EECE 360 Homework - Natural Response (2nd Order Systems)

- 1) For the transfer functions in the following questions:
 - Determine ζ and ω_n (if it exists).
 - Is the system underdamped, overdamped, critically damped, undamped or unstable.
 - Determine the DC gain.
 - Determine the final value of the natural response.
 - Determine the final value of the step response.
 - Sketch the pole/zero plot of the system.
 - Sketch the natural response of the system.
 - a) E2.4
 - b) E2.18
 - c) E2.29
 - d) E2.30
 - e) P2.50 (open loop TF)

f)
$$G(s) = \frac{s+2}{s^2+14s+49}$$

g)
$$G(s) = \frac{s+2}{2s^2+12s+36}$$

h)
$$G(s) = \frac{s-3}{s^2(s+4)^2}$$

i)
$$G(s) = \frac{s+1}{s^3 + 7s^2 + 10s}$$

j)
$$G(s) = \frac{4s - 20}{s^2 + s - 30}$$

k)
$$G(s) = \frac{s+2}{s^3+64s}$$

- 2) Use Simulink to implement the Steel Mill example presented in class.
 - Verify that you get the same step response as shown on the handouts
 - Draw the pole/zero plot of the system
 - a) Predict how the step response will change if the rotor inertia (J) is increased.
 - step response
 - pole/zero plot
 - DC gain
 - Final value
 - Natural frequency
 - Damping coefficient
 - b) Use your Simulink model to check your prediction.
 - c) Repeat part a) and b) for J=0.
 - d) Repeat parts a) through c) for all other parameters:
 - Armature resistance (R)

- Motor constant (K_m)
- Motor friction (B)
- Back-EMF constant (K_b)