

ProtoMat[®] S100 Tutor Data

Tutorial 2.1, English

 LPKF Laser & Electronics AG

 Osteriede 7
 30827 Garbsen

 30827 Garbsen
 Germany

 Telefon
 ++ 49 - 51 31 - 70 95 - 0

 Telefax
 ++ 49 - 51 31 - 70 95 - 90

 E-Mail
 lpkf@lpkf.de

 Homepage
 http://www.lpkf.de

Item number: 117 269

About this document

About this document

This manual allows you to familiarize yourself with the most important functions of the ProtoMat[®] S100 and the LPKF CircuitCAM software. You will use the Tutor data included in the scope of delivery to produce a double-sided printed circuit board. (The printed circuit board must be galvanically through-hole plated on external devices.)

Detailed information on the circuit board plotter and the LPKF BoardMaster software can be found in the operating manual of the ProtoMat[®] S100.

In the following we assume the in-factory basic settings of your system, the use of previously drilled LPKF base materials.

System overview

ProtoMat[®] S100 Tutor Data

Risk of personal injury and material damage! Be sure to read the ProtoMat[®] S100 operating manual and observe the safety instructions contained therein, before starting work.

I. Starting the system

- Switch on the circuit board plotter at the main switch. The lighting of the milling/drilling head goes on.
- 2. Switch the dust extraction to the automatic mode.
- 3. Switch the computer on.

OF:

4. Double-click on the BoardMaster icon.

Click on Start > Program Files > LPKF Laser & Electronics > BoardMaster....

The Tool Status window is opened.

- Make sure that the data given in the Tool Status window are those of the current tool positions in the circuit board plotter.
- [] Now you can set up the circuit board plotter.

II. Setting up the circuit board plotter

- Make sure that there are no objects in the traversing range of the circuit board plotter/traversing table.
- 2. Click on the Move to Pause button.
- Place the base material along with the drilling plate on the traversing table or directly on the vacuum table and fasten it with non-residual adhesive tape.
- In the BoardMaster main menu, click on File > New and select the production type 1-2layer.phs.
- [] Continue with \rightarrow Defining the work area.

File Edit View C	Configuration Go to Hel
New >	<default></default>
Open	1-2layer + proconduct.
Jave As	1-2layer.phs
Sale Harri	Alwar + reproduct the

Configuration Golto Help

Setting

Heads...

Fig. 1:

ToolLibrary

III. Defining the work area

In order to define the work area, you first have to define the front left and then the back right corner point. In doing so, make sure that the milling depth limiter base is completely above the base material and that the dowel pins are outside the work area.

Ste

Set Low Corner

Set High Com

1.	Click	on	the	Move	with	mouse	button.

- Drag the mouse pointer with the left mouse button pressed to the front left corner point of the desired work area.
- In the main menu, click on Configuration > Material > Set Low Corner.

The front left corner point is read in.

- 4. Click on the Move with mouse button.
- Drag the mouse pointer with the left mouse button pressed to the back right corner point of the desired work area.
- In the main menu, click on Configuration > Material > Set High Corner.
- The back right corner point is read in, and the work area is displayed in the BoardMaster window.

and the second second

Tool positive The

Configuration Go to Help Material Size... Settings... Tool Library * Set High Corner Heads...

Second and a second sec

(dark-gray)

Setup work area

Processing the layout data by means of CircuitCAM

The layout data have to be processed to production data in CircuitCAM and must be exported to the LMD-format.

I. Importing the layout data to CircuitCAM

 On the desktop double click on the CircuitCAM symbol. or:

Click on Start > Program Files > LPKF Laser & Electronics > CircuitCAM....

- 2. In the Front-To-End tool bar, click on the Import button.
- 3. In the

C:\Program Files\CicuitCAM ...\ExampleData\ Prototyping directory select the following files with the **Ctrl** key depressed:

Tutor.boa; Tutor.BOT; Tutor.drd; Tutor.TOP

Open

CircuitCAM

Fig. 2: Import settings for layout files (Ex.Tutor.boa)

Laser & Electronics

4. Click on Open.

The Import window is opened with the selected files.

2 Register card Graphic 4 Resolution Digits m.n:

- 5. In order to assign the desired layer and resolution to a layout file:
 - In the file list, click on the name of the desired tutor file (column File name), to select the file.

							الطلع
Import	File Name	-	File Type	Aperture/Tool List	Layer/Template	Format/Stee	OK
0	Tutor-BOI	1	and the second second	GirberDefault	- Tutor 801	+6.005 x 33.955 mm	
0	Tutor, TOP	42	GerberX	GerberDefault1	Tutor, TOP	42.24 x 31.18 mm	Abbrechen
0	Tutor.boa	U	GerberX	GerberDefault2	Tutor.boa	56.08 x 38.3 mm	
0	Tutor.drd		Excellen	NcbrilDefault	Tutor.drd	4.964 x 3.544 mm	

 In the column Layer/Template, click on the dropdown list and select the desired layer.

(→ Tab. 1: "Layer assignation and resolution (Digits m.n)")

Digits m.n:

Selecting a layout

Form

42.24

56.06

4 964

46.05

Fig. 3:

file

perture/Tool List Lever/Template

Tubor, BOT

oplayer

DrilFlated DrilUnplated BoardOutine TextTop TextBottom CuttingOutside

Fiducial

riberDefault6 - Tutor.BOT

erberDefw.#7

erberDefa #8

cDrilDefwilt2

- On the Format register card, field Digits m.n, click on the desired dropdown list and select the desired value for the resolution (selectable for Tutor.drd only).
 (→ Tab. 1: "Layer assignation and resolution (Digits m.n)")
- Assign a certain layer to each layout file and, if necessary, change the resolution in the Digits m.n input box. Use the follwing settings:
- Tab. 1: Layer assignation and resolution (Digits m.n)

File name	Layer/Template	Digits m.	п
Tutor.BOT	BottomLayer	2	4
Tutor.TOP TopLayer		2	4
Tutor.boa BoardOutline		2	4
Tutor.drd	DrillPlated	2	3

The settings are instantly displayed on the register card Graphic.

-OK

7. Click on OK.

 After you have imported all layout files, the data will be displayed in the CircuitCAM graphic window.

II. Generating contours and ligaments

1. Click on the top left corner of the contour line.

ctronics

Laser & Ele

The contour line is highlighted by marks.

Settings for contour milling

2. Click on the Contour Routing button.

The Contour Routing window is opened.

	212
C trusde	
BoardOutine	2
on Layer 1 CuttingOutside	-
ALC: NOT THE REAL PROPERTY OF	100
LpkfCuttingTools	
Contour Router 2.	0 mm (79 ml) 🗾
	2
	and the second
Distance (15 mm
Width :	1 mm
L.	
	C Insole ScordOutline Information Contour Router 2. Distance 1 Width :

Fig. 5:

W.

3. Select the following settings:

Outside					
Source	Current Sel	Current Selection			
Destination layer:	CuttingOutside				
Used tool	List	LpkfCuttingTools			
	Tool ContourRouter 2.0 mm (79 mil)				
Breakout	4 corners				
	Width	1 mm			

Run

4. Click on Run.

The contour is displayed as a line 2 mm in width.

Now you can continue with \rightarrow Inserting further ligaments (optional), \rightarrow Defining isolation areas (optional) or \rightarrow Calculating the isolation.

Positioning a ligament

Fig. 7:

III. Inserting further ligaments (optional)

1. Click on a corner of the contour line highlighted in yellow.

The asterisk shows the current ligament position. It can be moved by means of the +/- keys.

 Move the asterisk by means of the +/- keys (keyboard) to the desired ligament position.

Note: Ligaments can only be placed at the corner points and centers of a contour segment. With each key press, the asterisk will jump to the next possible bridge position.

3. Click on the Breakout Tab button.

[] The contour line will be interrupted at the selected position.

IV. Defining isolation areas (optional)

In a simple isolation, only isolation lines will be milled around the conductor tracks. Isolation areas are used to define areas in which the copper will be completely removed between conductor tracks. This will only leave conductor tracks and lands. These areas are also referred to as rub out.

1.

Click on the Rubout All Layers button.

- Click and drag the mouse over the layout, in order to define an isolation area (rub out).
- 3. If desired, define further isolation areas.

Processing the layout data by means of CircuitCAM

Fig. 8: Defined isolation areas (rub out)

[] The desired isolation areas are defined.

V. Calculating the isolation

- 1.
- 1. Click on the Insulate All layers button.
 - [] The isolation lines and areas (rub out) will be calculated and displayed.

Note: By now, you can still define further isolation areas (\rightarrow Defining isolation areas (optional)), and recalculate the isolation.

Fig. 9: Calculated isolation

ProtoMat® S100 Tutor Data

Fig. 10: LMD-file exported

VI. Exporting data as project

The export will automatically produce a *.cam and a *.LMD file. The latter is used for the production by means of the LPKF circuit board plotter and is referred to as a project. If BoardMaster is open when the export is carried out, the LMD file (project) will be automatically applied.

- Make sure that BoardMaster is open and material size and position have been set up in accordance with the components fitted to the circuit board plotter.
- Click on the Export LPKFCircuitBoardPlotter button.

The Save as window will be opened.

3. Save the Tutor.cam file with any name in the desired directory.

The *.LMD file is exported automatically to the same directory and will be imported in BoardMaster.

CircuitCAM prompts the export of the *.LMD file and gives information about the directory used.

rcuitEAM	And the second se			
1	C:\Programme\CircuitCAM 6.0\Ex	ampleData\Prototypi	ing\123.LMD file expo	orted

4. Click on OK.

[] The data will be exported as a project. You can exit CircuitCAM now.

Very 1

Production

If BoardMaster is open when the LMD file is exported (see "Exporting data as project" on page 11), it will be automatically imported as project. (An LMD file is referred to as a project in BoardMaster.)

Projects are managed for production in a job. A job always consists of one or more projects and information on the production type (e.g. single-/multilayered circuit board) and on the current production status.

Note: If a job is already open in BoardMaster, the LMD data will be imported to BoardMaster as additional project.

Prerequisites

The following description assumes that the material has already been fixed on the traversing table and the work area has been set up (see "Setting up the circuit board plotter" on page 3).

I. Setting up a job

- 1. If the LMD file was not imported automatically to BoardMaster:
 - Click on File > Import > LMD / LPR
 - Select the *.LMD file generated in CircuitCAM and click on OK.
 Now the job can be set up individually.
- 2. To move a project on the base material:
 - Click on the Move project button.
 - Drag the project to the desired position in the work area with the mouse button pressed.
- 3. To copy a project:
 - Click on the Copy project button.
 - Drag the project with the mouse button pressed to the desired position in the work area.

A copy of the project will be inserted at the desired position.

- Click on (File > Save/Save as...), to save the job.
- [] Now you can set up the first production phase.

Now Open	,	
Save	-	
Save As		
Import	•	LMD / LPR
Refresh	-	HPG. Into

18	17	1.1	Lo.	1
H.	2	12	2	
13				100

II. Selecting the production phase

1. In the phase selection list, select the production phase 1. MarkingDrills.

Note: In this production phase, all bores are center-punched and, if available, the fiducials are drilled.

III. Setting up the tools

Before fitting the tool magazine with tools, you have to define the positions of the individual tools.

- 1. Click on the Move to Pause button.
- 2. Click on the Tool Magazine Dialog button.
- Assign the required tools a position in the tool magazine. (The required tools are marked in the selection lists with * and +.)
- Activate the Stop at tool exchange, in order to reset the milling depth/width after each tool pickup.

The **Tool Positions** window should look like this: (Do not yet close the window.)

es. Tool	Select	Current [mm]	Motinum [mm]	Hew	Wanted for current job (phase)
1. Universal Cutter 0.2 nm marking	2 0	0	50000	R	0 Universal Cutter 0.2 nm marking
2. +Universal Cutter 0.2 mm (8 mil)	• •	D	30000	F	Universal Cuttor 0.2 mm (8 mil) Spiral Drill 0.5 mm
3. +Spicel Drill 0.6 mm	- C	0	3000	P	Spiral Drill 0.7 mm Spiral Drill 0.9 mm
4. +Spiral Drill 0.7 mm	- C	0	4000	P	End Nill 1.0 nm (39 mil)
5. +Spical Drill 0.9 mm	- C	0	4000	P	
+Contour Router 2.0 mm (79 mil)		0	9000	9	
7. +End Mill 1.0 mm (39 mil)		U	20000	P	
t (unbekannt >	• c	-			
Cunbekanet >	- C	-		F	
0 Cunbekannt >	• c	-		F	
					C Ua
			Palla	1	C Down
OK Cancel			1000		

U			10
1. M	arking	Drills	*

ctronics

Laser & Fle

2. DrillingPlated 3. Info! Galvanic plating

Stop at tool exchange

P

Fig. 11: Tools for the tutor file production

Inserting the tools

OK

- Insert the tools, with the tip pointing downward, as far as they will go into the tool positions defined by you.
- 6. Click on OK, to close the Toolbox Positions window.
- [] The tools are completely set up.

IV. Activating the data for production

1. To activate all data for production:

- Click onAll+.

This completes the activation of all data for production

- 2. 10 a
- Ė-3
- 2. To activate a data area:
 - Click on the Select Lines or Select Segments button.
 - Draw up the desired data area with the mouse button pressed .
 Click on the + button.

This completes the activation of the selected data for production.

Note: Use the All- or - buttons, to deactivate data or data areas already activated.

V. Starting the production phase

Start Stop

1. Click on Start.

The circuit board plotters starts working. As soon as a milling tool is picked up, the message "Stop to adjust the tool ?" appears, interrupting production. Now you can set the milling depth/width for the tool to be used.

VI. Setting the milling width (optional)

If during the tool setup you have activated the **Stop at tool exchange** option, the "Stop to adjust the tool ?" will appear, after picking up the tool.

Tool Exchange	×
Stop to adjust	the tool ?
Yes	No

¢ĝ¢

Ø

Ċ

Ρ

Laser & Electronics

- 1. Click on Yes.
- 2. To create a test milling track:
 - Position the milling/drilling head on an area of the base material that is not required.
 - Click on the Motor on button.

Click on the Lower head button.

- Move the milling/drilling head with the mouse or the Move to X/Y buttons by about 10 mm in the desired direction.
- Click on the Motor off button.
- Click on the Move to Pause button.
- 3. Check the milling width/depth:
 - For Universal Cutter/Micro Cutter.
 Does the milling width in the copper laminate have the desired value (e. g. 200
 µm for the Universal Cutter 0.2 (8 mil))?
 - For cylindrically cut milling cutters of fixed milling width: Was the copper completely removed from the milling track?

Fig. 12: Setting the milling width

Laser & Electronics

- 4. If required:
 - Correct the milling width/depth at the setting wheel of the milling/drilling head.

1 Setting wheel for the milling depth limiter

Note: For each step, the milling width changes by about 4 µm (Universal Cutter) and about 2.3 µm (Micro Cutter), respectively.

Mill another test track and check the milling width/depth again.
 Once the desired milling width/depth has been set, you can continue the production phase.

VII. Continuing the production phase

 The current production phase will be started. Once all activated data of the production phase have been produced, the message "End of phase !" appears.

Board Master	×
End of the phase	1
Duration 0:00:00	
ОК	

1. Click on Start.

2. Click on OK.

[] Now the next production phase can be started.

OK

VIII. Starting the next production phase

In the phase selection list, the production phase selected last is always preselected.

 Select the next production phase in the phase selection list. Note:

The production phases designated **Info!** ... must be produced using external devices. The production phases designated **Read_...** are only required when the system is equipped with the VisionSystem (optional).

2. If required:

Rotate the material around the mirror axis until the side to be processed is on top and fix it on the traversing/vacuum table (see table 2 on page 17).

- Activate the desired data (see page 14) and start the production phase.
- The required tool is picked up, and the production of the activated data starts. It may still be necessary to set the milling width/depth.

Tab. 2: Production phy	ases for tutor files (double-sided	circuit board with	alvanic through-hole plating)
------------------------	------------------------	--------------	--------------------	-------------------------------

Production phase	Work steps	Processed material side	
1. MarkingDrills	Center-punching the bores Drilling fiducials	Bottom	
2. DrillingPlated	Drilling holes for the through-hole plating	Bottom	
3. Info! Galvanic Plating	Galvanic through-hole plating (with through-hole plating station)	Both sides	
4. Read_Bottom (only with VisionSystem)	Reading in fiducials	Bottom	
5. DrillingUnplated	Drilling mounting holes (not for through-hole plating)	Тор	
6. MillingBottom	Milling	Bottom	
7. Read_Top (only with VisionSystem)	Reading in fiducials	Тор	
8. MillingTop	Milling	Тор	
9. CuttingInside	Milling inner cutouts	Тор	
10. CuttingOutside	Milling contours	Тор	

Laser & Flectronics

You can interrupt production at any time and continue at a later time or cancel it definitely.

Laser & Fle

tronics

1. Click once on **Stop** and wait until the data already sent to the circuit board plotter have been produced.

Note: Clicking on **Stop** several times will continue production, possibly with further data.

- 2. To save the current production status:
 - Save the job under a new name.
 If possible, select a name containing the current processing status, for example Tutor JobDrillingPlated.job.

The job will be saved with the current processing status and can be opened and continued at a later time.

P	ro	d	u	ct	io	n
12.11		-	-	~ .	•••	

Canceling the production

- 1. To definitely cancel production:
- 2. Click on File > Exit to exit BoardMaster.

Open another job.

or:

3. When the message "Save the job to the file ..." appears:

Fig. 14: Message when canceling a production

Laser & Electronics

File Edit View Conf

New

Save Save As... Import Refresh

Open...

Job Save			×
2	Save the job to the fil C:\Programme\LPKF5.	e 2\Data\TutorFidcial.job.ich-ersl	te.job
	Yes	No	

NO

- Click on No.

Note: If you click on **Yes**, this job will be saved with the current production status (in the currently active phase) and opened with the status of the production phase processed last when opening it the next time.

[] The production is canceled.