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Abstract—Nowadays, heterogeneous unified memory archi-
tecture platforms are becoming increasingly common. These
platforms incorporate several co-processors on a single chip with
a shared physical memory. The use cases for such platforms can
vary dramatically. On the one hand, they can be used in the
context of Edge computing, which cannot tolerate high latency
and has strict energy/power constraints. On the other hand,
motivated by their growing computing capabilities, and their
energy-efficiency, many have considered replacing traditional
bulky servers with these platforms to deliver the same computing
power but with lower energy budget. This study is an exploratory
step to understand the trade-off between power consumption,
message latency, and throughput on a low-power heterogeneous
platform for data stream processing workloads by characterizing
several common computing kernels found in computer vision
algorithms. Our preliminary experiments on NVIDIA Jetson TX1
show that it is possible reduce power consumption by up to 12%.

I. INTRODUCTION

Recently, heterogeneous computing has become the leading
approach to raise the performance envelope and reduce the
energy consumption of computing systems. Energy consump-
tion not only poses a huge threat to our environment, but also
contributes significantly to the cost of any computing-based
service. For example, in cloud computing environments, power
draw represents ∼15% of the Total Cost of Ownership (TCO)
[1], while cooling and other hardware equipment accounts
for the rest. Moreover, for each 1 W of power drawn by
the computing devices, 0.5 to 1 W is drawn by the cooling
system [2], which indirectly increases the contribution of
the computing equipment in the TCO. In 2016, a study
showed that data-centers in the USA consume approximately
70,000GWh which represents 1.8% of the total electric power
produced in the USA and is projected to increase by 4% by
2020 [3].

Additionally, the growing number of IoT devices and their
various use cases represent a challenge to existing cloud
computing paradigm. On the one hand, resource consolidation
and flexible scaling features have made cloud computing the
backbone of the majority of large-scale computing environ-
ments, but, on the other hand, it is not well-suited for latency-
sensitive applications. Moreover, the large number of con-
nected devices led to higher bandwidth cost and congestion,
with additional privacy and security concerns from the users’
perspective. These shortcomings led to the emergence of a
new computing paradigm known as Fog or Edge computing
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[4]. In this approach, instead of sending data to the cloud
to process it and return the results to the user, IoT devices
directly run computation algorithms on the Edge device or on
a geographically co-located cluster-like resources (sometimes
dubbed cloudlets or elements of Fog computing). In all these
scenarios energy efficiency is a major concern.

Solutions at various levels of the computing stack have been
proposed to address the energy-efficiency of the computing
infrastructure. For instance, the adoption of dedicated acceler-
ators or highly-parallel architectures has increased drastically
especially heterogeneous platforms that incorporate several co-
processors. GPUs’ massively-parallel architecture allows them
to be more energy efficient for throughput oriented problems.
Field Programmable Gate Arrays (FPGAs) and Application-
specific Integrated Circuits (ASICs) have also witnessed wide
adoption (e.g. Microsoft Catapult [5], Google Tensor Process-
ing Unit (TPU) [6]).

In data-center environments, resource consolidation and
scheduling algorithms that aim at reducing the consumed
power has also been proposed [7], [8], [9], others developed
algorithms that predict the future workload and turn-off or on
the servers to reduce power consumed during low load cycles
[10]. Moreover, there are efforts that focus on the energy
complexity of the computational algorithms [11] with the goal
of understanding how the algorithms behaviour affect energy
consumption and subsequently making them more energy
efficient.

Recently, heterogeneous unified-memory platforms that in-
corporate low-power CPUs for running the operating sys-
tem and low-load tasks and GPUs for high-load tasks have
emerged. An example of such platforms is the NVIDIA
Jetson embedded boards family. These platforms target Edge
computing scenarios (e.g. self-driving cars, drones, robots,
etc.). However, the compute capabilities offered by their
heterogeneous resources made them potential candidates to
replace bulky servers in data-center environments as well,
mainly because of their much lower idle base power compared
to traditional servers.

Objective of this paper: Stream data processing model is
common for a wide range of applications (e.g. multimedia
stream processing, dynamic graph algorithms, inference task
in interactive AI applications, and IoT applications.) This study
aims to answer two questions:

� In the context of streaming applications, can we save
power by tuning the CPU and memory controller to low



frequencies and at the same time maintain the system’s
stability?

� Are the default power management capabilities on Jetson
TX1 able to deliver best performance-per-watt? if not,
then how much more energy can we save?

Contributions: We show that on a low-power heterogeneous
platform such as the Jetson TX1, we can tune the system to
save from 2% to 12% of the consumed power by operating
on lower frequencies of the CPU and the memory controller
while increasing the average response time to a certain limit
that still fulfills the QoS metrics (message processing rate) of
a stream-based application.

This paper is organized as follows: Section II presents back-
ground information about data stream systems and energy-
efficiency in a computing environment along with an illustra-
tion of the main features of the Jetson platform. Section III,
details our methodology and describe the system components
for our experiments and how they interact together. Section IV,
presents and discusses the results obtained and main lessons
learned from the experiments. Section V, presents previous
work done in the context of energy-efficiency of data stream
processing. Finally, Section VI, summarizes the key findings
and limitations.

II. BACKGROUND

A. Data Stream Systems

In the context of this paper, a data stream system is a
system in which data is generated by a single or multiple
producers as small batches of data (in the order of bytes to
kilo-bytes) and consumed by a single or multiple consumers.
A producer can be: physical sensors, such as weather, medical,
surveillance sensors, or IoT devices, such as smart appliances,
traffic cameras, wearables, etc. [12], [13].

A consumer in such a system can be any processing
device that incorporates one or more processors that can read,
interpret and transform the incoming data batches from the
producer to output a specific final or intermediate result that
can be further processed.

A consumer in a data stream processing system typically
applies a compute kernel on each batch of data or on a time
window of several batches. Batches of data in a stream system
can also be referred to as messages, records or elements. The
compute kernel can be the same for all incoming messages or
different pipe-lined kernels that execute different tasks on the
messages. In some cases, it may be required that a data stream
system maintain a state the depends on the previous messages
computations, in this case the state data should ideally be
persisted in memory for fast access or on disk if memory
is full.

To evaluate the performance of a data stream processing
system usually message processing time (the time spent by a
user defined compute kernel analyzing the message) and max-
imum attainable throughput (the maximum number of mes-
sages processed per second) are the most important metrics.
For instance, in a video streaming application, it is essential

that a consumer system sustains a minimum processing rate
expressed as Frames/Sec or else some frames are dropped
resulting in a degraded user experience.

Generally, data stream processing systems can be deployed
on several computing nodes where the nodes are connected
together via a network interface or deployed on edge devices
closer to the data producers to save network bandwidth.

B. Energy Efficiency in Data Stream Context

Power is the amount of energy, expressed in Joules (J),
consumed per time unit (one second) and is measured in
Watts (W). Power consumption in a computing system can
be calculated as the sum of dynamic power and static power.

For a processing unit, static power is the power consumed
by its hardware circuitry in the idle state, and it represents the
baseline for the total power consumption. Dynamic power is
the power consumed by applications utilizing the processing
unit and it depends on the application behaviour and the
available hardware resources. It is also referred to as switching
power and it results from:

� Capacitor charging and discharging in the electronic
circuits due to data flow changing the states of the
transistors between ON/OFF states.

� Leakage current due to short circuit during the transition
phases from 0 to 1 and from 1 to 0.

Dynamic power can be calculated as follows:

P = αCV 2f (1)

where αε[0, 1] is the activity factor and it represents the
average number of times the CMOS transistors switch between
the 1 and 0 states per clock cycle, in other words, it is
application workload dependent. C is the capacitance and
it is the physical property of the circuit components, V is
the supply voltage, f is the clock frequency that drives the
transistors. The supply voltage is proportional to the operating
frequency, this is to guarantee stability of the system and its
ability to maintain the sought operating frequency [14].

Most operating systems include a functionality to control
the operating voltage and frequency of the various devices.
This functionality is referred to as Dynamic Voltage Fre-
quency Scaling (DVFS) [15]. DVFS is a hybrid between
Dynamic Voltage Scaling (DVS) and Dynamic Frequency
Scaling (DFS). In DVFS, the operating system kernel scales
the processor’s operating frequency up or down based on the
processor utilization level.

In the context of a data stream processing system, the
number of messages processed per Watt is often used to
compare the energy efficiency of different stream processing
systems.

C. The Jetson Platform

In 2014, NVIDIA introduced the TK1 board as the first low-
power embedded board of the Jetson platform. Followed by
the TX1 in 2016, TX2 in 2017 and AGX Xavier in 2018.
The four boards share two interesting features that made
the Jetson platform suitable for our study. First, each board



TABLE I: NVIDIA Jetson TX1 board characteristics.

CPU 64-bit ARM Cortex-A57
Architecture ARMv8-a
L1/L2 cache Sizes 32KB/2MB
Core Frequency Range 102 MHz to 1.734 GHz
Peak Theoretical FLOPs 55.48 GFLOPs

DRAM 4GB LPDDR4 RAM, 2 Channels
Data Bus Width 64 bit
Controller Frequency Range 40.8 MHz to 1600 MHz
Peak Theoretical Bandwidth 25.6 GB/Sec

has an integrated ARM processor, a powerful NVIDIA GPU
compared to the on-board ARM CPU, and a shared global
memory. Second, each of those integrated components have a
wide range of operating frequencies with more than 10 values
to select from for the CPU, GPU and the memory controller,
besides, it is possible to activate and deactivate CPU cores.
These two features allow us to study the performance and
the power consumption trade-offs on these boards thoroughly
compared to the traditional computing devices that have a
narrow range of operating points for its CPUs only.

In this study we use the TX1 board as host for a data stream
processing application but we exclude the GPU. Table I lists
the main features of the TX1 board CPU and memory.

III. METHODOLOGY

Our goal is to quantify the power/performance trade-off
when tuning the CPU and memory controller frequency the
Jetson TX1 board in a stream data processing application.

A. Experimental Setup

Our system comprises two compute nodes, a power logging
kit and a network router for connectivity. One of the nodes acts
as a producer that generates messages according to specific
criteria as we will discuss later in this section. It is also
responsible of reading the measured power values from the
power logging kit.

The second node is a Jetson TX1 board that is responsible
of processing the messages sent by the producer. It applies
a specified compute kernel on each message individually. We
only consider a stateless multi-threaded processing model. In
this model a thread processes each message independently
from previous messages and from other threads. While this
might not be the case for all data stream processing applica-
tions, it helps simplify our study and focus more on the trade-
off between performance and power consumption instead of
managing data inter-dependency or maintaining state in each
thread.

B. Load Generation

The producer generates messages as double-precision byte
arrays of different sizes for each experiment iteration. It sends
those messages over a UDP socket to the consumer. We use
ZMQ [16], which is a distributed messaging library used in
several big-data systems to facilitate communication among
the distributed system components. It supports broker/broker-
less based messaging paradigm. In our experiments we used

Producer Consumer (TX1)
Network Router

Power Reading Kit  
(WattsUp ProPower) Power connection

Serial Interface

Fig. 1: Overview of system components and connections

the ZMQ library for a broker-less based communication style
between the two nodes.

The message generation in the producer is a Poisson process
where the inter-arrival time between the messages is drawn
from an exponential distribution. We generate loads with
different throughput values that represent the rate parameter
in the Poisson process.

The message sizes we selected are 128 and 1024 elements,
each element is an 8 bytes double value. We chose those values
to represent fit-in-cache and non-fit-in-cache cases. For the
offered load, we chose 240 and 960 messages per second.
These values represent low and high loads above which many
hardware settings cause the consumer to drop messages and
below which the base power consumption prevails against
dynamic power.

C. Connectivity

The producer and the consumer are connected through a
local network device with a link bandwidth of 1 Gbps. The
power logging kit is connected to the producer node through
a serial interface to read power measurement data. The high-
level system architecture is illustrated in Fig. 1.

D. Workload Kernels

The consumer is a multi-threaded application that applies
a set of linear algebra routines (using the OpenBLAS library
and optimized for the TX1 armv8-a processor architecture)
on the incoming messages. Given an input vector X and an
input/output vector Y each routine works as follows:

SAXPY: scales vector X by a scalar factor A and add it to
vector Y where Y = AX + Y .

DOT Product: dot product of vector X by vector Y .
Euclidean Distance: calculates the Euclidean distance be-

tween two vectors X and Y such that Y =
√∑N−1

i=0 Y 2
i .

Matrix Multiplication: applies the DGEMM routine which,
given input matrices A and B, outputs matrix C such that
C = αAB + βC, where α and β are scalar values.

We choose those BLAS routines as representative workload
kernels because they are widely used in several application
domains such as computer vision applications, video analysis,
data stream clustering/classification algorithms, dynamic graph
analysis and machine learning.

E. Measurements Infrastructure for Power and Time

1) Power Measurement: The earlier versions of the Jetson
TX1 don’t include internal power sensors, hence, we use
an external power measurement tool. We used a commercial



WattsUp PowerPro kit [17] to measure the power consumed by
the TX1 board during the experiments. The WattsUp kit has a
serial interface that we used to read the power measurements
with a sampling frequency of one sample/second. It has an
accuracy of +/- 3% above 10 watts and +/- 5% below 10
watts. We separate the power logging from the TX1 to avoid
any interference with the experiments thus, we connect the
WattsUp kit to the TK1 that runs the producer too. Although
there are more accurate solutions to measure the power con-
sumption, such as using the INA219 integrated circuit [18],
these solutions require building a custom circuit to interface
with this IC family. This approach is more accurate but time
consuming.

2) Timing Measurement and Synchronization: One of the
main challenges in the measurement setup is how to syn-
chronize the power readings, triggering the producer to start
sending messages and the consumer statistics. Our goal is to
make sure that the read power corresponds to the interval
during which the TX1 is doing actual work on the incom-
ing messages from the producer, and to avoid interference
from auxiliary computations (allocating memory for timing
measurements, launching threads for synchronization between
the producer and the consumer, initializing ZMQ socket and
receiver buffer) before and after (calculating statistics at the
end of each iteration, freeing allocated memory, destroying
ZMQ context and killing all active threads) the experiments
as much as possible.

To avoid system times discrepancies, we use monotonic
clock which is independent of the system’s wall time and is
not affected when changing the CPU’s operating frequency. It
also has a resolution in the nanoseconds range. To quantify
the overhead of querying the clock, we ran 100K queries and
we found that the average time for each query is ∼72ns. This
small overhead guarantees that our measurement resolution is
in the sub-microsecond range.

To synchronize the statistics collected by the consumer
with the power readings, we output the timestamp with mu
accuracy for each power reading from the WattsUp kit, and
the timestamps at which the producer started/finished sending
messages to the consumer. When the consumer executable
runs, it prepares the data containers needed for statistics
collection, creates the requested number of threads, initial-
izes all relevant data to the experiment and finally sends a
start sending request to the producer that triggers sending
messages from the producer side. At this moment, the producer
saves the timestamp as START TIME and keeps running until
the consumer issues stop sending request at STOP TIME.

Moreover, the producer host and the TX1 board are
connected over a local network. For 1K packets of
size 64Bytes, the percentage of packet loss is 0%, the
min/average/max/standard deviation of the Round-Trip Time
(RTT) are 1.27/1.77/2.29/0.19 ms respectively. Therefore, sta-
tistically, the time it takes for the consumer to notify the
producer to start issuing messages is less than 2.5ms. This
means that the timestamps recorded by the producer represent
the actual experiment start time with an accuracy of +/-

1.77ms. To make sure that the power readings represent the
power consumed by the TX1 during the actual processing of
the messages, we truncate any power reading with time-stamp
before START TIME and after STOP TIME.

F. Performance and Power Consumption Metrics

The main Key Performance Indicators we are interested
in are: maximum sustainable consumer throughput (mes-
sages/second) after which the consumer starts to drop mes-
sages, average message processing time (ms) and power con-
sumption in (Watts). In our system, we don’t allow message
drop by the consumer due to overload and hence we only
report the results of the iterations in which the maximum
sustainable consumer throughput is at least equal to the offered
throughput.

We calculate the consumer throughput for a total number
of processed messages n as follows:

R =
n

Pn − T1
msgs/second

where Pn is the time at which message n was processed
and T1 is the time at which the first message was received.
We calculate the average message processing time as:

Tp =

∑n
i=1(Pi − Ti)

n
seconds

where Ti is the time at which message i was received and Pi

is the time at which message i was processed. We need Tp in
order to quantify the impact of the different hardware settings
on the raw performance.

G. Additional Experimental Details

Since our goal is to evaluate the impact of different fre-
quency settings and number of active cores for the ARM CPU
and the frequency settings for the Memory Controller on the
energy-efficiency achievable by the system, we set the GPU to
the lowest frequency, disable HDMI ports and shutdown any
GUI-based service before we run our experiments. To control
the operating settings of the Jetson TX1, we edit the kernel
configuration through the exposed virtual file-system directory
sysfs to specify the operating frequencies and active CPU
cores before each experiment run.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we answer the two motivating questions for
this study: 1) Can we save power by lowering the operating
settings of the hardware and how much savings can we
achieve?, 2) Which power control policy achieves the lowest
power consumption while maintaining system stability?. To
answer these questions we introduce four main operational
modes:

Brute-Force Search: In this mode, we run the producer and
then launch the consumer in a loop where in each iteration we
change the number of active CPU cores, the cores frequency
and the memory controller frequency. The goal is to find the
best settings in terms of power consumption.



DVFS: In this mode, instead of manually selecting the
operating settings for the TX1, we let the Linux Dynamic
Voltage Frequency Scaling (DVFS) system, which is set
to the Interactive policy by default, control the CPU and
memory controller frequencies dynamically during runtime.
On the TX1, the rail voltage that supplies the processor’s
core circuitry depends on the operating frequency. However,
the mapping from frequency to voltage is fixed, therefore in
our experiments we can only set the operating frequency of
the processor but not the rail voltage. Additionally, the TX1
provide a software agent (ACTMON) [19] which monitors the
hardware activity of all board devices including the processors
and the memory. This central agent provides statistics about
the utilization level of the hardware components to the DVFS
agent. The DVFS then scales the CPU and GPU frequencies
and rail voltage according to the load level, and it scales the
memory controller frequency based on the memory access
cycles that represent the amount of traffic to and from the
memory.

Maximum Settings: In this mode we set the board to the
maximum operating settings where all the CPU cores are
active, the CPU and the memory controller frequencies are set
to the maximum values for the best performance. However, we
keep the GPU at the lowest frequency possible.

Race-to-Finish: This mode requires that once a message is
received, we set the board to the maximum settings until the
message processing is done. Then, we set the board to the
DVFS Interactive mode to save consumed power until next
message is received and repeat the whole cycle again.

In our experiments we have variable workload characteris-
tics expressed in terms of message size and offered throughput.
We also have several operational settings including the number
of active CPU cores, CPU frequency and memory controller
frequency.
A. Experiment-1

We start by evaluating the power consumption of the first
three operational modes. In Fig. 2, we show the average power
consumed on the Y-axis and the four BLAS routines sorted
on the X-axis. Each sub-figure represents a specific workload
in terms of producer throughput and message size in bytes,
and the number of threads. In tables II and III, we show the
corresponding average message processing times in µs for
each operational mode. We also report results of 3 threads
only which is the maximum number of threads we use in our
experiments since the ARM CPU has only 4 cores. We leave
one core for OS kernel and ZMQ receiver thread. We don’t
report the other thread count results due to space limitation.

Finding-1: There is still room for saving power by ex-
tending the message processing time while still maintaining
application stability (where the consumer throughput is at least
equal to the producer throughput). Comparing the Brute-Force
Search mode against the DVFS mode we found operational
settings that reduce the consumed power from 2% and up to
12%. By comparing the Brute-Force Search approach against
the Maximum Settings mode, we found operational settings
that can save from 15% to 25% of power consumption.

Our explanation for why we found settings that save power
compared to the DVFS is that DVFS is known to be sensitive
to hardware resources utilization levels [20]. This drives its
selection of high operating frequencies for the CPU and
the memory controller to fulfill the compute needs of the
workloads. However, the DVFS software agent doesn’t take
into consideration that message processing time could be more
relaxed and thus it is possible to operate at lower frequencies
to save power. In the Brute-Force Search mode, higher energy-
efficiency was achieved by extending the message processing
time by up to 3 times as shown in Tables II and III.

Compared to the Maximum settings approach, the Brute-
Force Search mode showed that by operating at lower frequen-
cies we can definitely save power but comparing the average
message processing delay we see that the Maximum Settings
mode achieves up to 18 times better than Brute-Force Search
and 6 times better than DVFS.

The main takeaway from this finding is that we need to
consider the data stream application Quality of Service (QoS)
metrics while tuning the hardware settings to save consumed
power. While the Brute-Force Search mode in this context is
meant to prove this point, we believe it is impractical for real
application deployments, hence, we plan to work on building a
scheduler that dynamically selects the best hardware settings
during run-time to save consumed power while maintaining
the required workload performance constraints.

B. Experiment-2

To compare the Race-to-Finish (RTF) approach to the other
operational modes we needed a single point of control to set
the hardware settings to the designated values before and after
each message processing hence we set the number of worker
threads to one. The idea is to have one worker thread that reads
messages from the receiver buffer, then sets the OpenBLAS
internal number of threads to the value we actually want to test.
This worker sets the TX1 hardware settings to the maximum
before processing each message and once the BLAS routine
is done, it sets the hardware back to the DVFS mode instead
of the minimum settings. This is done to make sure that the
rest of the tasks such as fetching messages from the reader
queue, networking functions and other OS kernel processes
are not deprived the needed resources to complete their tasks
in a reasonable time. In Fig. 3, we show the average consumed
power of the four compute modes including the RTF mode.

Finding-2: As illustrated in Fig. 3, the RTF results are
significantly worse than both the DVFS and the Brute-Force
Search results. For instance, the Brute-Force Search mode was
able to tune the system to consume less power compared to
RTF by 27% to 30%. This finding aligns with a previous
study on multimedia application [21]. We also found that
the overhead of tuning the CPU and memory controller
frequencies before and after each message is significant. This
is due to the way we set the frequencies through writing to
exposed file system interface. We quantified the overhead for
this tuning and on the one hand, we found that the overhead
of setting the platform operations settings to the maximum
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Fig. 2: Average power consumption for various workloads

TABLE II: Average message processing time in µs for R = 240 Msgs/sec and 1 Thread.

BLAS
Routines

Msg size = 1024 Bytes Msg size = 8192 Bytes
DVFS Maximum Settings Brute-force Search DVFS Maximum Settings Brute-force Search

SAXPY 9.50 0.57 4.18 23.61 1.40 4.62
DOT 7.45 0.54 4.26 25.96 1.61 34.02

Euclidean
Distance 16.81 0.98 7.91 60.87 3.70 36.50

Matrix
Multiply 353.82 21.07 490.64 2350.86 1622.83 3961.44

TABLE III: Average message processing time in µs for R = 960 Msgs/sec and 3 Threads.

BLAS
Routines

Msg size = 1024 Bytes Msg size = 8192 Bytes
DVFS Maximum Settings Brute-force Search DVFS Maximum Settings Brute-force Search

SAXPY 4.55 0.49 4.14 8.75 1.31 12.14
DOT 3.58 0.44 4.44 10.29 1.53 14.02

Euclidean
Distance 6.43 0.89 13.67 24.22 3.62 32.02

Matrix
Multiply 176.76 21.93 477.82 2026.42 1973.94 3168.23

is around ∼0.16ms. The cost for setting the hardware to
maximum and then to minimum operational settings before
and after the kernel respectively is ∼9ms. the cost for setting
the hardware to maximum then to the default governor but
keeping the memory controller at minimum is ∼3ms. On
the other hand, the cost for setting the hardware settings to
maximum then DVFS but keeping the memory controller at
max is ∼0.3ms. There is a lower-level interface for controlling
the frequencies of the CPU and the memory controller by
directly manipulating hardware registers. In the future, we
plan to carry on more thorough analysis for the RTF approach
using this lower-level interface to fairly evaluate this approach
compared to the others.
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Fig. 3: Average power consumption for the four computing
modes

C. Experiment-3
To understand the impact of the memory frequency on the

power consumption, we plot the average consumed power for



TABLE IV: Impact of memory controller on power and
performance. CPU frequency is set to max. We compare the
power and message processing time for each kernel for two
cases: lowest and highest memory controller frequencies. R is
the incoming message rate, and S is the message size.

BLAS
Routines

R=240 Msgs/sec R=960 Msgs/sec
S=1KB S=8KB S=1KB S=8KB

SAXPY
Power

increase % 28.53 28.05 23.77 23.13

Time
reduction % 9.24 38.56 11.57 28.66

Euclidean
Distance

Power
increase % 27.97 26.86 24.36 22.29

Time
reduction % 13.26 12.29 3.88 16.68

TABLE V: Ratio of base (Idle) power contribution in the
overall power consumption for low workload of message rate
(R = 30Msgs/sec) and message size of (1K).

SAXPY DOT Euclidean
Distance

Matrix
Multiply

DVFS Power 2.45 2.43 2.44 2.46
Base Power % 96% 97% 96% 95%

our workloads against several memory controller frequencies
in Fig. 4.

Finding-3: Figure 4 shows the memory controller frequency
impact on power consumption. Table IV shows that increasing
the memory controller frequency from 40.8MHz to 1.6GHz,
increases the power consumption, but the message processing
time reduction is not proportional to the power increase
percentage except for two cases in the SAXPY kernel with
message size of 8K.

D. Experiment-4

To quantify the energy savings under low offered load,
we conduct an experiment for a message rate of R =
30Msgs/sec and message size of 1K.

Finding-4: We found that because of the low utilization
factor in the dynamic power consumption in Equation (1),
the static power is significant. In table V we show the total
consumed power in the DVFS mode with one worker thread,
and the percentage of the base (idle) power to this total
power. We measure the base power of the board when the
board is idle, however, for fair comparison we turn off the
HDMI port and turn on the fan to have the same settings
for all experiments. We found the average base power to be
2.36W . This means that at low workload cycles the room for
saving power consumption is limited since we already operate
close to the base power limits which depend on the physical
characteristics of the hardware.

V. RELATED WORK

There are several studies on energy efficiency and per-
formance trade-offs of data stream applications. Many of
these studies either focus on a narrow data stream applica-
tion category [21], [22] or focus on evaluating the stream
processing frameworks themselves without any evaluation of
the underlying hardware settings impact [23].

Dayarathna et al. [23] analyze several stream processing
frameworks such as Apache Storm, and Apache Spark. Their
study indicates that data communication between different
nodes in a cluster contributes significantly to the power con-
sumption of the stream processing framework and that building
energy-efficient stream processing applications shouldn’t be
only driven by CPU usage levels but also the communication
patters between nodes. However, the study did not investigate
how tuning the hardware settings affects the energy consump-
tion of these frameworks.

Stokke et. al. [21] study the factors that contribute to the
power consumption on the Tegra TK1 board, the use case in
this study is multimedia applications. A key finding in this
study is that Race-to-finish is not the best approach to save
power consumption under specific performance constraints.

De Matteis and Mencagli [22] present a latency-aware
method to control the CPU frequency and the number of active
CPU cores to achieve the best energy-efficiency in an elastic
data stream processing application.

There are many previous research efforts that study various
workload-aware DVFS-based strategies to reduce the energy
consumption of computing resources [24] [25]; We believe that
the Jetson platform brings unique features (e.g. wide range of
operating points) that require further exploration to understand
its energy-performance trade-offs. Our work in this context is
an exploration of the energy-efficiency of the Jetson TX1.

VI. SUMMARY AND LIMITATIONS

Summary. We study the trade-off between performance and
power consumption in the context of a data stream application
on the Jetson TX1. Our findings show that there is still room
for improvement in power consumption by up to 12% by
tuning the platform operational settings (number of active
cores, CPU frequency and memory controller frequency) at
the cost of increasing the average message processing time.
However, it is possible to maintain application stability where
the consumer is able to maintain an adequate processing
throughput to avoid dropping messages or overflowing the
network buffers. We also found that the Race-to-finish ap-
proach for streaming applications is not the best power saving
strategy which aligns with previous findings in a similar ap-
plication context of multimedia stream processing. Moreover,
our experiments show that the memory controller frequency
has a significant impact on the overall power consumption
compared to the CPU frequency settings. Finally, the room for
power saving at low-load application phases is small because
the dynamic power consumption becomes minor compared to
the static power on the Jetson TX1.

Limitations. Although we position this study as an ex-
ploratory one, there are several limitations that we plan to
address in the future to gain better insight. We summarize
these limitations as follows:

Computation model: We focus only on stateless stream-
based computations. We believe that a stateful stream-based
computation is more challenging and covers more interesting
use cases such as dynamic graph algorithms and recurrent
neural networks.
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Fig. 4: Impact of memory controller impact on power consumption. CPU frequency is 1.734 GHz with 3 out of 4 active cores.

Heterogeneous computing: We only study the impact of
frequency tuning of the CPU cores and the memory controller.
However, the main computation engine on the Jetson platform
is the GPU which is responsible for most of the performance
delivered by the platform. Hence, incorporating the GPU
and CPU in a heterogeneous use case where the streamed
workload is distributed between them is more challenging and
opens more opportunities for energy savings. Additionally,
incorporating the GPU requires data sharing with the CPU,
thus, allowing us to explore the unified memory capabilities
on the Jetson platform.

Workload: We study the performance-power trade-off for
a set of low-level linear algebra kernels, incorporating real
world applications allows us to better understand the practical
limitations via a thorough evaluation on real life data sets.
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