
Position Paper: Bitemporal Dynamic Graph Analytics
Hassan Halawa

University of British Columbia
hhalawa@ece.ubc.ca

Matei Ripeanu
University of British Columbia

matei@ece.ubc.ca

ABSTRACT
Most of today’s graph analytics systems model static graphs and do
not support business use cases that require the ability to: (i) query
the dynamic graph data for a time-evolving system, (ii) carry out
investigations on its historical evolution, and (iii) audit past busi-
ness decisions made with potentially stale or incorrect data. This
position paper presents our vision for bi-temporal dynamic graph
analytics, and sketches a design for a system that efficiently sup-
ports these requirements.
ACM Reference Format:
Hassan Halawa and Matei Ripeanu. 2021. Position Paper: Bitemporal Dy-
namic Graph Analytics. In 4th Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics
(NDA) (GRADES-NDA’21), June 20–25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3461837.3464514

1 INTRODUCTION
The body of work related to graph analytics is prodigious [1, 2,
6, 17, 18, 23, 34, 35, 38, 53, 56–61, 64, 67, 70, 72, 77–83, 87, 89–97].
A part of the design space, however, has been scarcely explored:
systems that are able to both accurately model a graph’s evolution
over time and support current state, historical, and audit queries.
We contend that a multitude of real-world usage scenarios drive
the need to design systems that cover this space, and discuss a few
of them in Section 2.

As the real systems modeled by graphs continuously evolve
with time, a few factors introduce a large amount of complexity:
(i) the need to support queries over dynamic data, (ii) the need
to explicitly model the temporal evolution of the system (i.e., the
graph topology and vertex/edge properties), (iii) the fact that the
information pertaining to the evolution of the system may arrive
out of order and/or with arbitrary delays, and (iv) the need to
support complex business use cases (e.g., auditing).

The relatively few existing systems designed specifically tomodel
dynamic and/or temporal graphs do not appropriately address the
aforementioned requirements (see Sections 3 and 7). In particular,
such systems, do not efficiently support the business use cases that
require the ability to: (i) query the dynamic graph data being col-
lected, (ii) carry out investigations on historical data, and (iii) audit
past business decisions made with potentially stale or incorrect
data.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GRADES-NDA’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8477-3/21/06. . . $15.00
https://doi.org/10.1145/3461837.3464514

DesignGoals.Our goal is to explore the feasibility of, and sketch
a design for, a graph analytics system that supports the above
three functionalities. At its core, our design employs bi-temporal
modeling [43] - the system explicitly models all events along two
time axes: (i) the time graph events happen (referred to as the valid
time), and (ii) the time the system learns about the events (referred
to as the transaction time).

When facing out of order and arbitrarily delayed events, explicit
bi-temporal modeling enables several capabilities which - jointly -
can not be supported by systems that are not bi-temporal (Section 3).
These capabilities include the ability to query: (i) the current state
given what the system knows at the time of the query, (ii) any past
state given what the system knows at the time of the query (i.e.,
historical queries), and (iii) any past state given what the system
knew at some arbitrary point in the past (i.e., audit queries). We
stress that we aim to serve all these queries online, that is while
the system ingests new data, and without pausing the system for
pre-processing.

Challenges. A system targeting dynamic graphs with explicit
support for bi-temporal modeling must be able to find a good bal-
ance when addressing several challenges: (i) space efficiency given
that any ingested events must be kept indefinitely (i.e., for audit
purposes and historical investigations, data can not be deleted or
overwritten), (ii) ingestion performance given that the modeled
system may be highly dynamic (i.e., numerous independent data
sources, high ingest rates), (iii) query performance given the need to
support the aforementioned diverse query types online (i.e., current
state, historical, and audit), and (iv) maintaining consistency given
that events may frequently arrive out of order and with potentially
arbitrary delays.

Core Data Structures. Some of these challenges are addressed
by a judicious choice of supporting data structures (Section 5). We
observe that only two core data structures are sufficient to support
a bi-temporal graph: a bi-temporal value to model the evolution of a
specific attribute of an existing entity (e.g., vertex, or edge), and a bi-
temporal set to model the evolution of a set of entities (e.g., a graph’s
vertices, or a vertex outward edges) over time. For the bi-temporal
set data structure we find inspiration in a fundamental problem in
computational geometry [20] (i.e., Segment Stabbing). To support
efficient historical investigations and auditing we implement both
data structures as persistent1 [22]. This: (i) provides the required
properties (i.e., immutability, copy-on-write), (ii) enables efficient
access to all previous versions of the data structures (i.e., efficient
historical querying), and (iii) supports concurrent queries without
requiring the use of expensive coarse-grained locking mechanisms
(i.e., a global mutex).
1In contrast to persistent data structures, ordinary data structures are ephemeral:
changes to the data structure destroy the old version leaving only the new one. Also,
note that persistent data structures can be made durable, that is, saved to disk or some
other form of non-volatile storage to recover from crashes or power failures.

https://doi.org/10.1145/3461837.3464514
https://doi.org/10.1145/3461837.3464514

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Halawa, et al.

Contributions. In this position paper we: (i) make the case
for our proposed bi-temporal dynamic graph analytics system and
discuss real-world application use case scenarios (Section 2), (ii)
outline our vision for a graph analytics system that explicitly mod-
els the evolution through time of dynamic graphs (Section 3), (iii)
discuss its feasibility as well as the potential design choices that
can be made in this space (Sections 4, and 5), and (iv) sketch the
supporting data structures (i.e., bi-temporal values, and sets) and
show how these can be used to synthesize the system’s underly-
ing bi-temporal dynamic graph data structure (Section 5). To the
best of our knowledge, we are the first2to sketch a design for a truly
bitemporal dynamic graph analytics system.

2 USE CASE SCENARIOS
Key Shared Properties. Before presenting use-cases we summa-
rize the generic application-level properties that drive the need for
the system we propose. A good match for our system are applica-
tions that:

(i) model a time-evolving real-wold system as a graph of inter-
linked entities,

(ii) require interactive use while ingesting new events (i.e., the
ability to support ’online’ queries),

(iii) require explicitly modeling the temporal evolution of the
data (e.g., as mandated by regulators, or to support historical
investigation),

(iv) operate in environments where the information pertaining
to the evolution of the system may arrive with arbitrary
delays and/or out of order, and

(v) require, in addition to basic current state and historical
queries, support for more complex business use cases (e.g.
forensics and audit queries).

The use-cases presented below follow a presentation structure
that roughy mirrors the above five properties.

Infrastructure Monitoring and Planning. Power transmis-
sion grids can be modeled as a vast, complex, and dynamic graph
of redundant transmission paths - between power suppliers and
consumers - which the utility provider needs to continuously mon-
itor. Transmission lines can be taken down for maintenance and
equipment may simply fail. Moreover, additional dynamicity is in-
troduced by intermittent generators such as from renewable energy
sources (e.g., wind, solar) as well as from electric vehicles which
- when plugged-in - can act as either consumers or as temporary
power suppliers. Supporting the system operators to predict the
impact of line outages and to identify the most vulnerable and
critical links in the power system, as well as promptly suggesting
corrective actions in the event of a transmission line failure is criti-
cal to minimize blackouts and equipment damage. This, however,
is predicated on efficient support for processing the dynamic graph
used to model the power grid [33, 54].

Additionally, supporting historical investigation and auditing
(e.g., answering queries like: “What was the state of the grid at
2The Gradoop project [45] has recently added support for bitemporal modeling [76].
As it employs a "bigtable" like data structure [7, 16] at its core, it is implicitly adaptable
to support bitemporal modeling by adding transaction time and valid time attributes
to all records. However, this design is not driven by nor specialized for bitemporality.
In contrast, we design explicitly for bitemporality and propose novel data structures
to support it.

some past time 𝑇 ?’, “Was a prior decision correct based on the
operators’ view of the state of the grid at time 𝑇 ?”) is essential to
analyze and improve operational decisions and relies on modeling
the temporal evolution of the system [68]. These investigations
need to be supported in a context where sensing information about
the state of the grid may arrive with delays or out of order, not
only because the communication infrastructure may suffer outages
itself, but also because of the various human-factors involved (e.g.,
operational errors, equipment taken down for maintenance, etc.).

Regulatory Compliance in the Crypto-Currency Market.
As crypto-currencies gained increasingly widespread acceptance,
the regulatory requirements on market intermediaries (e.g., ex-
changes, lenders that accept crypto-currency as collateral) have be-
come increasingly rigorous and now include anti money-laundering
and ’know-your-customer’ (KYC) provisions [29]. At a high level,
regulation places the burden of proof on market intermediaries
and asks them to demonstrate that they have taken appropriate
measures to "mitigate the risks identified through the implementation
of controls and measures tailored to these risks" [31]. This is partic-
ularly complex in the crypto-currency space for two reasons: (i)
many crypto-currencies have been designed for pseudo-anonymity
(transactions between so-called ’wallets’ are public on the block-
chain, yet the association between wallets and real-world identities
remains hidden), and (ii) this space has seen wide illicit use [25]
and attempts to obfuscate the original source of funds have become
increasingly more sophisticated (e.g., using smart contracts [44],
’washing’ funds through chains of hundreds of fake transactions -
that is, transactions between wallets controlled by the same entity,
and/or moving funds across multiple crypto-systems).

In this context, a number of services that augment the transaction
graph with additional information have emerged (e.g., Chainaly-
sis [15], and Elliptic [26]). We provide an oversimplified view here:
the public transaction graph only includes wallets, transactions be-
tween wallets, and their metadata (e.g., valid time and value). New
entities and edges are added to this graph: (i) pseudo-identities
to model the knowledge that the same real-world identity (i.e.,
person or organization) controls multiple wallets, and (ii) actual
real-world identities when this information is known. Additionally,
new attributes are added to label wallets involved in illegal (e.g.,
ransomware [39]) and potentially illegal (e.g., markets on the dark-
web [25]) activities. Similar labels may be added to transactions
involving risky activities (e.g., mixers, smart contracts involving
gambling) [14]. Note that this information inherently arrives with
delays: for example, while a wallet has been used for ransomware
on a specific date (i.e, valid time), this can be discovered and trans-
mitted to the system much later (i.e., transaction time). By mining
the enhanced graph, a market participant, can comply with KYC
and anti money-laundering regulations, taking measures to mon-
itor and mitigate risks, and, if information is preserved, has the
ability to prove to a third party (e.g., to the regulator) that a specific
decision was correct given the information available at the time
the decision was taken.

Financial Services. The banking and financial services domain
operates in many legal jurisdictions with differing laws and regula-
tions regarding data retention, reporting, and auditing (and thus
shares many of the challenges identified for the crypto-currency

Position Paper: Bitemporal Dynamic Graph Analytics GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

Uni-Temporal
(TT Only)

Uni-Temporal
(TV Only)

Bi-Temporal
(TT , TV)

Initial Graph
State

Event Queue

B

DC

A

B

DC

A

B

DC

A

B

DC

A

TT = 3

TT = 4

TT = 5

B

DC

ATV = 1

TV = 2 B

DC

A

TV = 3 B

DC

A

B

DC

A

(3, 3)

B

DC

A

(4, 3)

B

DC

A

(5, 1)
B

DC

A

(5, 2)
B

DC

A

(5, 3)

Event Stream(s)

B

DC

A

(4, 2)

TT
Transaction
Time

Latest State

TV Valid Time

B

DC

A

(0, 0)
TT = 0 B

DC

A TV = 0 B

DC

A

TT

TV

TT TV

Alert State

TV = 3
Edge Del. BD

TV = 2
Edge Del. AB

TV = 1
Edge Add. BD

TT = 3 TT = 4 TT = 5

Head Tail

Legend

Ingested @

Figure 1: Contrasting the ability of different temporal modeling approaches to completely and correctly track the states the
system goes through over time. Note that: (i) the final states recorded by each approach, marked with a star, are not the
same (i.e., the final state for the Uni-Temporal (𝑇𝑇) approach is incorrect!), (ii) the "alert" state (i.e., when a cycle is formed -
marked with a magnifying glass) is not detected correctly in the Uni-Temporal (𝑇𝑇) case, (iii) the Uni-Temporal (𝑇𝑉) approach
is assuming an idealized way of handling out of order events: storing all received events and then replaying them back in the
correct order), (iv) the Bi-Temporal approach correctly exposes all the states that the system goes through, thus it supports
audit queries (while none of the other models can do this), (v) the last row in the Bi-Temporal case (e.g., (5,𝑇𝑉)) is equivalent
to Uni-Temporal (𝑇𝑉), and (vi) the empty cells in the Bi-temporal Model are intentionally left blank, the query result in any
of these cells is the same as the only other state shown within the enclosing region (i.e., the (0, 0) state). Section 3 provides an
overview of the temporal modeling approaches, and presents this example scenario in more detail.

regulatory compliance use case mentioned above). A common use
case, however, is fraud detectionwhere it is necessary for the system
to be capable of: (i) ingesting a large volume of transaction related
events, enriching them via numerous secondary data sources, and
running light-weight checks for detecting fraud [74], (ii) efficient
mining of historical data for situations where it is necessary to carry
out more heavy-weight fraud detection analyses or to generate any
data required to train machine learning models, and (iii) explicit
support for both historical as well as audit queries. In Section 3 we
use a mock-up version of this application scenario and dive more
deeply into how different ways of modeling the temporal evolution
of the dynamic graph data impacts the capabilities of the analytics
system and even its ability to operate correctly.

3 BACKGROUND: MODELING TEMPORAL
EVOLUTION

A temporal model refers to whether/how a system tracks the tem-
poral evolution of a dynamic system, and what query capabilities it
inherently provides. Jensen et al. [43] provide a comprehensive glos-
sary of temporal data modeling concepts. The following temporal
modeling approaches are of interest:

■ Non-Temporal. Temporal evolution of the data is not explicitly
tracked by the graph analytics system: ingested events are used
to update the current state of the graph then discarded. As such,
there is only one queryable system state at any given point in
time: the current state. A number of existing dynamic graph
processing systems fall in this category: [23, 53, 62, 67, 79, 81,
82, 89, 90, 93]. Given that this approach would not meet our
requirements to support historical and audit queries we do not
discuss it further.

■ Uni-Temporal. Time is represented by a single axis representing
either the time an event has occurred in the real-world or the
time the event has been presented to the system. This approach,
adopted by [41, 84], provides limited observability and can lead
to incorrect conclusions (particularly in the case of out of order
events). The example we present below highlights the limitations
of this approach.

■ Bi-Temporal. Employs two axes to represent time 3: (i) valid time:
the time an event occurred in the real-world, and (ii) transaction
time: the time an event is ingested by the system. This separation

3While we chose to follow the original terminology proposed by Jensen et al. [43],
other terminologies coexist such as: (i) event time and processing time [5], (ii) event
time and ingestion time [13], or (iii) application time and system time in SQL:2011 [51].

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Halawa, et al.

between "what occurred at time 𝑇 " vs. "what the system knew
at time 𝑇 " enables not only historical investigations but, more
importantly, auditing and forensics.

Example (Fig. 1) We focus on one of the scenarios from Section 2
and present a mock-up example (Fig. 1) to explain how different
ways of modeling time impact the ability to support historical and
audit queries, and highlight the correctness problems that appear
if bi-temporal modeling is not used. This example is motivated by
the financial domain where detecting cycles is a building block for
complex fraud detection heuristics [74].

Ingestion Pipeline. We assume that incoming events are: (i) con-
sumed from multiple independent sources, and (ii) timestamped at
their respective source with a corresponding Valid Time 𝑇𝑉 prior
to ingestion into the system. For the purpose of our example, we
assume an idealized process of ingesting events: (i) assigning all
incoming events a Transaction Time 𝑇𝑇 in the order of their ar-
rival and storing them in an event buffer, and (ii) handing events
from this buffer to the system in the order assumed by the specific
scenario we explore.

Initial State. In all cases we assume the same initial graph state
and event queue (shown at the left and top of Fig. 1 respectively).

Uni-Temporal𝑇𝑇 only. First, we discuss a uni-temporal model
where only the transaction time is maintained: the system has no
notion of the application-level valid time and only tracks history
via the transaction time. Such a system would: (i) ingest events in
their order of arrival and discard any available application-level
timestamps (i.e., the 𝑇𝑉 timestamps), (ii) employ monotonically
increasing transaction timestamps 𝑇𝑇 to uniquely identify each
historical state, and (iii) be able to query those historical states
(using the transaction times) in addition to maintaining access to
the latest state.

This approach, however, can not be used for historical and audit
queries as processing out of order messages in the order of their
arrival leads to correctness problems. For our example, with this
approach it is not possible to: (i) detect the state of interest (i.e.,
the cycle formation), and, more generally, (ii) correctly track the
temporal evolution of the system (as highlighted by the incorrect
final state).

Uni-Temporal 𝑇𝑉 only. Second, we discuss a uni-temporal
model that tracks the evolution of the system using the application-
level valid time 𝑇𝑉 . Conceptually speaking, this is the actual tem-
poral evolution of the system assuming all events arrive in-order. If
it were possible to implement it, such a system: (i) could be used to
query historical states (using the valid time) while also maintaining
access to the latest state, and (ii) would correctly record all (and
only) the states valid from the application-level perspective, includ-
ing the state where the fraud ring is formed. This is the situation
Fig. 1 presents.

In practice, however, this is not possible as it is not feasible to
process events in the order of their valid time 𝑇𝑉 (at least not for
the systems we describe in Section 2). This is for two reasons: first,
strong, unrealistic assumptions would be needed to enable in-order
event processing. Such assumptions include bounds on event delays,
or sequential IDs for events - none of which are possible for the use-
cases we present. Second, one would need to relax the requirement

to process the latest arriving events and delay their processing
until there are guarantees that these events can be processed in the
correct order. For our scenarios event delays can easily range from
hours to weeks or even more, and delaying processing this long is
unreasonable.

The previous paragraph argues that a system that processes
events in the order of their valid time 𝑇𝑉 is not feasible. The al-
ternative is to process the events in the order of their arrival, and
use their valid time 𝑇𝑉 to support queries. While this approach can
support well current state and historical queries, it fails for audit
queries (due to the lack of transaction timestamps). The key issue
is that recording only the valid time 𝑇𝑉 renders the system unable
to record all the states that were observed by the system operators
at runtime. For example, in Fig. 1, the recorded history shows that
a state of interest occurred; yet, it does not show that the system
operator was not able to observe this state.

Bi-Temporal. In contrast, a bi-temporal system tracks time
along two axes: the system-level transaction time 𝑇𝑇 , and the
application-level valid time 𝑇𝑉 . For each ingested event the system
attaches a monotonically increasing 𝑇𝑇 timestamp in addition to
the already included 𝑇𝑉 timestamp, this allows it to correctly: (i)
track the temporal evolution of the system (i.e., no invalid states
unlike the uni-temporal 𝑇𝑇 approach), (ii) identify the states of
interest (i.e., the fraud ring), and (iii) track all states the system
goes through for auditing purposes. For example the system can
show that, in the actual evolution of the system (i.e., the last row
for the Bi-Temporal approach in Fig. 1), there was a state of interest
(i.e., a cycle was formed); yet, at any time, an operator querying
only the latest state of the system in real-time (i.e., the right-most
column) would not have detected this cycle.

4 SYSTEM OVERVIEW
Overview.At a high-level, three main operations are carried out by
the system: (i) ingestion where the system indexes each incoming
event by a tuple of timestamps (𝑇𝑉 ,𝑇𝑇) and ingests it, (ii) querying
where the system assembles a (possibly virtual) snapshot of the
underlying graph at some user-specified query point (𝑇𝑉 ,𝑇𝑇), and
(iii) computation where the system runs a user-defined compute
function on the obtained snapshot.

4.1 Ingestion
Events. At a high-level, an event signifies a change to either the
topology (i.e., the structure) or the properties (i.e., the attributes) of
the graph tracked by the system such as adding/deleting: (i) a vertex,
(ii) an edge between two vertices, (iii) a vertex property, or (iv) an
edge property. Incoming events are assumed to be timestamped
with an application-specific valid time 𝑇𝑉 at their original data
source. The system processes events in the order of their arrival
and assigns them a transaction time 𝑇𝑇 . We assume that 𝑇𝑉 and
𝑇𝑇 are physical timestamps obtained through loosely synchronized
clocks.

Logical Invariants. The system maintains the following invari-
ants on the events being ingested at all times: (i) the transaction time
𝑇𝑇 assigned to incoming events must be monotonically increasing,
(ii) any new event being ingested must have a valid time 𝑇𝑉 that is
less than or equal to the current transaction time𝑇𝑇 (i.e.,𝑇𝑉 <= 𝑇𝑇)

Position Paper: Bitemporal Dynamic Graph Analytics GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

since an event is first generated somewhere and then ingested, and
(iii) internally, data associated with already ingested events will
neither be mutated by the system nor by any subsequent incoming
event (i.e., history is never erased / overwritten by the system -
only new information about the past is added).

4.2 Querying
Point-in-time Query Semantics. To support the application sce-
narios mentioned so far, the system supports point-in-time queries
that is, querying the state of the underlying graph at some user-
specified point (𝑇𝑉 ,𝑇𝑇) in time:
■ current state queries: 4 what is the current state of the graph
(i.e., what is the state of the graph with all events included up to
𝑇𝑇 = 𝑇𝑉 = 𝑛𝑜𝑤)?

■ historical queries: what was the state of the graph at some time
𝑇𝑉 in the past, given what the system knows now (i.e., given
what the system knows at 𝑇𝑇 = 𝑛𝑜𝑤 , what is the state of the
graph including all events included up to 𝑇𝑉 < 𝑛𝑜𝑤)?

■ audit queries: what was the state of the graph at some time 𝑇𝑉
in the past, based on what the system knew at that time or at
an earlier time 𝑇𝑇 , 𝑇𝑉 ≤ 𝑇𝑇 < 𝑛𝑜𝑤? This allows auditing as
it can reconstruct any past view a system operator might have
observed at 𝑇𝑇 .
A Snapshot Perspective. One can view a query as the process

of assembling a graph snapshot from the underlying temporal data
at the user-specified query point (𝑇𝑉 ,𝑇𝑇) from the entire set of
ingested events. A snapshot may be: (i)materialized: that is, eagerly
constructed on-demand at the time of the query, or (ii) virtual: that
is lazily built based on the requests from the computation layer.
Each of these approaches can be combined with caching to avoid
recalculating snapshots or parts of them.

4.3 Computation
Overview. A user may specify a (graph) computation to be ex-
ecuted by the system on a snapshot at (𝑇𝑉 ,𝑇𝑇). Two high-level
options are available:
■ External computation. The snapshot is eagerly constructed and it
is shipped to some external graph analytics system that the user
has access to, and

■ Internal computation. In this case the computation is executed
internally by the runtime on a virtual snapshot. The snapshot is
lazily built in-memory based on individual requests made by the
computation runtime to the low-level supporting data structures.
The computation runtime is responsible for: (i) scheduling the
execution of the computation, (ii) lazily building the virtual snap-
shot, (iii) managing other temporary data needed for running
the computation, and (iv) reporting the final result to the user
upon successful execution.

The trade-off here is between gaining the ability to leverage special-
ized and/or highly-optimized existing graph analytics systems for
heavy computations (for the external computation option) vs. avoid-
ing expensive serialization/de-serialization of the derived snapshots
for lighter computations (the internal computation option).
4We consider trigger/alarm queries [79] beyond the scope of the current work.

High-Level Programming Model. For the rest of this section,
we sketch one option for the high-level programming model, API,
and query execution model for the internal computation option.
It is worth noting that, while, we focus on a Vertex-Centric (VC)
Bulk-Synchronous-Parallel (BSP) programming model [88], support-
ing other high-level programming models can be imagined in a
similar way leveraging the underlying low-level bi-temporal data
structures presented in Section 5. For example, support for high-
level declarative query languages (e.g., Cypher [69], GSQL [36],
Gremlin [42], or the upcoming ISO standard GQL [24]) can be natu-
rally implemented as long as they can be applied on a point-in-time
snapshot.

For our system, as a proof-of-concept, we aim to first support
a Vertex-Centric (VC) Bulk-Synchronous-Parallel (BSP) program-
ming model [88] as it: (i) is expressive and used by many existing
graph analytics frameworks [6, 60], (ii) makes it possible to write
graph algorithms that can be parallelized over large multi-core Non-
Uniform Memory Access (NUMA) machines, and (iii) is relatively
simple to implement/use.

Two key modifications to the design of an existing BSP engine
are needed to adopt it within our system: first, information about
the desired point-in-time (𝑇𝑉 ,𝑇𝑇) queried by the user needs to be
carried down when interrogating the low-level data structures that
hold the graph state. Second, the computation runtime would need
to lazily assemble and cache the virtual snapshot (to avoid duplicate
requests to the low-level data-structures).

5 SUPPORTING DATA STRUCTURES
Overview. To enable bi-temporal modeling of a graph data struc-
ture and to support point-in-time querying semantics only two
low-level data structures are sufficient:
■ A bi-temporal value to model the evolution of a specific attribute
of an existing vertex/edge.

■ A bi-temporal set to model the evolution of the vertices of a graph
or the evolution of the neighbour set of a vertex.
The rest of this section presents the key choices that have driven

the design of these data structures, sketches their internal organi-
zation and use (Table 1), and presents a simple example illustrating
how they can be used to track the bi-temporal evolution of a vertex
outward edge set in Fig. 2 (for the same scenario previously shown
in Fig. 1). Table 2 summarizes the operations supported by the two
data structures as well as their corresponding runtime/space com-
plexities. We note that our design does not make any assumptions
about the order of incoming events; it may be possible to design
similar data structures with better properties if one makes addi-
tional assumptions - e.g., that most events arrive in (𝑇𝑉) order, and
only a small fraction of them arrive out of order.

Key Choices. The following key choices drive the design of the
bi-temporal value and bi-temporal set data structures:
■ Prioritization of Design Goals. Given the business requirements
and application scenarios we previously outlined, we made the
following prioritization decisions that drive the choice of the
underlying data structures we use (as well as the overall architec-
ture of the system): (i) the system should be primarily optimized
for fast event ingestion given the high expected rate of incoming

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Halawa, et al.

Transaction Time
TT

Bi-Temporal
Edge Value(s)

TT = 0 TT = 3 TT = 4 TT = 5

B

Valid Time TV
BA

BC

BD

0

Dynamic Segment Stabbing
Data Structure

Dynamic Segment Stabbing
Data Structure

Valid Time TV
BA

BC

BD 3

0

Dynamic Segment Stabbing
Data Structure

Valid Time TV
BA

BC

BD 3

0 2

Dynamic Segment Stabbing
Data Structure

Valid Time TV
BA

BC

BD 3

0 2

1

Query Edges @
(TT = 5, TV = 1.5)

≡
Segment Stabbing

 (TV, TT) Attribute
 (3, 3) BD1
 (1, 5) BD2

 (TV, TT) Attribute
 (2, 4) BA1
 (0, 0) BA0

0

1

2

BA

BC

BD

Unordered
Associative Array

Data Structure

Ordered
Associative Array

Data Structure

Bi-Temporal Value
Data Structure

for BC's Attributes

Vertex B's
Outward Edge Set

 (TV, TT) Attribute
 (3, 3) BD1

 (TV, TT) Attribute
 (2, 4) BA1
 (0, 0) BA0

0

1

2

BA

BC

BD

Unordered
Associative Array

Data Structure

Ordered
Associative Array

Data Structure

Bi-Temporal Value
Data Structure

for BC's Attributes

Vertex B's
Outward Edge Set

 (TV, TT) Attribute
 (3, 3) BD1

 (TV, TT) Attribute
 (0, 0) BA0

0

1

2

BA

BC

BD

Unordered
Associative Array

Data Structure

Ordered
Associative Array

Data Structure

Bi-Temporal Value
Data Structure

for BC's Attributes

Vertex B's
Outward Edge Set

 (TV, TT) Attribute
 (0, 0) BA0

0

1

2

BA

BC

BD

Unordered
Associative Array

Data Structure

Ordered
Associative Array

Data Structure

Bi-Temporal Value
Data Structure

for BC's Attributes

Bi-Temporal Value
Data Structure

for BD's AttributesVertex B's
Outward Edge Set

Ordered Associative Array Data Structure (Key: TT → Value: Segment Stabbing Data Structure)

Bi-Temporal
Edge Set(s) B

Figure 2: A visualization of the supporting data structures described in Section 5 as well as an illustration of their evolution over time to
track a dynamic system. This illustration follows the scenario shown in Fig. 1 and focuses only on vertex B (i.e., the vertex with the most
events in the scenario). The figure shows how (a subset) of the supporting internal data structures change to track the temporal evolution
of the outgoing set of edges (i.e., using a bi-temporal edge set) as well as the outgoing edge attributes (i.e., using bi-temporal values for the
edge attributes) assuming each edge add/delete event also updates the corresponding edge attributes. The figure also visually highlights what
a query looks like for the bi-temporal set (i.e., segment stabbing at𝑇𝑉 = 1.5). Table 1 presents a simplified overview of query operations.

Table 1: Simplified summary of how the proposed data structures are used for each type of query (i.e., current state, historical, or audit). Best
read in conjunction with the visual illustration in Fig. 2, and the corresponding descriptions in Section. 5.

Data Structure Query Type Usage
Current State (i) Go down the lexicographical 2D (𝑇𝑉 ,𝑇𝑇) ordering,

Bi-Temporal Value Historical (ii) Return the first entry with 𝑇𝑉 <= 𝑄𝑢𝑒𝑟𝑦_𝑇𝑉 ∧𝑇𝑇 <= 𝑄𝑢𝑒𝑟𝑦_𝑇𝑇
Audit ⇒ This returns the value of the attribute at (𝑄𝑢𝑒𝑟𝑦_𝑇𝑉 , 𝑄𝑢𝑒𝑟𝑦_𝑇𝑇) (if one exists)

Current State (i) Go down the 1D (𝑇𝑇) ordering, and get the segment stabbing data structure at 𝑇𝑇 <= 𝑄𝑢𝑒𝑟𝑦_𝑇𝑇 ,
Bi-Temporal Set Historical (ii) Segment stab at 𝑄𝑢𝑒𝑟𝑦_𝑇𝑉 , and iterate over the encountered intervals to get pointers to elements

Audit ⇒ This returns the set of elements alive at (𝑄𝑢𝑒𝑟𝑦_𝑇𝑉 , 𝑄𝑢𝑒𝑟𝑦_𝑇𝑇)

Table 2: Summary of the supported operations, and runtime/space complexities for the Bi-Temporal Value and Set data structures described
in Section. 5. Note that: (i) it is expected that 𝐿 <= 𝐶 hence the simplification for the Bi-Temporal Set data structure complexities, and (ii) the
iterateElements operation is an output-sensitive algorithm (i.e., its runtime complexity depends on the size of the output: 𝐾).
Notation. 𝐶: The total number of commits to the data structure (i.e., the total number of tracked historical/audit states). 𝐾 : The number of
reported results (i.e., the total number of elements that exist at (𝑇𝑉 ,𝑇𝑇)). 𝐿: The number of element lifetime intervals (i.e., segments) stored
in the dynamic segment stabbing data structure. 𝑆 : The number of times the bi-temporal value was set.

Data Structure Operation Average-Case Worst-Case Space Complexity
Runtime Complexity Runtime Complexity

Bi-Temporal setValue(𝑇𝑉 , 𝑇𝑇 , Value) O(log 𝑆) O(𝑆 log 𝑆)
Value getValue(𝑇𝑉 , 𝑇𝑇) O(log 𝑆) O(𝑆)

addElement(𝑇𝑉 , 𝑇𝑇 , Element) O(log𝐶 + log𝐿)
Bi-Temporal removeElement(𝑇𝑉 , 𝑇𝑇 , Element) ≈ O(log𝐶) O(𝐶 log𝐶 + 𝐿 log𝐿)

Set containsElement(𝑇𝑉 , 𝑇𝑇 , Element) ≈ O(𝐶 log𝐶)
iterateElements(𝑇𝑉 , 𝑇𝑇) O(log𝐶 + 𝐾 log𝐿)

Position Paper: Bitemporal Dynamic Graph Analytics GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

events, (ii) data structure selection and optimization should be
biased for performance (i.e., runtime complexity) rather than
memory efficiency (i.e., space complexity) - we aim for logarith-
mic runtime complexity and quasilinear space complexity, and
(iii) query operations on the current state (i.e., 𝑇𝑇 = 𝑇𝑉 = 𝑛𝑜𝑤)
should be the fastest supported type of query, followed by his-
torical queries (i.e., 𝑇𝑉 < 𝑇𝑇 = 𝑛𝑜𝑤), and audit queries (i.e.,
𝑇𝑉 ≤ 𝑇𝑇 < 𝑛𝑜𝑤).

■ Persistent Data Structures. We make extensive use of persistent
data structures [22] which: (i) provide the key properties needed
(i.e., immutability, and copy-on-write), (ii) enable efficient access
to all previous versions of the data structures (i.e., support effi-
cient historical querying), (iii) support concurrent queries (i.e.,
multiple readers) without requiring the use of expensive coarse-
grained locking mechanisms (i.e., a global mutex), and (iv) meet
our aforementioned design goals for logarithmic runtime and
quasilinear space complexity respectively (as shown in Table. 2).

Supporting Data Structure: Bi-Temporal Value. This data
structure enables efficient bi-temporal set/get operations on a single
value (i.e., provides simple value semantics). Two operations are
supported: (i) setValue(𝑇𝑉 , 𝑇𝑇 , Value), and (ii) getValue(𝑇𝑉 , 𝑇𝑇).

A bi-temporal value is represented by a persistent ordered asso-
ciative array data structure which maintains all historical values
ordered descendingly by the valid time first and then by the transac-
tion time (in order to break ties when the valid times are equal). Any
set/get operation on this bi-temporal value can now be envisioned
as simply going down this lexicographical ordering to either insert
a new item or read an existing one (i.e., regardless of the query
type). Assuming that a persistent self-balancing binary tree data
structure is used to implement the ordered associative array data
structure, then the runtime complexity of the set/get operations is,
on average, logarithmic in the number of historical values.

SupportingData Structure: Bi-Temporal Set.This data struc-
ture enables efficient bi-temporal set/get operations on a set of ele-
ments at a specified (𝑇𝑉 ,𝑇𝑇) notably: (i) adding an element to the
set, (ii) removing an element from the set, (iii) determining mem-
bership of an element in the set, and (iv) iterating over all elements
in the set. The key use for this data structure is to efficiently identify
the vertices (or the outward edges of a vertex) that exist at a specific
time (𝑇𝑉 ,𝑇𝑇) as these are essential for the query operations carried
out by the system (Section 4).

Straw-man Design.We could synthesize a basic bi-temporal set
data structure by combining an unordered associative array data
structure with the aforementioned bi-temporal value data struc-
ture5: by creating a mapping between an element ID (e.g., an edge
ID in case of an outward edge set, or vertex ID in case of a vertex
set) and a bi-temporal boolean value, if the bi-temporal value is true
at a specific (𝑇𝑉 ,𝑇𝑇) then at that point in time the element exists.
The advantage of this approach is that it is simple to implement,
and efficiently supports the first three operations we require from
a bi-temporal set data structure. The major drawback is that there
is no way to efficiently support the final key operation - iterating
over all elements at a specific (𝑇𝑉 ,𝑇𝑇): the only way to do this is
to iterate over every element and for each element checking its
5This is how we initially approached the design.

presence at (𝑇𝑉 ,𝑇𝑇) using the corresponding bi-temporal boolean
value. The runtime complexity of the iteration will thus be linear
in the total number of elements ever observed by the set over its
entire history as opposed to just the number of elements present at
a specific (𝑇𝑉 ,𝑇𝑇) thereby making it unsuitable for highly dynamic
systems (e.g., systems with high churn).

Final Design. To efficiently support all four operations we re-
formulated the problem we are trying to solve as: given a set of
element lifetime intervals, where each interval is identified by
[𝑇𝑉 𝑆𝑡𝑎𝑟𝑡,𝑇𝑉 𝐸𝑛𝑑], and a query point 𝑇𝑉 , what are all the ele-
ments that have a lifetime interval that intersects this query point?
(Fig. 2 illustrates this view: in this case the intervals would track
the existence of vertices in the whole graph vertex set, or edges in
the outward edge set of a vertex).

This formulation turns out to be a dynamic version of a fun-
damental problem in computational geometry known as - one-
dimensional - Segment Stabbing [20] which has many published
solutions including one with a logarithmic runtime complexity and
a quasilinear space complexity [66]6. As most of the advanced so-
lutions to this problem are complex and rely on ephemeral data
structures, we instead implemented a persistent Interval Tree based
on the dynamic but ephemeral solution presented in in [19] (at the
cost of somewhat higher complexity for some queries: more specifi-
cally iterateElements() has a runtime complexity of𝑂 (𝑙𝑜𝑔𝐶+𝐾𝑙𝑜𝑔𝐿)
instead of 𝑂 (𝐿𝑜𝑔𝐶 + 𝐿𝑜𝑔𝐿 + 𝐾)).

Finally, each time the persistent interval tree is updated (i.e.,
when a new event is ingested), a pointer to the updated tree is stored
into an ordered associative array with the transaction time 𝑇𝑇 as
the key. This design is possible because updates to the persistent
interval tree data structure efficiently create a new version of the
structure (i.e., copy-on-write) while preserving all previous versions
(i.e., immutability).

Composite Data Structure: The Bi-Temporal Graph. The
aforementioned Bi-Temporal Value, and Bi-Temporal Set data struc-
tures can be composed to create a Bi-Temporal Graph data structure
to track the bi-temporal evolution of an entire graph, and to support
a vertex-centric computational model. Generally, when building
the graph data structure, at any point there is a need to track the
bi-temporal evolution of a set of elements or a single element then
a Bi-Temporal Set or Value can be used respectively.

Sketching the composite Bi-Temporal Graph data structure from
the top-down: (i) a Bi-Temporal Graph combines a Bi-Temporal Set
of Vertices with an unordered associative array to access those ver-
tices by their vertex ID, (ii) a Vertex combines a machine word-size
integer vertex ID, anOutward Edge Set, and an unordered associative
array mapping vertex attribute names to their Bi-Temporal Values,
(iii) an Outward Edge Set combines a Bi-Temporal Set of Edges with
an unordered associative array to access those edges by their edge
ID, and (iv) an Edge combines a machine word-size integer edge
ID, source/destination vertex IDs, and an unordered associative
array mapping edge attribute names to their Bi-Temporal Values.
It is important to note that this Bi-Temporal Graph data structure is
also persistent, immutable, and copy-on-write since all its primitive
components share those properties.
6More specifically, the solution presented in [66] is for the more general dynamic
two-dimension orthogonal range and line segment intersection reporting problem.

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Halawa, et al.

6 DISCUSSION
We continue by exploring several interrelated topics.

Why propose a design based on persistent data structures instead of
one based on conventional ephemeral data structures? Our proposed
design has unconventional properties (i.e., it is immutable and copy-
on-write), and makes extensive use of persistent data structures
whichmay be not widely known. Here we touch upon an alternative
design approach based on ephemeral data structures, discuss the
implications of such a design, and contrast it with our proposed
design based on persistent data structures.

Tomaintain information about a collection of items in an ephemeral
data structure, at best, the runtime complexity for read/write op-
erations would be O(1) and the space complexity would be O(𝑁).
If new information arrives at the system, then the data structure
can only be updated in-place by overwriting any previously stored
values. While this offers excellent performance characteristics and
low memory overhead, this behavior makes it unsuited for histori-
cal and audit queries which require: (i) storing not just the latest
values but all historical ones as well, and (ii) providing guarantees
that all stored values have never been - accidentally or intentionally
- overwritten.

To adapt this design based on ephemeral data structures to be
able to meet the aforementioned requirements for historical and
audit queries, the solution is to disallow in-place updates and never
overwrite previously stored values. A naive way to do this is to
generate a completely new copy of the data structure each time
it is updated which implies a O(𝑁) runtime complexity for write
operations.

A more practical way, however, is to employ persistent data
structures [22] which not only offer the properties we require
by construction (i.e., immutability and copy-on-write) but also
are much more efficient (e.g., O(log𝑁) runtime complexity for
read/write operations) than the comparable straw-man design based
on ephemeral data structures we just outlined.We described inmore
detail how we constructed our supporting data structures earlier
(in Section. 5), and summarized their runtime / space complexities
in Table. 2. To the best of our knowledge, we are the first to propose a
bi-temporal graph analytics system composed entirely of persistent
data structures.

What are some of the trade-offs for the proposed bitemporal graph
analytics system, and its design? There are a few intrinsic costs for
our proposed bitemporal graph analytics system - specifically to
support current state, historical, and audit queries: (i) space and
time overheads: potentially significant costs to pay for each new
piece of ingested data while guaranteeing that all historical data is
preserved, and (ii) limiting the optimization options: as we aim to
support current state queries, this limits the possibility to process
the data to optimize its layout (i.e., either to enable efficient querying
or storage). These trade-offs make bitemporal systems in general
overall potentially slower compared to existing non-bitemporal
graph analytics systems.

Additionally, there are a few additional trade-offs which stem
from deliberate decisions we made for this initial design sketch in-
cluding: (i) poor memory locality due to heavy use of persistent data
structures which are copy-on-write by design, (ii) not taking into

account domain-specific optimizations to improve performance for
real-world graphs (i.e., unstructured, sparse, scale-free) as part of
the initial design sketch, and (iii) providing a single implementa-
tion for the bitemporal set and bitemporal value data structures
in Section. 5 with the expectation that they cover a wide range of
workloads (i.e., in contrast to specializing those data structures to
the characteristics of a single workload which can net significant
performance advantages).

What are some enabling technologies that might help mitigate the
aforementioned trade-offs? To mitigate the aforementioned trade-
offs, as well as the challenges related to the potentially massive
working set size outlined in Section 1, recent advances can be lever-
aged: (i) single-node DRAM memory capacity which has continued
to grow rapidly with RAM capacity in the scale of tens of terabytes
per node now not being uncommon, (ii) processor extensions, such
as Intel’s 5-Level Paging [40], which are laying the groundwork
for a significant increase in the maximum addressable memory
space (from 256 terabytes to 128 petabytes in Intel’s case) based on
the current non-volatile memory capacity growth trends, and (iii)
byte-addressable, low-latency, and high-bandwidth Storage Class
Memory (SCM), such as Intel’s Optane based on 3D Cross Point
Technology, which are starting to gain increased adoption as a new
tier of Non-Volatile Memory (NVM) with the aim to be a cheaper
and higher capacity replacement for conventional DRAM. We be-
lieve that these advances can be leveraged to make either scale-up
(i.e., single-node) system designs, such as the one we plan for our
prototype, or scale-out (i.e., multiple-node) designs viable despite
the aforementioned trade-offs and challenges.

What are some open questions based on our preliminary work so far?
While this project is still in its early stages, we have uncovered a
few open questions that we intend to explore as part of our work
on this project. We outline a few of those below.

First, prior work in this area has converged on scale-out ap-
proaches to handle massive data sets. However the advent of large
Storage-Class Memory (SCM), which bridges the gap between
DRAM and storage in terms of latency, bandwidth, capacity and
cost, raises the question of whether a scale-up approach would
now become not just feasible but also superior (e.g., in terms of
performance/energy per dollar).

Second, the use of Non-Volatile Memory (NVM) could potentially
both enable high-performance and lower the cost of maintaining
data durability in spite of failures (e.g., crashes); but what opti-
mizations can be carried out on the stored data layout in order to
improve performance and resilience by leveraging the non-volatile
nature of the memory?

Third, for our envisioned use cases where the system is expected
to be continuously operational, the expectation is that both high
availability and reliability must be maintained. On the one hand, to
increase availability, online replication is a standard technique one
can apply. On the other hand, to increase reliability, durability of
the already ingested data becomes a critical concern. It still remains
to be seen whether our design - which employs persistent data
structures that are immutable and copy-on-write - combined with
the use of NVM would be sufficient for a durable scale-up design.

Position Paper: Bitemporal Dynamic Graph Analytics GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

Fourth, a key use case that we envision for the proposed bitem-
poral dynamic graph analytics systems is for auditing and forensics.
One question that stems from this is whether the audit log be made
tamper-evident (or tamper-proof) using ideas inspired by tech-
niques employed by blockchains, or the use of specialized devices
such as write-once storage.

Finally, given the unique properties attributed to the proposed
system and the data that it manages (e.g., transaction times are
monotonically increasing, node IDs are assigned by the system, and
the data is immutable and only grows over time), what techniques
inspired by those used in log-based data stores can be used to
further increase performance and efficiency?

What are other query models for evolving graphs beyond point-in-
time queries? Section. 7 focuses on the most common approaches
to represent and query evolving graphs. One drawback common to
the frequently used approach which conceptually relies on point-in-
time querying is that it essentially restricts the set of operations that
can be expressed [65]. One such query that can not be expressed in
a point-in-time model is finding all nodes whose temporal evolution
follows a specified pattern of interest (e.g., finding power links with
a high number of intermittent failures over time for the infrastruc-
ture monitoring and planning use case outlined in Section. 2). In
this case, the pattern of interest does not occur at any particular
point-in-time.

To support these types of queries, novel query models have been
proposed (e.g., Temporal Algebra [65] and its extensions [4]). These,
however, are only designed to model the unitemporal evolution of a
graph. It is not apparent: (i) how easily the aforementioned models
and supporting infrastructure can be extended to account for bitem-
poral modeling, or (ii) how effectively our proposed data structures
can support the operators that enable the temporal evolution query
capabilities suggested by [4, 65].

7 RELATEDWORK
While the amount of prior work in this area is vast, space constrains
us to a limited coverage. We covered the space for temporal model-
ing and querying in Section 3, and limited our survey to prior work
in the graph analytics space. We do note, however, that there is a
large body of work that focuses on temporal modeling in the area
of relational databases, including some that support bi-temporal
modeling [49, 51, 52].

The rest of this section focuses on categorizing existing graph
analytics systems based on their ability to ingest new information
about a time-evolving real-world system they attempt to model.

Our Terminology: Offline vs. Online (Streaming and Dy-
namic) GraphAnalytics.Analytics systemswhich support query-
ing of time-evolving graphs have only recently started to gain at-
tention. Consequently, the terminology is still fluid with terms used
by different groups yet with different meanings [10, 63, 71]. For
clarity we describe the terminology we use below. First, we sep-
arate between Offline and Online systems. Offline systems have
no notion of new incoming updates at runtime, and operate solely
on a graph’s historical evolution that is known in advance. In con-
trast Online systems operate on a stream of incoming events, and
continuously update the underlying graph state (i.e., history is not
known in advance). Secondly, we separate between two types of

Online systems: Streaming and Dynamic. The major difference be-
tween them is the restriction placed on the working set that can be
actively maintained by the systems at runtime, and consequently
the queries that can be supported: Streaming systems operate with
limits on the runtime state size while Dynamic systems do not.

Offline. An offline system operates on a graph whose entire
history is known in advance, and does not allow new updates after
this history is ingested. This enables offline systems to: (i) heav-
ily pre-process the input graph history, (ii) implement advanced
memory-layout and partitioning optimizations, and (iii) schedule
query computations such that their access patterns match the data
locality. Systems in this space, which are often referred to in the
literature as historical, temporal, or time-evolving graph analytics
systems, include: [12, 28, 32, 37, 38, 50, 55, 64, 75, 85, 86]. All of
these systems employ uni-temporal modeling to track the evolu-
tion of the graph over time, and none of them use bi-temporal
modeling. Additionally, offline systems in general, are not suited
for our use cases where: (i) the graph history is not known in ad-
vance, and (ii) updates to - as well as queries on - the graph state
arrive continuously at runtime.

Online Streaming. An online streaming system operates with
the restriction that only a limited amount of information about
the graph and its evolution can be kept (typically 𝑉 × 𝑙𝑜𝑔(𝑉) or
lower [63]) as the whole graph is assumed to be too large to be
stored. The immediate consequence is that such a system will be
unable to serve historical or audit queries, thus past experience in
this area - including prior work such as [3, 8, 9, 11, 21, 27, 30, 46–
48, 73] - has limited bearing on the design space we explore. Many
of the systems in this space are non-temporal due to the limit on
the working set size. However, it is also worth noting that some of
the prior work in this space makes the observation that event time
and processing/ingestion time must be treated differently [5, 13].

Online Dynamic. An online dynamic system operates without
restrictions on the amount of information that can be retained: pos-
sibly the entirety of the graph state as well as its evolution. Scale-up,
scale-out, and out-of-core processing techniques are all considered
viable approaches depending on the graph scale. Many proposed
solutions exist in this space with varying supported query capabili-
ties [18, 23, 41, 53, 62, 67, 79, 81, 82, 84, 89, 90, 93]. Section 3 covered
how prior work in this space modeled time, and contrasted three
temporal modeling approaches (i.e., Non-, Uni-, and Bi- Temporal).
We stress that most of the systems we surveyed are non-temporal
(i.e., do not explicitly model time, and, as a consequence, can only
support current state queries), a few of them are uni-temporal, and
none2 of them implements a bi-temporal data model (i.e., essential
to support audit queries). Our proposed system fits in this space,
and supports all three query types: current state, historical, and
audit.

8 CONCLUSIONS
Summary. Graphs are a key data structure for a wide range of
application domains. We contend that existing graph analytics
systems which are commonly static and non-temporal, however, are
not able to support real-world use cases which require accurately
modeling a dynamic graph’s evolution over time while concurrently
supporting current state, historical and audit queries.

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Halawa, et al.

Contributions. To the best of our knowledge, we are the first to
sketch a design for a dynamic graph analytics system that uses bi-
temporal data modeling at its core.We outline the need for such a
system through a discussion of real-world use cases and business
requirements across several domains, and contend that existing
graph analytics systems are not an applicable substitute.

Ongoing Work.We have prototyped the Bi-Temporal Set and
Value data structures presented in this paper, and are now working
on developing a complete proof of concept implementation for the
proposed bi-temporal dynamic graph analytics system presented.

9 ACKNOWLEDGMENTS
This project was sponsored in part by a generous gift fund from
Huawei Toronto Heterogeneous Compiler Lab in Canada. We also
thank the anonymous reviewers of GRADES-NDA’21 for their in-
sightful comments and detailed feedback which helped us improve
the quality of this paper.

REFERENCES
[1] T. K. Aasawat, T. Reza, and M. Ripeanu. 2018. Scale-Free Graph Processing on a

NUMA Machine. In 2018 IEEE/ACM 8th Workshop on Irregular Applications: Ar-
chitectures and Algorithms (IA3). Institute of Electrical and Electronics Engineers,
New York, NY, USA, 28–36. https://doi.org/10.1109/IA3.2018.00011

[2] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A. Bader. 2010. Scalable
Graph Exploration on Multicore Processors. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’10). IEEE Computer Society, USA, 1–11. https://doi.org/10.
1109/SC.2010.46

[3] Gagan Aggarwal, Mayur Datar, Sridhar Rajagopalan, and Matthias Ruhl. 2004.
On the streaming model augmented with a sorting primitive. In 45th Annual IEEE
Symposium on Foundations of Computer Science. IEEE, Institute of Electrical and
Electronics Engineers, New York, NY, USA, 540–549.

[4] Amir Aghasadeghi, Vera Zaychik Moffitt, Sebastian Schelter, and Julia Stoy-
anovich. 2020. Zooming Out on an Evolving Graph. In EDBT. OpenProceedings,
Konstanz, Germany, 25–36.

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, out-
of-Order Data Processing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792–1803.
https://doi.org/10.14778/2824032.2824076

[6] Apache Giraph. 2012. Main Project Web Page. Apache. https://giraph.apache.org/
[7] Apache HBase. 2010. Main Project Web Page. Apache. https://hbase.apache.org/
[8] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On Estimating Maximum

Matching Size in Graph Streams. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (Barcelona, Spain) (SODA ’17).
Society for Industrial and Applied Mathematics, USA, 1723–1742.

[9] Sepelir Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-
mum Matchings in Dynamic Graph Streams and the Simultaneous Communica-
tion Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms (Arlington, Virginia) (SODA ’16). Society for Industrial
and Applied Mathematics, USA, 1345–1364.

[10] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoe-
fler. 2019. Practice of Streaming Streaming of Dynamic Graphs: Concepts, Models,
and Systems. arXiv:1912.12740 [cs.DC]

[11] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos
Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense
Subgraphs on One-Pass Dynamic Streams. In Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing (Portland, Oregon, USA) (STOC
’15). Association for Computing Machinery, New York, NY, USA, 173–182. https:
//doi.org/10.1145/2746539.2746592

[12] Jaewook Byun, Sungpil Woo, and Daeyoung Kim. 2019. Chronograph: Enabling
temporal graph traversals for efficient information diffusion analysis over time.
IEEE Transactions on Knowledge and Data Engineering 32, 3 (2019), 424–437.

[13] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond Analytics: The Evolution of Stream Processing Systems. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. Association for Computing Machinery, New York, NY, USA, 2651–2658.
https://doi.org/10.1145/3318464.3383131

[14] Chainalysis. 2021. The 2021 Crypto Crime Report. Technical Report. Chainalysis.
https://go.chainalysis.com/2021-Crypto-Crime-Report.html

[15] Chainalysis. 2021. The Blockchain Analysis Company. Chainalysis. https:
//www.chainalysis.com

[16] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (June 2008), 26 pages. https://doi.org/10.1145/1365815.
1365816

[17] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differ-
entiated Graph Computation and Partitioning on Skewed Graphs. In Proceedings
of the Tenth European Conference on Computer Systems (Bordeaux, France) (Eu-
roSys ’15). Association for Computing Machinery, New York, NY, USA, Article 1,
15 pages. https://doi.org/10.1145/2741948.2741970

[18] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph:
Taking the Pulse of a Fast-Changing and Connected World. In Proceedings of the
7th ACM European Conference on Computer Systems (Bern, Switzerland) (EuroSys
’12). Association for Computing Machinery, New York, NY, USA, 85–98. https:
//doi.org/10.1145/2168836.2168846

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press, Cam-
bridge, MA, USA, 348–355.

[20] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008.
Computational Geometry: Algorithms and Applications (3rd ed.). Springer-Verlag,
Berlin, Heidelberg, Germany, 237.

[21] Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. 2010. Trading off Space
for Passes in Graph Streaming Problems. ACM Trans. Algorithms 6, 1, Article 6
(Dec. 2010), 17 pages. https://doi.org/10.1145/1644015.1644021

[22] J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan. 1986. Making Data Structures
Persistent. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing (Berkeley, California, USA) (STOC ’86). Association for Computing
Machinery, New York, NY, USA, 109–121. https://doi.org/10.1145/12130.12142

[23] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High performance
data structure for streaming graphs. In 2012 IEEE Conference on High Performance
Extreme Computing. Institute of Electrical and Electronics Engineers, New York,
NY, USA, 1–5. https://doi.org/10.1109/HPEC.2012.6408680

[24] GQL Editors. 2019. GQL Early Working Draft V2.2. Technical Report. ISO. https:
//isotc.iso.org/livelink/livelink?func=ll&objId=20836584&objAction=Open

[25] A ElBahrawy, L Alessandretti, L Rusnac, D Goldsmith, A Teytelboym, and A
Baronchelli. 2020. Collective dynamics of dark web marketplaces. Scientific
Reports 10, 2020 (2020).

[26] Elliptic. 2021. Bringing Compliance to Cryptoassets. Elliptic. https://www.elliptic.
co

[27] Hossein Esfandiari, Mohammad T Hajiaghayi, Vahid Liaghat, Morteza Mone-
mizadeh, and Krzysztof Onak. 2018. Streaming Algorithms for Estimating the
Matching Size in Planar Graphs and Beyond. ACM Trans. Algorithms 14, 4, Article
48 (Aug. 2018), 23 pages. https://doi.org/10.1145/3230819

[28] Arash Fard, Amir Abdolrashidi, Lakshmish Ramaswamy, and John A Miller. 2012.
Towards efficient query processing on massive time-evolving graphs. In 8th
International Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom). IEEE, Institute of Electrical and Electronics
Engineers, New York, NY, USA, 567–574.

[29] FATF. 2020. International Standards on Combating Money Laundering
and the Financing of Terrorism and Proliferation: The FATF Recommen-
dations 2012, as updated through October 2020. Financial Action Task
Force. http://www.fatf-gafi.org/media/fatf/documents/recommendations/pdfs/
fatf%20recommendations%202012.pdf

[30] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and
Jian Zhang. 2005. On graph problems in a semi-streaming model. Theoretical
Computer Science 348, 2-3 (2005), 207–216.

[31] FINTRAC. 2021. Risk Assessment Guidance, as updated through March
2021. Financial Transactions and Reports Analysis Centre of Canada (FIN-
TRAC). https://www.fintrac-canafe.gc.ca/guidance-directives/compliance-
conformite/rba/rba-eng

[32] Francois Fouquet, Thomas Hartmann, Sébastien Mosser, and Maxime Cordy.
2018. Enabling Lock-Free Concurrent Workers over Temporal Graphs Composed
of Multiple Time-Series. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing (Pau, France) (SAC ’18). Association for ComputingMachinery,
New York, NY, USA, 1054–1061. https://doi.org/10.1145/3167132.3167255

[33] M. H. Gavgani and S. Eftekharnejad. 2017. A graph model for enhancing situ-
ational awareness in power systems. In 2017 19th International Conference on
Intelligent System Application to Power Systems (ISAP). Institute of Electrical and
Electronics Engineers, New York, NY, USA, 1–6. https://doi.org/10.1109/ISAP.
2017.8071427

[34] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ri-
peanu. 2012. A Yoke of Oxen and a Thousand Chickens for Heavy Lifting

https://doi.org/10.1109/IA3.2018.00011
https://doi.org/10.1109/SC.2010.46
https://doi.org/10.1109/SC.2010.46
https://doi.org/10.14778/2824032.2824076
https://giraph.apache.org/
https://hbase.apache.org/
http://arxiv.org/abs/1912.12740
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1145/3318464.3383131
https://go.chainalysis.com/2021-Crypto-Crime-Report.html
https://www.chainalysis.com
https://www.chainalysis.com
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/1644015.1644021
https://doi.org/10.1145/12130.12142
https://doi.org/10.1109/HPEC.2012.6408680
https://isotc.iso.org/livelink/livelink?func=ll&objId=20836584&objAction=Open
https://isotc.iso.org/livelink/livelink?func=ll&objId=20836584&objAction=Open
https://www.elliptic.co
https://www.elliptic.co
https://doi.org/10.1145/3230819
http://www.fatf-gafi.org/media/fatf/documents/recommendations/pdfs/fatf%20recommendations%202012.pdf
http://www.fatf-gafi.org/media/fatf/documents/recommendations/pdfs/fatf%20recommendations%202012.pdf
https://www.fintrac-canafe.gc.ca/guidance-directives/compliance-conformite/rba/rba-eng
https://www.fintrac-canafe.gc.ca/guidance-directives/compliance-conformite/rba/rba-eng
https://doi.org/10.1145/3167132.3167255
https://doi.org/10.1109/ISAP.2017.8071427
https://doi.org/10.1109/ISAP.2017.8071427

Position Paper: Bitemporal Dynamic Graph Analytics GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

Graph Processing. In Proceedings of the 21st International Conference on Par-
allel Architectures and Compilation Techniques (Minneapolis, Minnesota, USA)
(PACT ’12). Association for Computing Machinery, New York, NY, USA, 345–354.
https://doi.org/10.1145/2370816.2370866

[35] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA,
17–30.

[36] TigerGraph Graph QL Working Group. 2018. Seamless Syntactic and Semantic
Integration of Query Primitives over Relational and Graph Data in GSQL. Technical
Report. TigerGraph. https://cdn2.hubspot.net/hubfs/4114546/IntegrationQuery%
20PrimitivesGSQL.pdf

[37] Wentao Han, Kaiwei Li, Shimin Chen, and Wenguang Chen. 2018. Auxo: a
temporal graph management system. Big Data Mining and Analytics 2, 1 (2018),
58–71.

[38] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vi-
jayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: A
Graph Engine for Temporal Graph Analysis. In Proceedings of the Ninth European
Conference on Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14).
Association for Computing Machinery, New York, NY, USA, Article 1, 14 pages.
https://doi.org/10.1145/2592798.2592799

[39] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein, K. McRoberts,
J. Levin, K. Levchenko, A. C. Snoeren, and D. McCoy. 2018. Tracking Ransomware
End-to-end. In 2018 IEEE Symposium on Security and Privacy (SP). Institute of
Electrical and Electronics Engineers, New York, NY, USA, 618–631. https://doi.
org/10.1109/SP.2018.00047

[40] Intel. 2017. 5-Level Paging and 5-Level EPT. Technical Report. In-
tel. https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_
white_paper.pdf

[41] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
USENIX Association, USA, 12.

[42] JanusGraph. 2021. Gremlin Query Language. JanusGraph. https://docs.
janusgraph.org/basics/gremlin/

[43] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and Richard Thomas Snodgrass.
1992. A Glossary of Temporal Database Concepts. SIGMOD Rec. 21, 3 (Sept. 1992),
35–43. https://doi.org/10.1145/140979.140996

[44] Ari Juels, Ahmed Kosba, and Elaine Shi. 2016. The Ring of Gyges: Investigating
the Future of Criminal Smart Contracts. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 283–295. https:
//doi.org/10.1145/2976749.2978362

[45] Martin Junghanns, André Petermann, Kevin Gómez, and Erhard Rahm. 2015.
GRADOOP: Scalable Graph Data Management and Analytics with Hadoop.
arXiv:1506.00548 [cs.DB]

[46] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. 2014. Approximating
Matching Size from Random Streams. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (Portland, Oregon) (SODA ’14).
Society for Industrial and Applied Mathematics, USA, 734–751.

[47] Michael Kapralov, Slobodan Mitrović, Ashkan Norouzi-Fard, and Jakab Tardos.
2020. Space Efficient Approximation to Maximum Matching Size from Uniform
Edge Samples. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium
on Discrete Algorithms (Salt Lake City, Utah) (SODA ’20). Society for Industrial
and Applied Mathematics, USA, 1753–1772.

[48] Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid
Nouri, Aaron Sidford, and Jakab Tardos. 2020. Fast and Space Efficient Spectral
Sparsification in Dynamic Streams. In Proceedings of the Thirty-First Annual
ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City, Utah) (SODA ’20).
Society for Industrial and Applied Mathematics, USA, 1814–1833.

[49] Martin Kaufmann, Peter M. Fischer, Norman May, Chang Ge, Anil K. Goel, and
Donald Kossmann. 2015. Bi-temporal Timeline Index: A data structure for Pro-
cessing Queries on bi-temporal data. In 2015 IEEE 31st International Conference
on Data Engineering. Institute of Electrical and Electronics Engineers, New York,
NY, USA, 471–482. https://doi.org/10.1109/ICDE.2015.7113307

[50] Udayan Khurana and Amol Deshpande. 2013. Efficient snapshot retrieval over
historical graph data. In 2013 IEEE 29th International Conference on Data Engi-
neering (ICDE). IEEE, Institute of Electrical and Electronics Engineers, New York,
NY, USA, 997–1008.

[51] Krishna Kulkarni and Jan-Eike Michels. 2012. Temporal Features in SQL:2011.
SIGMOD Rec. 41, 3 (Oct. 2012), 34–43. https://doi.org/10.1145/2380776.2380786

[52] Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos. 1995. Access Methods for
Bi-Temporal Databases. In Recent Advances in Temporal Databases, James Clifford
and Alexander Tuzhilin (Eds.). Springer London, London, 235–254.

[53] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (Hollywood, CA, USA) (OSDI’12).

USENIX Association, USA, 31–46.
[54] Shimiao Li, Amritanshu Pandey, Bryan Hooi, Christos Faloutsos, and Larry

Pileggi. 2021. Dynamic Graph-Based Anomaly Detection in the Electrical Grid.
arXiv:2012.15006 [cs.LG]

[55] Wouter Lightenberg, Yulong Pei, George Fletcher, and Mykola Pechenizkiy. 2018.
Tink: A Temporal Graph Analytics Library for Apache Flink. In Companion
Proceedings of the The Web Conference 2018 (Lyon, France) (WWW ’18). Interna-
tional World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, CHE, 71–72. https://doi.org/10.1145/3184558.3186934

[56] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-
Yuan Michael Wang. 2014. NVM Duet: Unified Working Memory and Persistent
Store Architecture. In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Salt Lake
City, Utah, USA) (ASPLOS ’14). Association for Computing Machinery, New York,
NY, USA, 455–470. https://doi.org/10.1145/2541940.2541957

[57] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and JosephM. Hellerstein. 2012. Distributed GraphLab: A Framework forMachine
Learning and Data Mining in the Cloud. Proc. VLDB Endow. 5, 8 (April 2012),
716–727. https://doi.org/10.14778/2212351.2212354

[58] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph:
Efficient GPU-Accelerated Graph Processing on a Single Machine with Balanced
Replication. In Proceedings of the 2017 USENIX Conference on Usenix Annual Tech-
nical Conference (Santa Clara, CA, USA) (USENIX ATC ’17). USENIX Association,
USA, 195–207.

[59] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,
and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a Single
Machine. In Proceedings of the Twelfth European Conference on Computer Systems
(Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery, New York,
NY, USA, 527–543. https://doi.org/10.1145/3064176.3064191

[60] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
Association for Computing Machinery, New York, NY, USA, 135–146. https:
//doi.org/10.1145/1807167.1807184

[61] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything
you always wanted to know about multicore graph processing but were afraid
to ask. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 631–643.

[62] Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven
Synchronous Processing of Streaming Graphs. In Proceedings of the Fourteenth
EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for
Computing Machinery, New York, NY, USA, Article 25, 16 pages. https:
//doi.org/10.1145/3302424.3303974

[63] Andrew McGregor. 2014. Graph Stream Algorithms: A Survey. SIGMOD Rec. 43,
1 (May 2014), 9–20. https://doi.org/10.1145/2627692.2627694

[64] YoushanMiao,Wentao Han, Kaiwei Li, MingWu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Enhong Chen, and Wenguang Chen. 2015. ImmortalGraph: A
System for Storage and Analysis of Temporal Graphs. ACM Trans. Storage 11, 3,
Article 14 (July 2015), 34 pages. https://doi.org/10.1145/2700302

[65] Vera Zaychik Moffitt and Julia Stoyanovich. 2017. Temporal Graph Algebra.
In Proceedings of The 16th International Symposium on Database Programming
Languages (Munich, Germany) (DBPL ’17). Association for Computing Machinery,
NewYork, NY, USA, Article 10, 12 pages. https://doi.org/10.1145/3122831.3122838

[66] Christian Worm Mortensen. 2003. Fully-Dynamic Two Dimensional Orthog-
onal Range and Line Segment Intersection Reporting in Logarithmic Time. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (Baltimore, Maryland) (SODA ’03). Society for Industrial and Applied
Mathematics, USA, 618–627.

[67] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 439–455. https://doi.org/10.1145/2517349.2522738

[68] Upama Nakarmi, Mahshid Rahnamay Naeini, Md Jakir Hossain, and Md Abul
Hasnat. 2020. Interaction Graphs for Cascading Failure Analysis in Power Grids:
A Survey. Energies 13, 9 (2020), 1–25. https://doi.org/10.3390/en13092219

[69] Neo4j. 2021. Cypher Query Language. Neo4j. https://neo4j.com/developer/
cypher/

[70] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 456–471. https:
//doi.org/10.1145/2517349.2522739

[71] M. Tamer Ozsu. 2019. Graph Processing: A Panoramic View and Some Open
Problems. 2019 International Conference on Very Large Data Bases, VLDB’19.
https://vldb2019.github.io/files/VLDB19-keynote-1-slides.pdf

https://doi.org/10.1145/2370816.2370866
https://cdn2.hubspot.net/hubfs/4114546/IntegrationQuery%20PrimitivesGSQL.pdf
https://cdn2.hubspot.net/hubfs/4114546/IntegrationQuery%20PrimitivesGSQL.pdf
https://doi.org/10.1145/2592798.2592799
https://doi.org/10.1109/SP.2018.00047
https://doi.org/10.1109/SP.2018.00047
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://docs.janusgraph.org/basics/gremlin/
https://docs.janusgraph.org/basics/gremlin/
https://doi.org/10.1145/140979.140996
https://doi.org/10.1145/2976749.2978362
https://doi.org/10.1145/2976749.2978362
http://arxiv.org/abs/1506.00548
https://doi.org/10.1109/ICDE.2015.7113307
https://doi.org/10.1145/2380776.2380786
http://arxiv.org/abs/2012.15006
https://doi.org/10.1145/3184558.3186934
https://doi.org/10.1145/2541940.2541957
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2700302
https://doi.org/10.1145/3122831.3122838
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.3390/en13092219
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
https://vldb2019.github.io/files/VLDB19-keynote-1-slides.pdf

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Halawa, et al.

[72] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2010. Multithreaded Asyn-
chronous Graph Traversal for In-Memory and Semi-External Memory. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’10). IEEE Computer Society,
USA, 1–11. https://doi.org/10.1109/SC.2010.34

[73] Pan Peng and Christian Sohler. 2018. Estimating Graph Parameters from Random
Order Streams. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (NewOrleans, Louisiana) (SODA ’18). Society for Industrial
and Applied Mathematics, USA, 2449–2466.

[74] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-Time Constrained Cycle Detection in Large Dynamic
Graphs. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1876–1888. https://doi.org/10.
14778/3229863.3229874

[75] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. 2011. On
Querying Historical Evolving Graph Sequences. Proc. VLDB Endow. 4, 11 (Aug.
2011), 726–737. https://doi.org/10.14778/3402707.3402713

[76] Christopher Rost, Andreas Thor, and Erhard Rahm. 2019. Analyzing Temporal
Graphs with Gradoop. Datenbank-Spektrum 19, 3 (2019), 199–208.

[77] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out Graph Processing from Secondary Storage. In Proceedings
of the 25th Symposium on Operating Systems Principles (Monterey, California)
(SOSP ’15). Association for Computing Machinery, New York, NY, USA, 410–424.
https://doi.org/10.1145/2815400.2815408

[78] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
Centric Graph Processing Using Streaming Partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 472–488. https://doi.org/10.1145/2517349.2522740

[79] S. Sallinen, R. Pearce, and M. Ripeanu. 2019. Incremental Graph Processing for
On-line Analytics. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Institute of Electrical and Electronics Engineers, New York,
NY, USA, 1007–1018. https://doi.org/10.1109/IPDPS.2019.00108

[80] M. Shantharam, K. Iwabuchi, P. Cicotti, L. Carrington, M. Gokhale, and R. Pearce.
2017. Performance Evaluation of Scale-Free Graph Algorithms in Low Latency
Non-volatile Memory. In 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). Institute of Electrical and Electronics
Engineers, New York, NY, USA, 1021–1028.

[81] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A Distributed Graph Engine
on a Memory Cloud. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD ’13).
Association for Computing Machinery, New York, NY, USA, 505–516. https:
//doi.org/10.1145/2463676.2467799

[82] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A Sys-
tem For Real-Time Iterative Analysis Over Evolving Data. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
417–430. https://doi.org/10.1145/2882903.2882950

[83] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Process-
ing Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Shenzhen, China)
(PPoPP ’13). Association for Computing Machinery, New York, NY, USA, 135–146.
https://doi.org/10.1145/2442516.2442530

[84] Benjamin Steer, Felix Cuadrado, and Richard Clegg. 2020. Raphtory: Streaming
analysis of distributed temporal graphs. Future Generation Computer Systems 102
(2020), 453–464. https://doi.org/10.1016/j.future.2019.08.022

[85] Matthias Steinbauer and Gabriele Anderst-Kotsis. 2016. DynamoGraph: A Dis-
tributed System for Large-Scale, Temporal Graph Processing, Its Implementation
and First Observations. In Proceedings of the 25th International Conference Com-
panion on World Wide Web (Montréal, Québec, Canada) (WWW ’16 Companion).
International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 861–866. https://doi.org/10.1145/2872518.2889293

[86] Manuel Then, Timo Kersten, Stephan Günnemann, Alfons Kemper, and Thomas
Neumann. 2017. Automatic Algorithm Transformation for Efficient Multi-
Snapshot Analytics on Temporal Graphs. Proc. VLDB Endow. 10, 8 (April 2017),
877–888. https://doi.org/10.14778/3090163.3090166

[87] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From “Think like a Vertex” to “Think like a Graph”. Proc.
VLDB Endow. 7, 3 (Nov. 2013), 193–204. https://doi.org/10.14778/2732232.2732238

[88] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug. 1990), 103–111. https://doi.org/10.1145/79173.79181

[89] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Ac-
curate Computations on Streaming Graphs via Trimmed Approximations. In
Proceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Xi’an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA, 237–251.
https://doi.org/10.1145/3037697.3037748

[90] Charith Wickramaarachchi, Alok Kumbhare, Marc Frincu, Charalampos Chelmis,
and Viktor K. Prasanna. 2015. Real-Time Analytics for Fast Evolving Social

Graphs. In Proceedings of the 15th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing (Shenzhen, China) (CCGRID ’15). IEEE Press, New
York, NY, USA, 829–834. https://doi.org/10.1109/CCGrid.2015.162

[91] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A Block-Centric
Framework for Distributed Computation on Real-World Graphs. Proc. VLDB
Endow. 7, 14 (Oct. 2014), 1981–1992. https://doi.org/10.14778/2733085.2733103

[92] Da Yan, James Cheng, M. Tamer Özsu, Fan Yang, Yi Lu, John C. S. Lui, Qizhen
Zhang, and Wilfred Ng. 2016. A General-Purpose Query-Centric Framework for
Querying Big Graphs. Proc. VLDB Endow. 9, 7 (March 2016), 564–575. https:
//doi.org/10.14778/2904483.2904488

[93] G. Yehuda, D. Keren, and I. Akaria. 2017. Monitoring Properties of Large, Dis-
tributed, Dynamic Graphs. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Institute of Electrical and Electronics Engineers,
New York, NY, USA, 2–11. https://doi.org/10.1109/IPDPS.2017.123

[94] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware Graph-
Structured Analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Francisco, CA, USA) (PPoPP
2015). Association for Computing Machinery, New York, NY, USA, 183–193.
https://doi.org/10.1145/2688500.2688507

[95] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-Node Graphs on
an Array of Commodity SSDs. In 13th USENIX Conference on File and Storage
Technologies (FAST 15). USENIX Association, Santa Clara, CA, 45–58.

[96] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 301–316.

[97] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX Association,
Santa Clara, CA, 375–386.

https://doi.org/10.1109/SC.2010.34
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.14778/3402707.3402713
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1109/IPDPS.2019.00108
https://doi.org/10.1145/2463676.2467799
https://doi.org/10.1145/2463676.2467799
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1016/j.future.2019.08.022
https://doi.org/10.1145/2872518.2889293
https://doi.org/10.14778/3090163.3090166
https://doi.org/10.14778/2732232.2732238
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1109/CCGrid.2015.162
https://doi.org/10.14778/2733085.2733103
https://doi.org/10.14778/2904483.2904488
https://doi.org/10.14778/2904483.2904488
https://doi.org/10.1109/IPDPS.2017.123
https://doi.org/10.1145/2688500.2688507

