.1. We next describe each dataset in detail.

5.2.1. User profiles
We used two datasets from two different OSNs. The first datasets, de-

noted by pro-Facebook in Table B.1, contained public profile pages of 9,646
real users who received friend requests from fake accounts. As the dataset
was collected in early 2011, we wanted to verify whether these users are still
active on Facebook. Accordingly, we revisited their public profiles in June
2013. We found that 7.9% of these accounts were either disabled by Face-
book or deactivated by the users themselves. Accordingly, we excluded these
accounts, ending up with 8,888 accounts, out of which 32.4% were victims
who accepted a single friend request sent by a fake posing as a stranger. As
fakes initially targeted users at random, the dataset included a diverse sam-
ple of Facebook users. In particular, these users were 51.3% males and 48.7%
females, lived in 1,983 cities across 127 countries, practiced 43 languages, and
have used Facebook for 5.4 years on average.

The second dataset, denoted by pro-Tuenti in Table B.1, contained pro-
files of 60K real users who received friend requests from fake accounts, out of
which 50% were victims. The dataset was collected in Feb 10, 2014 from live
production servers, where data resided in memory and no expensive, back-
end queries were made. For Tuenti, collecting this dataset was a low-cost
and easy process, as it only involved reading cached user profiles of a subset
of its daily active users, users who logged in to Tuenti on that particular day.

Research ethics. To collect the pro-Facebook dataset, we followed the known
practices and obtained the approval of our university’s research ethics board [6].
As for the pro-Tuenti dataset, we signed a non-disclosure agreement (NDA)
with Tuenti in order to access an anonymized, aggregated version of its user
data, with the whole process being mediated by Tuenti’s Site Integrity team.

The ground-truth. For the pro-Facebook dataset, we used the ground-truth of
the original study [6], which we also re-validated for the purpose of this work,
as we described above. For the pro-Tuenti dataset, the accounts were in-
spected and labeled by its account analysts. The inspection included match-
ing user profile photos to its declared age or address, understanding natural
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language in user posts, examining the user’s friends, and analyzing the user’s
IP address and HTTP-related information.

5.2.2. Social graphs
We used four datasets sampled from Facebook and arXiv,5 the largest

collaboration network for scientific research. The Facebook datasets, de-
noted by gra-FacebookTs and gra-FacebookRd in Table B.1, are part of the
same 2011 social infiltration study [6]. This means that each node in either
dataset has a corresponding user profile in the pro-Facebook dataset. The
gra-FacebookTs dataset consisted of 2,926 real accounts with 9,124 friend-
ships (the real region), 65 fakes with 2,080 friendships (the fake region),
and 748 timestamped attack edges. The gra-FacebookRd dataset consisted
of 6,136 real accounts with 38,144 friendships, which represented the real
region only. Both datasets were sampled from Facebook using a stochastic
version of the Breadth-First Search method, called “forest fire” [63].

The last two datasets, denoted by gra-HepTh and gra-AstroPh in Ta-
ble B.1, represent collaboration networks between scientists in two research
fields in Physics. These datasets have been widely used to analyze so-
cial graph properties [64] and to evaluate graph-based fake account detec-
tion algorithms, in which each dataset is used as the real region of the
graph [8, 65, 20]. In particular, the gra-HepTh dataset consisted of 8,638
nodes with 24,827 edges, while the gra-AstroPh dataset consisted of 17,903
nodes with 197,031 edges. Both datasets represented the largest connected
component (LCC) of each of the corresponding collaboration network.

5.3. Victim Classification
We sought to validate the following claim: An OSN can identify potential

victims with a probability that is better than random, using strictly low-cost
features extracted from readily-available user profiles. We note, however,
that it is possible to achieve better classification performance, at the price of
a higher computational cost, by using more sophisticated learning algorithms
with temporal activity features [52].

5.3.1. Features
As described in Table B.2, we extracted features from the profiles datasets

to generate feature vectors. The only requirement for feature selection was

5http://arxiv.org/
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to have each feature value available for all users in the dataset, so that the
resulting feature vectors are complete and have no missing values. For the
pro-Facebook dataset, we were able to extract 18 features from public user
profiles. For pro-Tuenti, however, the dataset was limited to 14 features, but
contained user features that are not publicly accessible.

5.3.2. Classifier tuning
The RF learning algorithm is an ensemble algorithm, where a set of de-

cision trees is constructed at training time. When evaluating the classifier
on new data (i.e., unlabeled feature vectors), the decisions from all trees are
combined using a majority voting aggregator [51]. Each decision tree in the
forest uses a small random subset of available features in order to decrease
the generalization error, which measures how well the classifier generalizes to
unseen data [52]. As shown in Fig. B.4, we performed parameter tuning to
calibrate the RF classifier. In particular, we used the out-of-bag error esti-
mates computed by the RF algorithm to numerically find the best number of
decision trees and the number of features for each tree, so that the prediction
variance and bias are controlled across the trees.

5.3.3. Validation method
In order to evaluate the accuracy of the victim classifier, we performed

a 10-fold, stratified cross-validation method [52] using the RF learning al-
gorithm, after initial parameter tuning. First, we randomly partitioned the
dataset into 10 equally-sized sets, with each set having the same percentage
of victims as the complete dataset. We next trained an RF classifier using
9 sets and tested it using the remaining set. We repeated this procedure
10 times (i.e., folds), with each of the sets being used once for testing. Fi-
nally, we combined the results of the folds by computing the mean of their
true-positive rate (TPR) and false-positive rate (FPR).

5.3.4. Performance metrics
The output of the classifier depends on its operating threshold, which is a

cutoff value in the prediction probability after which the classifier identifies a
user as a potential victim. In order to capture the trade-off between TPR and
FPR in single curve, we repeated the cross-validation method under different
threshold values using a procedure known as receiver operating characteristics
(ROC) analysis. In ROC analysis, the closer the curve is to the top-left corner
at point (0, 1) the better the classification performance is. The quality of the
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classifier can be quantified with a single value by calculating the area under
its ROC curve (AUC) [52].

We also recorded the relative importance (RI) of features used for the
classification. The RI score is computed by the RF algorithm, and it describes
the relative contribution of each feature to the predictability of the label (i.e.,
a victim or a non-victim), when compared to all other features [51].

5.3.5. Results
For both datasets, the victim classifier ended up with an AUC greater

than 0.5, as depicted in Fig. B.5a. In particular, for the pro-Facebook dataset,
the classifier delivered an AUC of 0.7, which is 40% better than random. For
the pro-Tuenti dataset, on the other hand, the classifier delivered an AUC of
0.76, which is 52% better than random. Also, increasing the dataset size to
more than 40K feature vectors did not significantly improve the AUC during
cross-validation, as shown in Fig. B.5b. This means that an OSN operator
can train a victim classifier using a relatively small dataset, so fewer accounts
need to be manually verified.

We also experimented with another two widely-used learning algorithms
for victim classification, namely, Naïve Bayes (NB) and SVM [52]. How-
ever, both of these algorithms resulted in smaller AUCs on both datasets. In
particular, for the pro-Facebook dataset, the NB classifier achieved an AUC
of 0.63 and the SVM classifier achieved an AUC of 0.57. Similarly, for the
pro-Tuenti dataset, the NB classifier achieved an AUC of 0.64 and the SVM
classifier achieved an AUC of 0.59. This result is not surprising, as ensemble
learning algorithms, such as the RF algorithm, achieve better predictive per-
formance in case individual classifiers are “weak,” meaning they have small
AUCs but are still better than random [52].

5.4. Ranking Quality
We compared Íntegro against SybilRank in terms of their ranking quality

under various attack scenarios, where ideally real accounts should be ranked
higher than fake accounts. Our results are based on the average of at least 10
runs, with error bars reporting 95% confidence intervals (CI), when applica-
ble. We used the Facebook datasets, namely pro-Facebook, gra-FacebookTs,
and gra-FacebookRd, for this comparison because they included feature vec-
tors and graph samples. We also supplement the evaluation using the arXiv
datasets, namely gra-HepTh and gra-AstroPh, with synthetic feature vectors.
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5.4.1. Infiltration scenarios
We considered two real-world attack scenarios that have been shown to be

successful in practice. In the first scenario, attackers establish attack edges by
targeting users with whom their fakes have mutual friends [6]. Accordingly,
we used the gra-FacebookTs dataset which contained timestamped attack
edges, allowing us to replay the infiltration by 65 socialbots (n=2,991 and
m=11,952). We refer to this scenario as the targeted-victim attack.

In the second scenario, attackers establish attack edges by targeting users
at random [8]. We designated the gra-FacebookRd dataset as the real re-
gion. We then generated a synthetic fake region consisting of 3,068 fakes
with 36,816 friendships using the small-world graph model [66]. We then
added 35,306 random attack edges between the two regions (n=9,204 and
m=110,266). As suggested by related work [36], we used a relatively large
number of fakes and attack edges in order to stress-test both systems under
evaluation. We refer to the this scenario as the random-victim attack.

We supplemented the evaluation under the random-victim attack using
the arXiv datasets. In particular, each dataset represented the real region of
the graph. We generated synthetic fake regions using the same small-world
graph model, where each fake region consisted of 5K fakes and 20K friend-
ships. For each graph, the real and fake regions were connected through 2K
random attack edges. This resulted in two graphs, where the first consisted
of n = 13, 638 nodes and m = 46, 827 edges using the ca-HepTh dataset,
and the second graph consisted of n = 22, 903 nodes and m = 219, 031 edges
using the ca-AstroPh dataset.

5.4.2. Edge weights
For each infiltration scenario, we deployed the previously trained victim

classifier in order to assign new edge weights. As we injected fakes in the sec-
ond scenario, we generated their feature vectors by sampling each feature dis-
tribution of fakes from the first scenario.6 For the supplementary datasets, we
used the same procedure to weight the edges using synthetic feature vectors
and the trained victim classifier. We also assigned edge weights using another
victim classifier that simulates two operational modes. In the first mode, the
classifier outputs the best possible victim predictions with an AUC≈1 and
probabilities greater than 0.95. In the second mode, the classifier outputs

6We excluded the “friends” feature, as it can be computed from the graph.
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uniformly random predictions with an AUC≈0.5. We used this classifier to
evaluate the theoretical best and practical worst case performance of Íntegro,
as specified by the legend of Fig. B.6.

5.4.3. Evaluation method
In order to evaluate each system’s ranking quality, we ran the system using

both infiltration scenarios starting with a single attack edge. We then added
another attack edge, according to its timestamp if available, and repeated
the experiment. We kept performing this process until there were no more
edges to add. At the end of each run, we measured the ranking AUC resulted
by each system, as explained next.

5.4.4. Performance metric
For the resulting ranked list of accounts, we performed ROC analysis by

moving a pivot point along the list, starting from the bottom. If an account is
behind the pivot, we marked it as fake; otherwise, we marked it as real. Given
the ground-truth, we measured the TPR and the FPR across the whole list.
Finally, we computed the corresponding AUC, which in this case quantifies
the probability that a random real account is ranked higher than a random
fake account.

5.4.5. Seeds and iterations
In order to make the chance of guessing seeds very small, we picked 100

trusted accounts that are non-victim, real accounts. We used a total trust
that is equal to n, the number of nodes in the given graph. We also performed
dlog2(n)e iterations for both Íntegro and SybilRank.

5.4.6. Results
Íntegro consistently outperformed SybilRank in ranking quality, espe-

cially as the number of attack edges increased. Using the RF classifier, Ínte-
gro resulted in an AUC which is always greater than 0.92, and is up to 30%
improvement over SybilRank in each attack scenario, as shown in Fig B.6.

In each infiltration scenario, both systems performed well when the num-
ber of attack edges was relatively small. In other words, the fakes were
sparsely connected to real accounts and so the regions were easily separated.
As SybilRank limits the number of fakes that can outrank real accounts by
the number of attack edges, its AUC degraded significantly as more attack
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edges were added to each graph. Íntegro, however, maintained its perfor-
mance, with at most 0.07 decrease in AUC, even when the number of attack
edges was relatively large. Notice that Íntegro performed nearly as good as
SybilRank when a random victim classifier was used, but performed much
better when the RF classifier was used instead. This clearly shows the impact
of leveraging victim classification on fake account detection.

5.5. Sensitivity to Seed-targeting Attacks
Sophisticated attackers might obtain a full or partial knowledge of which

accounts are trusted by the OSN operator. As the total trust is initially
distributed among these accounts, an attacker can adversely improve the
ranking of the fakes by establishing attack edges directly with them. We
next evaluate both systems under two variants of this seed-targeting attack.

5.5.1. Attack scenarios
We focus on two main attack scenarios. In the first scenario, the attacker

targets accounts that are k nodes away from all trusted accounts. This means
that the length of the shortest path from any fake account to any trusted
account is exactly k+1, representing the distance between the seeds and
the fake region. For k=0, each trusted account is a victim and located at a
distance of 1. We refer to this scenario, which assumes a resourceful attacker,
as the distant-seed attack.

In the second scenario, attackers have only a partial knowledge and target
k trusted accounts picked at random. We refer to this scenario as the random-
seed attack.

5.5.2. Evaluation method
In order to evaluate the sensitivity of each system to a seed-targeting

attack, we used the gra-FacebookTs dataset to simulate each attack scenario.
We implemented this by replacing the endpoint of each attack edge in the
real region with a real account picked at random from a set of candidates.
For the first scenario, a candidate account is one that is k nodes away from
all trusted accounts. For the second scenario, a candidate account is simply
any trusted account. We ran experiments for both systems using different
values of k and measured the corresponding AUC at the end of each run.
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5.5.3. Results
In the first attack scenario, both systems had a poor ranking quality when

the distance was small, as illustrated in Fig. B.7a. Because Íntegro assigns
low weights to edges incident to victim accounts, the trust that escapes to
the fake region is less likely to come back into the real region. This explains
why SybilRank had a slightly better AUC for distances less than 3. However,
once the distance was larger, Íntegro outperformed SybilRank ,as expected
from earlier results.

In the second attack scenario, the ranking quality of both systems de-
graded, as the number of victimized trusted accounts increased, where Ínte-
gro consistently outperformed SybilRank, as shown in Fig. B.7b. Notice that
by selecting a larger number of trusted accounts, it becomes much harder for
an attacker to guess which account is trusted, while the gained benefit per
victimized trusted account is further reduced.

5.6. Deployment at Tuenti
We deployed both systems on a snapshot of Tuenti’s daily active users

graph in February 6, 2014. The graph consisted of several million nodes and
tens of millions of edges. We had to mask out the exact numbers due to
a non-disclosure agreement with Tuenti. After initial analysis of the graph,
we found that 96.6% of nodes and 94.2% of edges belonged to one giant
connected component (GCC). Thus, we focused our evaluation on this GCC.

5.6.1. Preprocessing
Using a uniform random sample of 10K users, we found that new users

have weak connectivity to others due to the short time they have been on
Tuenti, as shown in Fig. B.8a. If these users were included in our evaluation,
they would end up receiving low ranks, which would lead to false positives.

To overcome this hurdle, we estimated the period after which users accu-
mulate at least 10% of the average number of friends in Tuenti. To achieve
this, we used a uniformly random sample of 10K real users who joined Tuenti
over the last 77 months. We divided the users in the sample into buckets
representing how long they have been active members. We then calculated
the average number of new friendships they made after every other month.
As illustrated in Fig. B.8b, users accumulated 53% of their friendships dur-
ing the first 12 months. In addition, 18.6% of friendships were made after
one month since joining the network. To this end, we decided to defer the
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consideration of users who have joined in the last 30 days since Feb 6, 2014,
which represented only 1.3% of users in the GCC.

5.6.2. Community detection
We applied the Louvain method on the preprocessed GCC. The method

finished quickly after just 5 iterations with a high modularity score of 0.83,
where a value of 1 corresponds to a perfect partitioning. In total, we found 42
communities and the largest one consisted of 220,846 nodes. In addition, 15
communities were relatively large containing more than 50K nodes. Tuenti’s
account analysts verified 0.05% of the nodes in each detected community,
and designated these nodes as trusted accounts for both systems.

5.6.3. Performance metric
As the number of users in the processed GCC is large, it was infeasible

to manually inspect and label each account. This means that we were un-
able to evaluate the system using ROC analysis. Instead, we attempted to
determine the percentage of fake accounts at equally-sized intervals in the
ranked list. We accomplished this in collaboration with Tuenti’s analysts by
manually inspecting a user sample in each interval in the list. This percent-
age is directly related to the precision of fake account detection, which is a
performance metric typically used to measure the ratio of relevant items over
the top-k highest ranked items in terms of relevance [67].

5.6.4. Evaluation method
We utilized the previously trained victim classifier in order to weight a

copy of the graph. We then ran both systems on two versions of the graph
(i.e., weighted and unweighted) for dlog2(n)e iterations, where n is number
of nodes in the graph. After that, we examined the ranked list of each
system by inspecting the first lowest-ranked one million users. We decided
not to include the complete range due to confidentiality reasons, because
otherwise one could precisely estimate the actual number of fakes in Tuenti.
We randomly selected 100 users out of each 20K user interval for inspection in
order to measure the percentage of fakes in the interval, that is, the precision.

5.6.5. Results
As shown in Fig. B.9a, Íntegro resulted in 95% precision in the lowest 20K

ranking user accounts, as opposed to 43% by SybilRank and 5% by Tuenti’s
user-based abuse reporting system. This precision dropped dramatically as
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we went up in the list, which means our ranking scheme placed most of the
fakes at the bottom of the ranked list, as shown in Fig. B.9b.

Let us consider SybilRank’s ranking shown in Fig. B.9a and Fig. B.9c.
The precision, starting with 43% for the first interval, gradually decreased
until rising again at the 10th interval. This pattern repeated at the 32nd
interval as well. We inspected the fake accounts at these intervals and found
that they belonged to three different, large communities. In addition, these
fakes had a large number of friends, much larger than the average of 254
friends. In particular, the fakes from the 32nd interval onwards had more
than 300 friends, with a maximum of up to 539. Fig. B.9d shows the degree
distribution for both verified fake and real accounts. This figure suggests that
fakes tend to create many attack edges with real accounts, which confirms
earlier findings on other OSNs such as Facebook [6]. Also, this behavior
explains why Íntegro outperformed SybilRank in user ranking quality; these
high degree fakes received lower ranks as most of their victims were identified
by the classifier.

5.6.6. SybilRank in retrospect
SybilRank was initially evaluated on Tuenti, where it effectively detected

a significant percentage of the fakes [8]. The original evaluation, however,
pruned excessive edges of nodes that had a degree greater than 800, which
include a non-disclosed number of fakes that highly infiltrated Tuenti. Also,
the original evaluation was performed on the whole graph, which included
many dormant accounts. In contrast, our evaluation was based on the daily
active users graph in order to focus on active fake accounts that could be
harmful. While this change limited the number of fakes that existed in the
graph, it has evidently revealed the ineffectiveness of SybilRank under social
infiltration. Additionally, the original evaluation showed that 10–20% of fakes
received high ranks, a result we also attest, due to the fact that these fake
accounts had established many attack edges. On the other hand, Íntegro has
0–2% of fakes at these high intervals, and so it delivers an order of magnitude
better precision than SybilRank.

6. Implementation and Scalability

We implemented Íntegro in Mahout and Giraph, which are widely used,
open-source distributed machine learning and graph processing platforms.
We next test the scalability of Íntegro using a synthetic benchmark.
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6.0.1. Benchmark
We deployed Íntegro on an Amazon Elastic MapReduce7 cluster. The

cluster consisted of a single m1.small instance serving as a master node and
32 m2.4xlarge instances serving as slave nodes. We also employed the small-
world graph model [66] to generate 5 graphs with an exponentially increasing
number of nodes. For each one of these graphs, we used the Facebook dataset
to randomly generate all feature vectors with the same distribution for each
feature. We then ran Íntegro on each of the generated graphs and measured
its execution time.

6.0.2. Results
Íntegro achieved a nearly linear scalability with the number of nodes in

a graph, as illustrated in Fig. B.10. Excluding the time required to load the
160M node graph into memory, 20 minutes for a non-optimized data format,
it takes less than 2 minutes to train an RF classifier and compute vulnerability
scores for nodes, and less than 25 minutes to weight the graph, rank nodes,
and finally sort them. This makes Íntegro computationally practical even for
large OSNs such as Facebook.

7. Discussion

As mentioned in Section 4.6, Íntegro’s security guarantee is sensitive to
the performance of the deployed victim classifier, which is formally captured
by the volume vol(Ea) in the bound O(vol(Ea) log n), and can be practically
measured by its AUC.

7.1. Sensitivity to Victim Classification and Social Infiltration
As illustrated in Fig. B.6, improving the AUC of the victim classifier from

random with AUC ≈ 0.5, to actual with AUC= 0.7, and finally to best with
AUC ≈ 1 consistently improved the resulting ranking in terms of its AUC.
Therefore, a higher AUC in victim classification leads to a higher AUC in
user ranking. This is the case because the ROC curve of a victim classifier
monotonically increases, so a higher AUC implies a higher true positive rate
(TPR). In turn, a higher TPR means more victims are correctly identified,
and so more attack edges are assigned lower weights, which evidently leads
to a higher AUC in user ranking.

7http://aws.amazon.com/elasticmapreduce
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Regardless of the used victim classifier, the ranking quality decreases as
the number of attack edges increases, as illustrated in Fig. B.6. This is the
case because even a small false negative rate (FNR) in victim classification
means more attack edges, which are indecent to misclassified victims, are
assigned high weights, leading to a lower AUC in user ranking.

7.2. Maintenance and Impact
While an attacker does not control real accounts nor their activities, it

can still trick users into befriending fakes. In order to achieve a high-quality
ranking, the victim classifier should be regularly retrained to capture new
and changing user behavior in terms of susceptibility to social infiltration.
This is, in fact, the case for supervised machine learning when applied to
computer security problems [9]. Also, as the ranking scheme is sensitive
to seed-targeting attacks, the set of trusted accounts should be regularly
updated and validated in order to reduce the negative impact of these attacks,
even if they are unlikely to succeed, as discussed in Section 4.4.

By using Íntegro, Tuenti requires nearly 67 man hours to manually val-
idate the 20K lowest ranking user accounts, and discover about 19K fake
accounts instead of 8.6K fakes with SybilRank. With its user-based abuse
reporting system that has 5% hit rate, and assuming all fakes get reported,
Tuenti would need 1,267 man hours instead to discover 19K fake accounts.
This improvement has been useful to Tuenti and its users.

7.3. Resilience to Adversarial Attacks
There are several design factors that make Íntegro inherently more re-

silient to adversarial attacks compared to techniques which only rely on
similarly-trained fake account classifiers.

First, Íntegro leverages victim classification for the detection of fake ac-
counts. Since attackers do not control victims, this makes Íntegro more
robust to adversarial attack strategies such as the "boiling-frog" attack [33]
which can force fake account classifiers to tolerate abusive activities by slowly
introducing such activities to the OSN. One potential approach for attack-
ers to control victim accounts is through account hijacking, however that is
impractical on a large scale and can be avoided by verifying the accounts as
described in Section 2.5.

Second, the seed selection strategy employed by Íntegro (as outlined in
Section 4.4.1) is designed to reduce the negative impact of seed targeting
attacks. Given that the total trust is initially distributed among trusted
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seed accounts, in such a scenario, an attacker may attempt to direct fake
accounts to befriend trusted accounts in order to adversely improve the fake
accounts’ ranking. However, Íntegro selects the seeds at random thus a po-
tential attacker is forced to guess the seeds from among a large number of
users. Additionally, Íntegro employs multiple seeds which further reduces the
probability of an attacker correctly guessing the trusted seeds. In practice,
the number of seeds is only limited by the available resources necessary for
manual account verification of the trusted seeds. We analyze such an attack
scenario in Section 5.5 and we demonstrate that Íntegro typically outperforms
SybilRank when subjected to a seed targeting attack.

8. Limitations

We next outline two design limitations which are inherited from Sybil-
Rank [8] and similar random walk-based ranking schemes [36]:

• Íntegro’s design is limited to only undirected social graphs. In other
words, OSNs whose users declare lateral relationships, such as Twitter
and Google+, are not expected to benefit from our proposal. This is
the case because directed graphs, in general, have a significantly smaller
mixing time than their undirected counterparts [65], which means that
a random walk on such graphs will converge in a much small number of
steps, rendering short random walks unsuitable for robust user ranking.

• Íntegro delays the consideration of new user accounts. This means
that an OSN operator might miss the chance to detect fakes at their
early life-cycle. However, as shown in Figure B.8a, only 7% of new
users who joined Tuenti in the last month had more than 46 friends.
To estimate the number of fakes in new accounts, we picked 100 new
accounts at random for manual verification. We found that only 6% of
these accounts were fake, and the most successful fake account had 103
victims. In practice, the decision of whether to exclude these accounts is
operational, and it depends on the actions taken on low-ranking users.
For example, an operator can enforce abuse mitigation technique, as
discussed in Section 2.5, against low-ranking users, where false positives
can negatively affect user experience but slow down fake accounts that
just joined the network. This is a security/usability trade-off which we
leave to the operator to manage. Alternatively, the operator can use

38



fake account detection systems that are designed to admit legitimate
new users using, for example, a vouching process [68].

Íntegro is not a stand-alone fake account detection system. It is intended
to complement existing detection systems and is designed to detect auto-
mated fake accounts that befriend many victims for subsequent attacks. Ín-
tegro is deployed at Tuenti along side a feature-based detection system and
a user-based abuse reporting system.

9. Conclusion

OSNs today are faced with the problem of detecting fake accounts in a
highly adversarial environment. The problem is becoming more challenging
as such accounts have become sophisticated in cloaking their operation with
patterns resembling real user behavior. In this paper, we presented Íntegro,
a scalable defense system that helps OSN operators to detect fake accounts
using a meaningful user ranking scheme.

Our evaluation results show that SybilRank, the state-of-the-art in fake
account detection, is ineffective when the fakes infiltrate the target OSN by
befriending a large number of real users. Íntegro, however, has proven more
resilient to this effect by leveraging in a novel way the knowledge of benign
victim accounts that befriend fakes. We have implemented Íntegro on top of
standard data processing platforms, Mahout and Giraph, which are scalable
and easy to deploy in modern data centers. In fact, Tuenti, the largest
OSN in Spain with more than 15M active users, has deployed our system in
production to thwart fakes in the wild with at least 10 time more precision.
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In what follows, we provide the required background on random walks
after which we analyze the main security guarantee of Íntegro.

Appendix A. Background

Let G = (V,E) be an undirected graph with n = |V | nodes and m = |E|
undirected edges. Also, let w : E → R+ be a function that assigns each edge
(vi, vj) ∈ E a weight w(vi, vj) > 0. The transition matrix P is an n × n
matrix, where each entry pij ∈ [0, 1] represents the probability of moving
from node vi ∈ V to node vj ∈ V , as defined by:

pij :=


w(vi, vj)

deg(vi)
if (vi, vj) ∈ E,

0 otherwise.
(A.1)
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The transition matrix P might not be symmetric but it is right-stochastic, as
P is a square matrix of non-negative real numbers and for each node vi ∈ V ,∑

(vi,vj)∈E

pij = 1. (A.2)

The event of moving from one node to another in G is captured by a
Markov chain representing a random walk over G. In turn, a random walk
W = 〈v1, . . . , vi〉 of length i ≥ 1 over G is a sequence of nodes that starts at
the initial node v1 and ends at the terminal node vi, following the transition
probability defined in Equation A.1. The Markov chain is called ergodic if
it is irreducable and aperiodic. In this case, the Markov chain has a unique
stationary distribution to which the random walk converges as i→∞. The
stationary distribution π of a Markov chain is a probability distribution that
is invariant to the transition matrix, that is, whenever πP = π. The station-
ary distribution of the Markov chain over G is a 1 × n probability vector,
and is defined by

π :=

[
deg(v1)

vol(V )
. . .

deg(vn)

vol(V )

]
, (A.3)

where π(vj) is the jth entry in π and represents the landing probability of
node vj ∈ V , and vol(U) is the volume of a node set U ⊆ V , which is defined
by

vol(U) :=
∑
vj∈U

deg(vj). (A.4)

The marginal distribution πi of the Markov chain over G is a 1×n probability
vector, where πi(vj) is the landing probability of node vj ∈ V at step i of the
random walk. Given an initial distribution π0, the marginal distribution πi
is iteratively defined by

πi := πi−1P = π0P
i, (A.5)

and accordingly, πi(vj) can be computed by [54]

πi(vj) =
∑

(vk,vj)∈E

πi−1(vk) ·
w(vk, vj)

deg(vk)
. (A.6)

The total variation distance ||πi − π||TV between the marginal and sta-
tionary distributions is a measure of how “close” these distribution are, and
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is defined by

||πi − π||TV :=
1

2

∑
vj∈V

|πi(vj)− π(vj)|. (A.7)

The mixing time T (ε) of the Markov chain over G, when parametrized
by a relative variation error ε > 0, is the minimal length of the random
walk required for the marginal distribution to be ε-close to the stationary
distribution in total variation distance, and is defined by

T (ε) := min {i : ||πi − π||TV ≤ ε} . (A.8)

It thus follows that if i ≥ T (ε), we have πi = π.

Appendix B. Analysis

We next start by proving that reassigning edge weights in an undirected
graph changes its mixing time by only a constant factor. We subscript the
used notation in order to differentiate between different graphs when neces-
sary. For a given OSN, we refer to its social graph after rate adjustment as
the defense graph D.

Lemma 1. Given a social graph G with a mixing time TG(ε), the corre-
sponding defense graph D after rate adjustment has a mixing time TD(ε) =
O(TG(ε)).

Proof. Recall that the mixing time of an undirected graph G = (V,E) is
bounded by [61]

λ

2(1− λ)
log

(
1

2ε

)
≤ T (ε) ≤

log(n) + log
(

1
ε

)
1− λ

, (B.1)

where λ ∈ (−1, 1) is the second largest eigenvalue of the transition matrix P
of the graph G. For a social graph G and its defense graph D, we have

TD(ε)

TG(ε)
≤ 1− λG

1− λD
= O(1),

and thus, TD(ε) = O(TG(ε)).
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Given the bound in Equation B.1, a Markov chain over a graph G is fast
mixing if T (ε) is polynomial in log n and log(1/ε). In the context of fake
account detection, we consider the stricter case when ε = O(1/n), and so we
call G fast mixing if T (ε) = O(log n).

Let us refer to the landing probability πi(vj) of a node vj ∈ V as its
trust value so that πi is the trust distribution in step i.8 Moreover, let the
expansion χ(U) of a node set U ⊆ V be defined by

χ(U) :=
vol (∂(U))

vol(U)
, (B.2)

where ∂(U) = {(vi, vj) ∈ E : vi ∈ U, vj ∈ V \ U} is the edge boundary of
U . In our threat model, we have ∂(Vr) = ∂(Vf ) = Ea, where edges in Ea are
established at random.

We now prove that during a random walk on the defense graph D =
(V,E), where the walk starts from a known real node in the real region, the
expected aggregate trust in the fake region Df monotonically increases by
diminishing increments until it converges to its stationary value.

Lemma 2. Given a defense graph D with g = |Ea| randomly established
attack edges, n0 ≥ 1 trusted real nodes, a total trust τ ≥ 1, and an initial
trust distribution

π0(vj) =

{
τ/n0 if vj is a trusted node,
0 otherwise,

the expected aggregate trust over the fake region in the (i+ 1)-th iterations
increases by an amount of (χ(Vr) · τ) (1− χ(Vr)− χ(Vf ))

i for each i ≥ 0.

Proof. We prove the lemma by induction. We use the iterative method de-
scribed in Equation A.5 to compute trust distribution for a random walk
that starts from a trusted node. We first define some notation. Let πi(Vr)
be the aggregate trust in the real region Dr after iteration i, as defined by

πi(Vr) :=
∑
vj∈Vr

πi(vj). (B.3)

8In the main text, we denoted the trust value πi by Ti. The reason we use πi herein is
because it is the standard notation used in analyzing stochastic processes [55].
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Similarly, let πi(Vf ) be the aggregate trust in Df after iteration i. As
defined by π0, initially, we have π0(Vr) = τ and π0(Vf ) = 0. Moreover, the
total trust τ is reserved during the iterations, that is, πi(Vr) +πi(Vf ) = τ for
each i ≥ 0.

In each iteration i, the total trust is redistributed in the graph. Con-
sider iteration i + 1. For each vi, vj ∈ Vr, the edge (vi, vj) ∈ E carries
w(vi, vj) (πi(Vr)/vol(Vr)) trust on average. As the |∂(Vr)| attack edges are
established at random, it is expected that vol (∂(Vr)) (πi(Vr)/vol(Vr)) trust,
that is, χ(Vr) · πi(Vr), is passed through these edges to the fake region. The
same also holds for the fake region, which means we can model the trust
exchange between Dr and Df by

πi+1(Vr) = πi(Vr) + χ(Vf ) · πi(Vf )− χ(Vr) · πi(Vr) and
πi+1(Vf ) = πi(Vf ) + χ(H) · πi(Vr)− χ(Vf ) · πi(Vf ),

where the total trust τ is conserved throughout the process, as follows:

πi+1(Vr) + πi+1(Vf ) = πi(Vr) + πi(Vf ) = τ.

We now consider the base case of this lemma. Initially, for iteration i = 0,
we have χ(Vr) · π0(Vr) = χ(Vr) · τ and χ(Vf ) · π0(Vf ) = 0. Therefore,

π1(Vf )− π0(Vf ) = χ(Vr) · τ.

We next state the induction hypothesis. For each i ≥ 1, let us assume
the following statement is true:

πi(Vf )− πi−1(Vf ) = (χ(Vr) · τ) (1− χ(Vr)− χ(Vf ))
i−1 .

Now, let us consider the trust exchange in iteration i+ 1:

πi+1(Vf )− πi(Vf ) = χ(Vr) · πi(Vr)− χ(Vf ) · πi(Vf )

By substituting πi(Vr) by πi−1(Vr) + χ(Vf ) · πi−1(Vf ) − χ(Vr)τi−1(Vr), and
doing similarly so for πi−1(Vf ), we get

πi+1(Vf )− πi(Vf ) = χ(Vr) ((1− χ(Vr)) · πi−1(Vr) + χ(Vf ) · πi−1(Vf ))−
χ(Vf ) ((1− χ(Vf )) · πi−1(Vf ) + χ(Vr) · πi−1(Vr))

= (χ(Vr) · πi−1(Vr)− χ(Vf ) · πi−1(Vf )) (1− χ(Vr)− χ(Vf )) .

50



We know that πi(Vf ) = πi−1(Vf ) + χ(Vr) · πi−1(Vr) − χ(Vf ) · πi−1(Vf ), and
therefore

πi+1(Vf )− πi(Vf ) = (πi(Vf )− πi−1(Vf )) (1− χ(Vr)− χ(Vf )) .

Finally, by the induction hypothesis, we end up with

πi+1(Vf )− πi(Vf ) = (χ(Vr) · τ) (1− χ(Vr)− χ(Vf ))
i ,

which, by induction, completes the proof.

Corollary 2. In the i-th iteration, the expected increment of aggregate trust
in the fake region in upper bounded by (χ(Vr) · τ) (1− χ(Vr))

i for each i ≥ 0.

We next bound the aggregate trust in the fake region πi(Vf ) after β
iterations, where 1 ≤ β ≤ T (ε) − ∆ and ∆ > 1 is a positive number. We
achieve this by directly comparing πβ(Vf ) to its stationary value πT (ε)(Vf ),
where T (ε) ≥ β + ∆. In fact, this result holds as long as there is at least a
constant difference between the mixing time T (ε) and β, or in other words,
whenever T (ε)− β = Ω(1) and T (ε) is not arbitrarily large.

Lemma 3. Given a defense graph D with a mixing time T (ε) ≥ 1 and a
positive integer β ∈ [1, T (ε) − ∆] where ∆ > 1, the aggregate trust in the
fake region πβ(Vf ) after β iterations gets a fraction f ∈ (0, 1) of that in the
stationary distribution, that is, πβ(Vf ) = f · τ · (vol(Vf )/vol(V )), where

f =
β ·
∑

0≤i≤β−∆ (1− χ(Vr)− χ(Vf ))
i

T (ε) ·
∑

0≤i≤T (ε)−∆ (1− χ(Vr)− χ(Vf ))
i (B.4)

Proof. By Lemma 2, we know that the aggregate trust in the fake region
monotonically increases with the number of iterations in the process defined
by Equation A.5. For iteration i = β, where 1 ≤ β ≤ T (ε)−∆, we have

πβ(Vf ) =
∑

0≤i≤β−∆

(χ(Vr) · τ) (1− χ(Vr)− χ(Vf ))
i

= (β · χ(Vr) · τ)
∑

0≤i≤β−∆

(1− χ(Vr)− χ(Vf ))
i .
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Similarly, for iteration i = γ, where γ = T (ε) ≥ β + ∆, we have

πγ(Vf ) =
∑

0≤i≤γ−∆

(χ(Vr) · τ) (1− χ(Vr)− χ(Vf ))
i

= (γ · χ(Vr) · τ)
∑

0≤i≤γ−∆

(1− χ(Vr)− χ(Vf ))
i .

Now let us consider the ratio πβ(Vf )/πγ(Vf ). We have

πβ(Vf )

πγ(Vf )
=

(β · χ(Vr) · τ)
∑

0≤i≤β−∆ (1− χ(Vf )− χ(Vf ))
i

(γ · χ(Vr) · τ)
∑

0≤i≤γ−∆ (1− χ(Vr)− χ(Vf ))
i .

By multiplying both side by πγ(Vf ), we get

πβ(Vf ) =
β ·
∑

0≤i≤β−∆ (1− χ(Vr)− χ(Vf ))
i

γ ·
∑

0≤i≤γ−∆ (1− χ(Vr)− χ(Vf ))
i · πγ(Vf ). (B.5)

Now, recall that πγ(vj) = τ · π(vj) = τ · (deg(vj)/vol(V )) for each vj ∈ Vf ,
where π is the stationary distribution of the graph D (see Equation A.3),
Accordingly,

πβ(Vf ) =
β ·
∑

0≤i≤β−∆ (1− χ(Vr)− χ(Vf ))
i

γ ·
∑

0≤i≤γ−∆ (1− χ(Vr)− χ(Vf ))
i · τ ·

vol(Vf )

vol(V )

= f · τ · vol(Vf )

vol(V )

Finally, as β ≤ γ − ∆, we have β/γ ≤ (γ − ∆)/γ. As γ is not arbitrarily
large, β/γ < 1 holds. Therefore, f < 1.

As the total trust τ is conserved, Corollary 3 below directly follows.

Corollary 3. For a positive number ∆ > 1, if the aggregate trust in the fake
region after 1 ≤ β ≤ T (ε) − ∆ iterations is a fraction f ∈ (0, 1) of that in
the stationary distribution, then the aggregate trust in the real region during
the same iteration is c > 1 times of that in the stationary distribution, that
is, πβ(Vr) = c · τ · (vol(Vr)/vol(V )), where c = 1 + (1− f) (vol(Vf )/vol(Vr)).
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Given a fraction f > 1 and a multiplier c > 1, as defined by Lemma 3
and Corollary 3, the trust distribution over nodes in D after β iterations is
defined by

πβ(vj) =


f · τ · deg(vi)

vol(V )
< 1 if vj ∈ Vf ,

c · τ · deg(vi)

vol(V )
> 1 if vj ∈ Vr.

(B.6)

Moreover, let π̄β(vj) = πβ(vj)/ deg(vi) be the degree-normalized trust for
each vj ∈ V , as derived from Equation B.6. We next prove that at most
(f/c) · vol(Vf ) fake nodes can have degree-normalized trust or rank values
higher than or equal to (c · τ)/vol(V ).

Lemma 4. Consider a defense graph D with a mixing time γ = T (ε), a
fraction f < 0, and a multiplier c > 1 such that πβ(Vr) = c · πγ(Vr) and
πβ(Vf ) = f · πγ(Vf ) after 1 ≤ β ≤ T (ε)−∆ power iterations for some ∆ > 1.
Regardless to how an attacker organizes the fake region, there can be only a
set U ⊂ Vf of at most (f/c) · vol(Vf ) fake nodes such that each vj ∈ U has a
degree-normalized trust π̄β(vj) ≥ (c · τ) /vol(V ).

Proof. For an attacker, the optimal strategy to maximize the cardinality of
the set U is to assign (c · τ)/vol(V ) degree-normalized trust to as many fake
nodes as possible, and then leave the rest of the fake nodes with zero trust.

We now prove by contradiction that |U | ≤ (f/c) · vol(Vf ). Assume the
opposite, where |U | > (f/c) · vol(Vf ). Since each node vj ∈ U is connected
to at least another node vk ∈ U , or otherwise it would be disconnected and
π̄β(vj) = 0, then the aggregate degree-normalized trust π̄β(Vf ) in the fake
region is

π̄β(Vf ) = |U | · c · τ
vol(V )

(B.7)

>
f

c
· vol(Vf ) ·

c · τ
vol(V )

(B.8)

> f · τ · vol(Vf )

vol(V )
, (B.9)

which by Lemma 3 is a contradiction.

Finally, we prove an upper bound on (f/c) · vol(Vf ), as follow.
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Theorem 2. Given a social graph with a fast mixing real region and an
attacker that randomly establishes attack edges, the number of fake nodes
that rank similar to or higher than real nodes after β = O(log n) iteration is
O(vol(Ea) · log n).

Proof. Consider the social graph G and its defense graph D. By Lemma 1,
we know that re-weighting G changes its mixing time by only a constant
factor. Therefore, we have TD(ε) = O(TG(ε)) and TDr(ε) = O(TGr(ε)). As
Gr is fast mixing, we also have TGr(ε) = O(log n) by definition. This also
means TDr(ε) = O(log n). As Vf 6= ∅, then by the bound in Equation B.1, we
have TD(ε)−TDr(ε) = Ω(1). So, TD(ε)− β = Ω(1) as β = TDr(ε) = O(log n).
Finally, by Lemma 4, we know that at most (f/c) · vol(Vf ) fake nodes can
rank same or equal to real nodes. We now attempt to prove an upper bound
on this quantity.

As the total trust τ is conversed after β = O(log n) iteration, we have

f · τ · vol(Vf )

vol(V )
+ c · τ · vol(Vr)

vol(V )
= τ

That is,

f

c
· vol(Vf ) =

vol(Vr)

vol(V )

f · vol(Vf )
− 1

By Lemma 3, we have

f

c
· vol(Vf ) =

vol(Vr)

(τ/πβ(Vf ))− 1
(B.10)

Now, by Lemma 2 and Corollary 2, we have

πβ(Vf ) =
∑

0≤i≤β−1

(χ(Vr) · τ) (1− χ(Vr)− χ(Vf ))
i

<
∑

0≤i≤β−1

(χ(Vr) · τ) (1− χ(Vr))
i

=
∑

0≤i≤β−1

τ ·
(

(1− χ(Vr))
i − (1− χ(Vr))

i+1
)

= τ ·
(

1− (1− χ(Vr))
β
)

(B.11)
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By combining Equations B.10 and B.11, we get

f

c
· vol(Vf ) < vol(Vr)

(
(1− χ(Vr))

−β − 1
)

By replacing (1− χ(Vr))
−β with 1+β ·χ(Vr)+o (χ2(Vr)), which is its Maclau-

rin series, we end up with the following

f

c
· vol(Vf ) < vol(Vr)

(
(1− χ(Vr))

−β − 1
)

= vol(Vr) ·O (χ(Vr)) · β
= vol(Vr) ·O (χ(Vr)) ·O(log n)

= O (vol(∂(Vr)) · log n)

= O (vol(Ea) · log n) ,

which completes the proof.
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Figure B.1: Social infiltration in Facebook. In (a), while the fakes did not share
mutual friends with the invited users, the more friends these users had the more
likely they were to accept friend requests sent by fakes (CI=95%). In (b), contrary
to what is often assumed, fake accounts can use simple automated social engineering
tactics to establish a large number of attack edges.
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edges. The cut, represented by a dashed-line, partitions the graph into two regions,
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Figure B.5: Victim classification using the RF algorithm. In (a), the ROC curves
show the tradeoff between FPR and TPR for both datasets. In ROC analysis, the
closer the curve is to the upper-left corner the more accurate it is. The area
under the ROC curve (AUC) summarizes the classifier’s performance. Therefore,
an AUC of 1 means a perfect classifier, while an AUC of 0.5 means a random
classifier. We require the victim classifier to be better than random. In (b), during
cross validation on pro-Tuenti dataset, we observed that increasing the dataset size
to more than 40K vectors did not significantly increase the AUC.
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Figure B.6: The ranking quality of both systems in terms of its AUC under
each infiltration scenario (CI=95%). SybilRank and Íntegro resulted in a similar
performance when a random victim classifier is used, which represents a practical
baseline for Íntegro. As the number of attack edges increased, SybilRank’s AUC
decreased down to 0.7, while Íntegro sustained its high performance with AUC
> 0.92. The figures in (c–d) show the ranking quality of both systems under
the random-victim attack strategy, in which the real regions represent the two
supplementary datasets.
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Figure B.7: The sensitivity of both systems to each seed-targeting attack
(CI=95%). In distant-seed attack, an attacker befriends users that are at a par-
ticular distance from all trusted accounts, which represents a practical worst case
scenario for both system. In the random-seed attack, the attacker directly be-
friends a subset of the trusted accounts. Overall, both systems are sensitive to
seed-targeting attacks.
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Figure B.8: Preprocessing. In (a), there is a positive correlation between number
of days since a user joined Tuenti and how well-connected the user is in terms
of number of friends (Pearson’s r = 0.36). In fact, 93% of all new users who
joined Tuenti in the last 30 days had weak connectivity of 46 friends or less, much
smaller than the average of 254 friends. In (b), we found that most of the friendship
growth happens in the first month since joining the network, where users on average
establish 18.6% of their friendships. We accordingly defer the consideration of users
who joined Tuenti in the last 30 days, as they will likely be assigned low ranks.
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Figure B.9: Deployment results at Tuenti. The ranking quality of both systems
is summarized in (b). Ideally, all fake accounts should be in the bottom of the
ranked list (i.e., left side of the horizontal axis). In (a) and (c), we observed that
Íntegro consistently outperforms SybilRank in term of fake account detection pre-
cision (i.e., the percentage of fakes in each sample). In particular, most of the fake
accounts identified by Íntegro were located at significantly lower locations in the
ranked list, unlike SybilRank. Upon further inspection of fakes at higher intervals,
we found that they established a large number of attack edges, as suggested by the
degree distribution in (d).

67



1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

10 60 110 160 

Ex
ec
uS

on
(S
m
e(
(m

in
ut
es
)(

Number(of(nodes((millions)(

(a) Mahout

0 

5 

10 

15 

20 

25 

10 60 110 160 

Ex
ec
uS

on
(S
m
e(
(m

in
ut
es
)(

Number(of(nodes((millions)(

(b) Giraph

Figure B.10: System scalability on both platforms. In (a), the execution time
includes the time to train an RF classifier and compute a vulnerability score for
each node in the graph. In (b), the execution time includes the time to weight the
graph, rank nodes, and finally sort them.
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Name Type Brief description Source

pro-Facebook Profiles 8,888 users (32.4% victims) Boshmaf et al. [6]
pro-Tuenti Profiles 60,000 users (50% victims) Tuenti

gra-FacebookTs Graph 2,991 users (2.2% fake) Boshmaf et al. [6]
gra-FacebookRd Graph 6,136 users (0% fake) Boshmaf et al. [6]
gra-HepTh Graph 8,638 users (0% fake) Leskovec et al. [64]
gra-AstroPh Graph 17,903 users (0% fake) Leskovec et al. [64]

Table B.1: Datasets summary.
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Feature Brief description Type RI Score (%)

pro-Facebook pro-Tuenti

User activity:
Friends Number of friends the user had Numeric 100.0 84.5
Photos Number of photos the user shared Numeric 93.7 57.4
Feed Number of news feed items the user had Numeric 70.6 60.8
Groups Number of groups the user was member of Numeric 41.8 N/A
Likes Number of likes the users made Numeric 30.6 N/A
Games Number of games the user played Numeric 20.1 N/A
Movies Number of movies the user watched Numeric 16.2 N/A
Music Number of albums or songs the user listened to Numeric 15.5 N/A
TV Number of TV shows the user watched Numeric 14.2 N/A
Books Number of books the user read Numeric 7.5 N/A

Personal messaging:
Sent Number of messages sent by the user Numeric N/A 53.3
Inbox Number of messages in the user’s inbox Numeric N/A 52.9
Privacy Privacy level for receiving messages 5-Categorical N/A 9.6

Blocking actions:
Users Number of users blocked by the user Numeric N/A 23.9
Graphics Number of graphics (photos) blocked by the user Numeric N/A 19.7

Account information:
Last updated Number of days since the user updated the profile Numeric 90.77 32.5
Highlights Number of years highlighted in the user’s time-line Numeric 36.3 N/A
Membership Number of days since the user joined the OSN Numeric 31.7 100
Gender User is male or female 2-Categorical 13.8 7.9
Cover picture User has a cover picture 2-Categorical 10.5 < 0.1
Profile picture User has a profile picture 2-Categorical 4.3 < 0.1
Pre-highlights Number of years highlighted before 2004 Numeric 3.9 N/A
Platform User disabled third-party API integration 2-Categorical 1.6 < 0.1

Table B.2: Low-cost features extracted from pro-Facebook and pro-Tuenti
datasets. The RI score is the relative importance of the feature. A value of “N/A”
means the feature was not available for this dataset. A k-Categorical feature means
this feature can have one value out of k categories (e.g., boolean features are 2-
Categorical).
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