
Snowflakes at the Edge:
A Study of Variability among NVIDIA Jetson AGX Xavier Boards

Hazem A. Abdelhafez
Hassan Halawa
hazem@ece.ubc.ca
hhalawa@ece.ubc.ca

University of British Columbia
Vancouver, Canada

Karthik Pattabiraman
Matei Ripeanu

karthikp@ece.ubc.ca
matei@ece.ubc.ca

University of British Columbia
Vancouver, Canada

ABSTRACT
While applications deployed at the edge often rely on performance
stability (or, at a minimum, on a predictable level of performance),
variability at the edge remains a real problem [4]. This study un-
covers a surprising source of variability: intrinsic variability (in
performance and power consumption) among edge platforms that
are nominally identical. We focus on a popular platform designed
for edge applications, the NVIDIA Jetson AGX, and aim to answer
the following high-level questions through rigorous statistical anal-
ysis: (i) are the edge devices in our study statistically different from
each other in terms of applications’ runtime performance and power
draw (although they are sold under the same product model and
family)?, (ii) if the differences between these edge devices are statis-
tically significant, what is the magnitude of these differences?, and
(iii) do these differences matter from the application’s perspective?

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
Performance and power variation, Edge computing, Jetson AGX.
ACM Reference Format:
Hazem A. Abdelhafez, Hassan Halawa, Karthik Pattabiraman, and Matei Ri-
peanu. 2021. Snowflakes at the Edge: A Study of Variability among NVIDIA
Jetson AGX Xavier Boards . In 4th International Workshop on Edge Systems,
Analytics and Networking (EdgeSys’21), April 26, 2021, Online, United King-
dom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3434770.
3459729

1 INTRODUCTION
To maximize the energy efficiency for the applications running on
edge devices (some of which are battery powered), recent archi-
tectures employ both processing units (PUs) and memory that are
configurable at runtime (e.g., by changing the operational frequen-
cies or the number of active processing cores). To the same end,
there is an increasing use of heterogeneous architectures where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys’21, April 26, 2021, Online,United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8291-5/21/04. . . $15.00
https://doi.org/10.1145/3434770.3459729

Figure 1: Quality of runtime predictions (measured through root
mean square error - RMSE) across multiple NVIDIA Jetson AGX
boards that are nominally identical. The models we present are an
ideal case for a ’best-fit’ model (i.e., lookup table), and compare: (i)
training on a single node (shown in grey) which does not account
for the intrinsic inter-node variability, and (ii) training over mul-
tiple nodes (shown in white) which takes into account inter-node
variability. Note that in both cases the nodes we train on and those
we test on are distinct. Two aspects are worth noting: (i) the average
quality of the predictions; and (ii) the variability in the quality of
the predictions across deployment nodes. All models aim to predict
the runtime of a 2D convolution kernel (frequently used by convo-
lutional neural networks) and are evaluated over ≈10𝐾 points (hard-
ware platformconfigurations, input shapes, andkernel parameters).
The x-axis is the ID of the deployment node (i.e., held-out test node).

each processing unit is specialized for a certain type of workload
(e.g., massively parallel, deep learning, and computer vision accel-
erators), and offers high energy efficiency. The flexibility of these
architectures, however, comes at the cost of increased complexity
for software developers who must manually target and tune the
specific processing units on which to run their workload, while
meeting their application’s quality of service (QoS) objectives.

Our long-term objective is to automate this process. To this
end, the first step is to accurately predict the impact of workload
placement and hardware tuning (e.g., frequency choice) on appli-
cation performance and power consumption. This will enable: (i)
well-informed deployment decisions (e.g., compute and battery ca-
pacity provisioning, or cost estimation), and (ii) optimizations that
meet QoS objectives while minimizing the energy footprint (e.g.,
QoS-aware dynamic voltage and frequency scaling).

When we started developing such a prediction model, however,
we obtained a surprising (to us) result: the quality of the predictions
offered by the model varied significantly depending on the hard-
ware platform where it was deployed, even if the platforms were

https://doi.org/10.1145/3434770.3459729
https://doi.org/10.1145/3434770.3459729
https://doi.org/10.1145/3434770.3459729

EdgeSys’21, April 26, 2021, Online,United Kingdom Hazem A. Abdelhafez, et al.

nominally identical. The grey bars in Fig. 1 present this experiment.
Furthermore, despite trying our best to eliminate all the potential
causes of the observed variability (e.g., operating system image,
interference with other OS services, thermal throttling, as described
in Section 3.6), the results remained unchanged.

This leads us to the central hypothesis of this paper: there are
significant intrinsic differences among the hardware platforms used,
and these are the root cause of the variability we observed. While
hardware variability is well known (e.g., stemming from multiple
factors such as process variation, and imperfections in the manu-
facturing process), the common expectation is that under the same
hardware model, manufacturers offer products that are within a
narrow tolerance band. However, we find that this is not the case.

Objective. Our goal is to identify and quantify the intrinsic vari-
ability between different edge hardware platforms that are offered
as the same model. We use rigorous statistical techniques, and at-
tempt to answer the following high-level research questions (RQs):

■ RQ1: Are the hardware platforms we study (NVIDIA Jet-
son AGX) statistically different in terms of the applications’
runtime performance and power draw? (Section. 5.1)

■ RQ2: If the hardware platforms are statistically different,
what is the magnitude of these differences? (Section. 5.2)

■ RQ3: Do these differences among the platforms matter from
an application’s perspective? (Section. 5.3)

Challenges. There are twomain challenges in characterizing the
intrinsic variability of edge platforms. First, the configuration space
to explore is huge. This stems from two factors: (i) a large number
of hardware components that can be tuned (e.g., processing units,
memory controller), and (ii) awide range of available configurations
for each component (e.g., configurable frequencies cover an over 10x
frequency range, with over a dozen levels for each component). This
makes it difficult to brute-force the search to measure the metrics
of interest such as the runtime and the average power consumption
for a particular workload. The second challenge is the need for
a careful experimental design to exclude, to the extent possible,
other potential sources of variability such as the: (i) (in)accuracy
of measurement tools (e.g., software for runtime, and hardware for
power monitoring), (ii) differences in software libraries and drivers,
(iii) interference from background activities run by the operating
system, and (iv) fan’s impact and thermal throttling.

Contribution. The main contribution of this paper is to high-
light and characterize hardware variability at the edge. We use
the popular NVIDIA Jetson AGX platform as a case study, and in-
vestigate the performance and power consumption behavior of 13
identical AGX boards for several machine learning (ML) inference
workloads under the same conditions (i.e., input parameters and fre-
quency configurations). We demonstrate the presence of inter-node
variability, for both runtime and power consumption. We present
the first quantitative analysis of this variability (to our knowledge)
for the NVIDIA Jetson AGX platform using rigorous statistical tech-
niques. Finally, we present a generic, platform-neutral, statistical
methodology for studying variability on computing platforms.

2 VARIABILITY IN COMPUTING SYSTEMS
Classifying variability. One way to classify variability is by its
source: (i) software (e.g., cache contention, concurrent applications’

interference, OS activities) [3, 6], (ii) hardware (e.g., process and
manufacturing variations for components - such as processors,
memory modules, and storage) [10, 14], and (iii) environmental
factors such as thermal conditions [11].

Hardware variability. From the users’ perspective (e.g., appli-
cation developers), there is an expectation that any group of units
belonging to the same hardware platform and running the same
software should exhibit similar performance and power draw be-
havior. The hardware manufacturers realize this expectation, and,
at the same time, understand that inter-node variability arises due
to several sources (discussed above), some of which are unavoidable.
Hence, they attempt to address this via differentmethods, such as: (i)
increasing design guardbands on microchips [14] which increases
the cost, (ii) grouping nodes with similar properties in classes of
nodes labeled differently (e.g., for marketing purposes), and (iii) doc-
umenting and informing the users about the performance/power
deviations through data sheets and technical specifications.

Implications of ignoring variability. Variability, among other
factors, imposes challenges on building generic models for accu-
rately predicting the performance and power consumption of a
hardware platform, using data collected from a single device to
make predictions on any other device of the same type [10].

In the mobile computing domain, Wu et al. [6] show a signifi-
cant inference performance variability across mobile devices of the
same/different model, and draw attention to the risk of poor user
experience if deployments are optimized for the average observed
performance. However, unlike us, they do not focus on variability
among devices of the same model, nor do they present a systematic
approach to characterize and quantify the variability.

In high-performance computing (HPC) environments, large-
scale applications typically work in a lock-step fashion using syn-
chronization barriers. Thus, any significant imbalance due to per-
formance variability amongst machines (assumed to deliver the
same performance) is detrimental to application performance [8].

Addressing variability. The first step towards addressing vari-
ability is to identify and quantify it. For example, Weisbach et al. [8]
propose a set of benchmarks based on a lightweight kernel to charac-
terize hardware performance variability in HPC systems. Kocoloski
and Lange [5] propose Varbench as a set of benchmarks to precisely
measure performance variability’s impact on Bulk Synchronous
Parallel (BSP) applications. The second step is to incorporate variabil-
ity in the design and development process. One way to achieve this
is to build probabilistic models (e.g., for runtime estimation) that
take variability into account to achieve better QoS guarantees [3].
Another approach is to dynamically adapt the runtime environment
(e.g., scale processors’ frequencies), or re-balance workload [5] to
handle variability. A more conservative approach is to optimize the
system based on the worst case (i.e., deploying less accurate models
to meet QoS objectives in 95% of the cases [6]).

3 METHODOLOGY
Our objective is to identify and quantify variability in performance
and power consumption between several NVIDIA Jetson AGX
boards (that are fully identical: hardware and software wise). This
section first presents the key statistical background, and our design
choices to answer the research questions we highlight in the intro-
duction (Sections 3.1, 3.2, 3.3). Then it presents the workload we

Snowflakes at the Edge:
A Study of Variability among NVIDIA Jetson AGX Xavier Boards EdgeSys’21, April 26, 2021, Online,United Kingdom

use (Section 3.4), our solution to deal with the large configuration
space (Section 3.5), and finally, our measures to eliminate other
sources of variability (Section 3.6).

Terminology: A sample is a set of observations (i.e., measure-
ments for runtime / power at one configuration point for one board).

3.1 RQ1: Are the boards statistically different?
To answer this question, we leverage statistical significance tests.
These tests are generally used in two contexts: (i) to determine if
a sample from a certain population belongs to a specific paramet-
ric distribution [13] (i.e., goodness-of-fit test), or (ii) to determine
whether samples drawn from different populations belong to the
same distribution. We are interested in the latter goal: for a chosen
configuration point, we extract a sample (runtime or power) on
each board and use the statistical significance tests to understand
whether these samples come from the same distribution.

Statistical significance tests often calculate the maximum dis-
tance between the cumulative distribution functions of the samples
provided. Then, based on this distance, the tests return a specific
value from which a significance level (the P-value) is calculated. For
each test, there is a null hypothesis (e.g., that the provided samples
belong to the same distribution). If the test returns a P-value that is
lower than a specific threshold, typically set to 1% (5%), then we
can reject the null hypothesis with high confidence, i.e., 99% (95%).

We use two statistical significance tests: (i) K-samples Ander-
son Darling (AD) [7], and (ii) two-samples Kolmogorov-Smirnov
(KS) [16]. First, the K-samples Anderson-Darling test [7, 13], allows
testing on multiple nodes at a time (i.e., the null hypothesis in this
case is that all 𝐾 samples drawn from the 𝐾 nodes belong to the
same distribution). Second, the two-samples KS test [16] allows
testing for only two samples (i.e., do samples drawn from nodes A
and B belong to the same distribution?).

3.2 RQ2: How significant is the difference
between boards?

Using the statistical significance tests we can answer whether, for
a specific configuration point, boards are statistically different in
terms of performance or power (i.e., a ’yes/no’ question). However,
statistical significance tests do not indicate the magnitude of the
difference (if any); i.e., they do not indicate the effect size [17].

There are several techniques to estimate the effect size. One of
the most popular is the Cohen’s d [1] test. It measures the effect
size as the difference between two samples’ means divided by their
pooled standard deviations. This technique, however, makes two
assumptions about the underlying distributions as follows: (i) both
samples are drawn from normal distributions, and (ii) these distri-
butions have the same variance. However, because we do not know
if these assumptions hold for our case, we use the scaled robust d
(𝑑𝑟) test [9], a modification of Cohen’s d that is shown to be robust
under violations of these assumptions [17]. Similar to Cohen’s d,
the scaled robust d (𝑑𝑟) compares the differences between the means
of two samples relative to their pooled standard deviation. More
intuitively, a large 𝑑𝑟 value indicates that the means of the two sets
are far apart relative to the observed variation.

We later use this estimate of the distance between distributions
in two ways: first, in a relative way, we use it to characterize differ-
ences between all the nodes pairs (at various configuration points)

and show there is a large diversity of differences between nodes.
Second, we use it in an absolute way, to study how many node pairs
are significantly dissimilar - by choosing a threshold for 𝑑𝑟 .

3.3 RQ3: Does the observed variability matter
from an application’s perspective?

While different boards may have statistically different performance
(or power draw) characteristics, and we can quantify these dif-
ferences by comparing them with the variability we see in the
measurement samples, we do not know if these differences are
important from an application perspective. While this question
can only be unequivocally answered in an application context, we
provide two data points to build some intuition about the impact
of these differences. First, we train a runtime predictor that takes
inter-node variability into account, and demonstrate that the qual-
ity of its predictions is better and more uniform than that of a
predictor trained on a single node (Fig.1 and Section 5.3). Second,
we present finer granularity statistics of experimental data that we
collected. These statistics allow an application developer to form
a preliminary opinion on whether the observed variability would
have an impact in their application context (Section 5.3).

3.4 The Workload
We focus on ML inference models based on convolutional neural
networks (CNNs). CNNs are one of the most widely used ML mod-
els. They have applications in image and speech analysis, and are
primarily applied to computer vision related tasks such as object
recognition and classification. Such applications are often deployed
at the edge [6, 12], thus inference models based on CNNs are a good
application-specific choice to benchmark the variability of edge
platforms. Section 4 presents more details about the CNNs we use.

3.5 Dealing with the large configuration space
On the AGX board, there are ≈3.6𝐾 unique combinations (i.e., con-
figurations) of CPU, GPU, and memory controller frequencies (Sec-
tion 4 provides more details). We use sampling to reduce the space
by almost one order of magnitude: we sort each component’s (e.g.,
CPU, memory controller) frequency range, and sample every other
frequency. This sampling scheme reduces the space to 525 configu-
rations, yet covers most of the frequency range of each component.

3.6 Eliminating other sources of variability
Timing measurements.We use the CUDA Events API [20] for pre-
cise timing measurements of the networks’ inference time (0.5µs
resolution). For each network, on a per configuration basis, we
collect timing measurements of 105 iterations and discard the first
five iterations (i.e., warm up iterations). The remaining 100 mea-
surements are the array of 100 observations that make up a sample.
For selected configurations we confirmed that the results do not
change if samples are much larger and include 10,000 observations.

Power measurements. We use the two on-board INA3221 [19]
(0.5% error) Power Monitoring Units (PMU) that can be read via
an exposed virtual file system (sysfs). PMUs have six power ’rails’
(for CPU, GPU, memory module, computer vision (CV) accelerator,
auxiliary on-chip components, system IO)whichmeasure the power
each component draws. We discard the CV accelerator and system
IO rails as they are not relevant to our experiments. We sample

EdgeSys’21, April 26, 2021, Online,United Kingdom Hazem A. Abdelhafez, et al.

the power sensors with 0.5𝐻𝑧 sampling rate. We run five warm
up runs before measuring power, and discard the first two power
measurements (equivalent to one second). After this warm up, we
run each network for 30 seconds (to collect 60 observations).We also
note that the boards are placed within the same physical rack, hence,
they are all in an environment with the same ambient temperature.

Other steps to reduce variability. We create a power profile using
the NVIDIA nvpmodel tool that is supplied with the Jetson AGX
software stack. This profile fixes the frequencies of the other un-
used board components (e.g., CV and deep-learning accelerators),
ensures that all CPU cores and GPU Texture Processing Clusters
(TPC) are on all the time, and disables the power gating mechanism
that turns some cores off when idle. We also disabled the system’s
default DVFS functionality and set all components to the 𝑢𝑠𝑒𝑟𝑠𝑝𝑎𝑐𝑒
governor (which allows us to set the frequencies manually). More-
over, we disable all non-essential OS services running on the boards
and we prevent remote access. Finally, we use the same software
stack across all nodes as detailed in Section 4.

Thermal throttling. According to the latest NVIDIA Jetson AGX
thermal design guide [18], the maximum operating temperature
limits (to operate without performance reduction) for the CPU,
GPU, and other components are 86, 88, and 82°C. Above these
temperatures software or hardware throttling will reduce runtime
frequencies to avoid overheating, thus reducing the board’s perfor-
mance, and impacting the reliability of results. One way to eliminate
the performance variability due to throttling is to operate the fan at
the maximum speed all the time (it usually starts operating automat-
ically at ≈50°C). We also monitor the on-board temperature sensors
to make sure the board does not enter any thermal throttling zones
(i.e., the temperature is always below 50°C during the experiments).

4 EXPERIMENTAL SETUP
The hardware platform: In this paper, we focus on the NVIDIA
Jetson AGX, a popular edge platform. It combines NVIDIA’s state-
of-the-art GPU technology with low-powered ARM CPU cores in
a shared-memory architecture to deliver massive compute power
and high energy efficiency in a tiny physical footprint.

The most important feature of the AGX in our context is that it
provides a wide (10x) range of frequencies for the main processing
elements and the memory controller. Each CPU core’s operating
frequency can range from 115.2MHz to 2.265GHz at a fine granular-
ity (with 29 supported CPU frequency levels). The Volta-based GPU
has 512 CUDA cores, and 64 Tensor cores. The CUDA cores support
dynamic frequency scaling between 114.75MHz and 1.377GHz at a
fine granularity (with 14 supported core frequency levels). Finally,
the AGX allows dynamic frequency scaling for the External Mem-
ory Controller (EMC) - between 204MHz and 2133MHz (with 9
supported memory frequency levels). The frequency state space of
these three components has a total of ≈ 3.6𝐾 combinations.

Software stack: NVIDIA JetPack. We use the NVIDIA JetPack
SDK version 4.4 across all boards. It includes the latest Linux OS
for Tegra and driver package (L4T v32.4.6) for the Jetson platform.
It also incorporates a full set of optimized software libraries (e.g.,
CUDA v10.2) to build applications targeting the various on-board
PUs (e.g., GPU, deep learning accelerators, computer vision).

Figure 2: K-samples Anderson-Darling test for the inference task
of seven different networks. For each box plot, the top and bottom
sides represent the first and third quartiles (Q1 and Q3). The hor-
izontal line represents the median (Q2). The bottom/upper fences
limit the included values to 1.5*(Q3-Q1) distance fromQ1/Q3 respec-
tively. The outliers are omitted for legibility. The dashed horizontal
line indicates the critical values for the 1% significance level.

Machine learning: PyTorch framework.We use PyTorch [2],
version 1.6, as it is one of the most widely used deep learning frame-
works. It allows developers and researchers to build deep learning
networks, mainly using the Python programming language. The
core functionality of PyTorch is implemented in C++ and exposed
as Python C++ extensions to the users (i.e., LibTorch).

Machine learning: Pre-trainedCNNs.Weuse Torchvision [15],
version 0.8, to load the pretrained CNNs used in the experiments.
Torchvision is a popular machine-vision package - compatible with
and part of the PyTorch project - that encompasses popular data
sets, models, and image transformations to process visual data. All
classification CNNs included in Torchvision are trained and opti-
mized on the 1000-class ImageNet dataset. Each vision network
accepts inputs of a specific size (i.e., 4D Tensor). We generate a
shape-compatible input tensor for each network (with randomly
generated numbers), and use it during the inference task. We study
ten different classification networks from Torchvision: AlexNet,
GoogleNet, ResNet, MobilenetV2, MNASNet, SqueezeNet, Shuf-
fleNetV2, DenseNet161, VGG16, and InceptionV3. We only include
the results of six or seven networks for space reasons; however the
results for the omitted networks are similar to the ones presented.

5 RESULTS AND ANALYSIS
For each CNN model, we collected one sample for the runtime, and
one sample for power, at each configuration point, on each each
board. This is about 100,000 samples and 8 million observations.

5.1 RQ1: Are the boards statistically different?
K-samples Anderson-Darling test. For each configuration and
CNNmodel, we run the K-samples Anderson-Darling test (Figure 2).
Each box plot in the figure represents the statistical summary (see
legend) for runtime (or power) of multiple configuration points for
a single CNN. The null hypothesis is that all boards are similar. To
reject the null hypothesis, at the 1% and 5% significance levels, the
critical values reported by the test have to be higher than ≈4.11 and
3.22 respectively. We find that, at the 1% significance level, the null

Snowflakes at the Edge:
A Study of Variability among NVIDIA Jetson AGX Xavier Boards EdgeSys’21, April 26, 2021, Online,United Kingdom

Table 1: Percentages of tests in which the p-values indicate that
the null hypothesis can be rejected (i.e., samples do not belong to
the same distribution) for two different significance levels (𝛼).

𝛼
Alex
Net

Google
Net

Res
Net

Mobile
Netv2

Mnas
Net

Squeeze
Net

Shuffle
Netv2 Mean

Runtime 1% 52.34 80.31 87.05 79.42 83.68 67.31 89.85 77.14
5% 60.48 85.03 89.94 83.69 87.26 73.58 92.35 81.76

Power 1% 99.73 99.49 99.54 99.6 99.6 99.69 99.36 99.57
5% 99.82 99.69 99.68 99.69 99.73 99.83 99.45 99.7

hypothesis can be rejected for 99.9% and 100% of the configurations
sampled for the runtime and power consumption respectively.

Two-samples Kolmogorov-Smirnov test. The previous test in-
dicates that, with high confidence, at least one board is different (for
all configuration points). However, this could be simply because
we have a single defective board, and does not necessarily imply
the boards are all different from each other. To investigate this
hypothesis, we turn to the Two-samples Kolmogorov-Smirnov test
where we compare the boards pairwise. For each configuration and
CNN, and for each board pair, we run the two-samples Kolmogorov-
Smirnov test. Table 1 shows the percentages of tests where the null
hypothesis (i.e., the samples belong to the same distribution) can
be rejected. On average, across the seven CNNs, the results indi-
cate that the null hypothesis can be rejected at the 1% significance
level for ≈77% and ≈99% of the configurations sampled for runtime
and power consumption respectively. This suggests that the perfor-
mance and power consumption behavior are different across most
boards pairs (recall that they are all sold as the same model).

5.2 RQ2: How large is the difference between
the boards?

So far we have gathered statistical evidence that indicates that the
boards are statistically different. We now aim to quantify this dif-
ference. Fig. 3 shows the distribution of the 𝑑𝑟 values for the seven
CNNs (see Section 3.2 for the definition of 𝑑𝑟). The figure high-
lights that there is significant spread in the 𝑑𝑟 values we observe
(particularly for power). These results imply that the difference in
the distribution of the samples and its parameters (i.e., means, vari-
ances), obtained from two different boards, can vary significantly.

Cohen provided a guideline for interpreting 𝑑 values where
±0.25, ±0.5, and ±1.0 values represent small, medium, and large
effect sizes, respectively. With this interpretation, on average across
all CNNs, for 49% of board pairs and configurations we observe
large differences for runtime (and 90% for power). Even with a more
conservative threshold of ±2.0, large differences are observed, on
average, about 27% for runtime (and 82% for power).

5.3 RQ3: Does the observed variability matter
from an application’s perspective?

One drawback of effect-size measures such as Cohen’s d, and scaled
robust d is that interpreting the obtained values is domain specific,
and may appear to be ad-hoc. Thus, we instead examine whether
there are large differences between boards from an application-level
perspective. We offer two data-points. First, our experiment pre-
sented in Fig. 1, indicates the high impact of inter-node variability
for runtime predictions (≈20% to ≈80% reduction in the RMSEs).

Second, Figures 4a (runtime) and 4b (power) show three fre-
quency configurations (lowest, midst, and highest frequency). For
each of configuration and CNN, we group the observations per
board, and attempt to characterize how much the observations vary

Figure 3: Pairwise 𝑑𝑟 values distribution across six networks. The
guideline for interpreting the effect size is: ±0.25, ±0.5, and ±1.0
representing small, medium, and high effect sizes respectively. The
boxplots have the same meaning as in Fig. 2. The sample size is 10K
for the runtime, and 6K for the power consumption.

relative to the mean across all boards (the 𝐷𝑖 box plots are con-
structed similar to those in Fig. 2). For the runtime, the𝐷𝑖 values fall
mostly within the ±5% range of each other. However, in some cases
(e.g., ResNet, MobileNetV2, ShuffleNetV2) 𝐷𝑖 the range extends
from -10% to 20% (for runtimes that are 10s to 100s of miliseconds).
For the power consumption, most of the 𝐷𝑖 values fall within the
±10% range, but in some cases (e.g., GoogleNet, MNASNet, Shuf-
fleNetV2) variations extends from -30% to 20% range (for power
drawn between a few watts to 10s of watts). Variability at this scale
has been identified as an issue with a critical negative impact on
the user experience of real-world mobile inference workloads [6].

The two presented data points suggest that the observed inter-
node variability matters at the application-level, and this has key
implications for the (runtime/power draw) model we plan to de-
velop (as mentioned in the introduction): (i) the model must be
exposed to this intrinsic variability during training to reduce pre-
diction errors (i.e., samples must be collected across multiple boards
not just from a single one), and (ii) the model’s performance will be
bounded by this intrinsic variability regardless of how finely tuned
it is, or how many samples are used for training (i.e., the observed
range of this intrinsic variability is the floor for the model’s error).

6 SUMMARY AND FUTUREWORK
Summary.We find that there is an inherent variability in both the
performance and power consumption between different hardware
(AGX) boards of the same model. The experimental data suggests
that the differences are significant enough to lead to application-
level impact, e.g., a performance or power prediction model trained
on an individual board will have wide variation in the quality of
its predictions when deployed over nominally similar boards. This
leads to an important implication on our long-term objective of
developing a runtime/power model for inference tasks: we need to
collect samples from different boards to train the runtime and power
prediction models so that they are exposed to this variability.

Future Work. Our results open up a number of intriguing ques-
tions, which we plan to explore in more detail in the near future:
(i) is there a correlation between some parts of the configuration

EdgeSys’21, April 26, 2021, Online,United Kingdom Hazem A. Abdelhafez, et al.

(a) 𝐷𝑖 values for the runtime.

(b) 𝐷𝑖 values for the power consumption.
Figure 4: 𝐷𝑖 values for runtime and power consumption for six deep learning networks. The x-axis shows the node ID (AGX board identifier),
and the y-axis indicate the𝐷𝑖 values. The three box plots per node represent the lowest, midst, and highest frequency configurations (colored
gray, white, and black respectively). The legend on top of each plot shows the absolute value (ms) for themean ofmeans for each configuration.

space and higher/lower inter-node variability?, (ii) is the change in
variability smooth or abrupt across the configuration space?, and
(iii) is variability also an issue for the other available specialized
processing units (e.g., vision and deep learning accelerators)?

7 ACKNOWLEDGMENTS
This project was sponsored in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), and a gift from
Huawei’s Compilers and Programming Languages Lab in Canada.
We also thank the reviewers of EdgeSys’21 for their comments.

REFERENCES
[1] J. Cohen. 2013. Statistical power analysis for the behavioral sciences. A. Press.
[2] A. Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. arXiv:1912.01703 [cs.LG]
[3] B. Gaudette et al. 2016. Improving smartphone user experience by balancing per-

formance and energy with probabilistic QoS guarantee. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 52–63.

[4] B. Gaudette et al. 2019. Optimizing User Satisfaction of Mobile Workloads Subject
to Various Sources of Uncertainties. IEEE Transactions on Mobile Computing 18,
12 (2019), 2941–2953. https://doi.org/10.1109/TMC.2018.2883619

[5] B. Kocoloski et al. 2018. Varbench: an Experimental Framework to Measure and
Characterize Performance Variability. In Proceedings of the 47th International
Conference on Parallel Processing. 1–10.

[6] C Wu et al. 2019. Machine learning at facebook: Understanding inference at
the edge. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 331–344.

[7] F. Scholz et al. 1987. K-Sample Anderson–Darling Tests. J. Amer. Statist. Assoc.
82, 399 (1987), 918–924. https://doi.org/10.1080/01621459.1987.10478517

[8] H. Weisbach et al. 2018. Hardware Performance Variation: A Comparative
Study Using Lightweight Kernels. In High Performance Computing. Springer
International Publishing, Cham, 246–265.

[9] J. Algina et al. 2005. An alternative to Cohen’s standardized mean difference
effect size: a robust parameter and confidence interval in the two independent
groups case. Psychological methods 10, 3 (2005), 317.

[10] J. McCullough et al. 2011. Evaluating the effectiveness of model-based power
characterization. In USENIX Annual Technical Conf, Vol. 20.

[11] L. Wanner et al. 2013. Hardware Variability-Aware Duty Cycling for Embedded
Sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, 6
(2013), 1000–1012. https://doi.org/10.1109/TVLSI.2012.2203325

https://arxiv.org/abs/1912.01703
https://doi.org/10.1109/TMC.2018.2883619
https://doi.org/10.1080/01621459.1987.10478517
https://doi.org/10.1109/TVLSI.2012.2203325

Snowflakes at the Edge:
A Study of Variability among NVIDIA Jetson AGX Xavier Boards EdgeSys’21, April 26, 2021, Online,United Kingdom

[12] M. G. Sarwar Murshed et al. 2020. Machine Learning at the Network Edge: A
Survey. arXiv:1908.00080 [cs.LG]

[13] N. Razali et al. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests. Journal of statistical modeling and analytics
2, 1 (2011), 21–33.

[14] P. Gupta et al. 2012. Underdesigned and opportunistic computing in presence of
hardware variability. IEEE Transactions on Computer-Aided Design of integrated
circuits and systems 32, 1 (2012), 8–23.

[15] S. Marcel et al. 2010. Torchvision the Machine-Vision Package of Torch. In
Proceedings of the 18th ACM International Conference on Multimedia (Firenze,
Italy) (MM ’10). Association for Computing Machinery, New York, NY, USA,
1485–1488. https://doi.org/10.1145/1873951.1874254

[16] J. Hodges. 1958. The significance probability of the Smirnov two-sample test.
Arkiv för Matematik 3, 5 (1958), 469–486.

[17] J. Li. 2016. Effect size measures in a two-independent-samples case with non-
normal and nonhomogeneous data. Behavior research methods 48, 4 (2016),
1560–1574.

[18] NVIDIA 2020. Jetson AGX Xavier Series: Thermal Design Guide. NVIDIA. Re-
trieved February, 2021 from https://tinyurl.com/r7zeehya

[19] Texas Instruments 2016. INA3221 Power Monitors. Texas Instruments. Retrieved
January, 2021 from https://www.ti.com/product/INA3221

[20] The PyTorch Team. 2021. CUDA Timing Events. NVIDIA. Retrieved January,
2021 from https://pytorch.org/docs/stable/cuda.html#torch.cuda.Event

https://arxiv.org/abs/1908.00080
https://doi.org/10.1145/1873951.1874254
https://tinyurl.com/r7zeehya
https://www.ti.com/product/INA3221
https://pytorch.org/docs/stable/cuda.html#torch.cuda.Event

	Abstract
	1 Introduction
	2 Variability in Computing systems
	3 Methodology
	3.1 RQ1: Are the boards statistically different?
	3.2 RQ2: How significant is the difference between boards?
	3.3 RQ3: Does the observed variability matter from an application's perspective?
	3.4 The Workload
	3.5 Dealing with the large configuration space
	3.6 Eliminating other sources of variability

	4 Experimental Setup
	5 Results and Analysis
	5.1 RQ1: Are the boards statistically different?
	5.2 RQ2: How large is the difference between the boards?
	5.3 RQ3: Does the observed variability matter from an application's perspective?

	6 Summary and Future Work
	7 Acknowledgments
	References

