
Rapid Overlay Builder for Xilinx FPGAs

Michael Xi Yue
University of British Columbia

Vancouver, Canada
xiy@ece.ubc.ca

Dirk Koch

University of Manchester
Manchester, UK

dkoch@cs.man.ac.uk

Guy G.F. Lemieux

University of British Columbia
Vancouver, Canada
lemieux@ece.ubc.ca

Abstract—Overlays are emerging as useful design patterns
for solving reconfigurable computing problems. Overlays
consist of compiler-like tools and an architecture written in
RTL, making it easier for users to quickly compile high-level
languages into FPGAs. Despite a high degree of regularity and
repetition present in most overlays, it takes a long time for
FPGA tools to generate the configuration bitstream. This
paper proposes a methodology called Rapid Overlay Builder,
or ROB, that combines module relocation, module variants
and an efficient form of “routerless” module stitching that we
call zipping. Our case study demonstrates up to 22 times
speedup in compile-time over a regular Xilinx ISE compilation,
while achieving higher clock speeds. By applying ROB, we
anticipate that overlays can be implemented more quickly and
with more consistent clock rates.1

Keywords—overlays, CGRA, component-based design,
module variants, module relocation, module stitching

I. INTRODUCTION
Modern FPGA devices contain over 1 million LUTs and

over 1000 dedicated memory and multiplier blocks. As
circuits continue to scale up, the long place-and-route
process required by the CAD tools forms a growing concern.
To address this issue, vendor tools accelerate the compilation
process using different techniques, including parallel
compilation, design partitions, netlist preservation and
trading circuit performance for faster compilation. However,
the speedup provided by these approaches is still limited.

Recently, overlays have emerged as a way to solve
reconfigurable computing problems. They provide promise
of portability across devices and rapid development tools for
compiling algorithms into the overlay architecture. However,
implementing an overlay architecture in an FPGA device still
suffers from long place-and-route times [1]. With long place-
and-route times, overlays cannot be as nimble and dynamic,
e.g. through specialization, where the overlay architecture is
highly customized to the needs of the application.

To overcome these limitations, we propose the Rapid
Overlay Builder (ROB) methodology for Xilinx FPGAs.
ROB can be used to place-and-route any logic design that
can be floorplanned into a set of adjacent modules. Most
overlays fall into this category and also contain a high degree
of repetition and regularity. For example, array-based coarse-
grained reconfigurable architectures (CGRAs) are ideal in
that they have a regular layout and they replicate a similar

1 Complete details for using the ROB methodology can be
downloaded from http://www.ece.ubc.ca/~lemieux/downloads

(but not necessarily identical) processing element (PE) at
each site. Although the ROB methodology can build both
homogeneous and heterogeneous overlay architectures, its
effectiveness rises with repetitions found in the floorplan.

ROB is a methodology, including a set of scripts and
tools, that interacts with the Xilinx ISE toolchain. To obtain
fast place and route speeds, it takes advantage of three key
underlying techniques: (1) module relocation, (2) module
variants, and (3) stitching modules by zipping. Module
relocation compiles a module into a (placed and routed) hard
macro; due to the column-wise resource layout of Xilinx
FPGAs, modules can usually be relocated almost anywhere
vertically with little or no additional CPU effort. Module
variants (aka design alternatives) are modules with the exact
same functionality but use a different resource mixture (e.g.
the ratio of LUTs to DSP blocks). This assists horizontal
relocation in the presence of heterogeneous columns found in
modern FPGAs. Zipping is a routerless method of stitching
adjacent modules with zero logic overhead, such that their
interconnect aligns perfectly without any extra logic. Zipping
allows very tight packing of adjacent modules. Although
these three techniques have been previously reported [2-6],
they have not been demonstrated together within a single
methodology to reduce place-and-route effort. In particular,
module relocation and module variants have never been used
together with zipping to place-and-route an entire design.

A number of previous research efforts accelerate place-
and-route, most notably based on the module relocation in
Xilinx FPGAs. All prior hard macro-based approaches,
however, rely upon an extra routing step for module
stitching. In contrast, ROB is able to pack modules more
tightly, employ module variants to reduce the amount of
effort even further, and skip the routing process entirely.
Moreover, by implementing modules in predefined bounding
boxes, we achieve a better placement than the vendor tools.
This results in consistently higher clock rates.

One limitation that needs to be addressed is that the ROB
methodology currently requires users to manually floorplan
their designs on the device. Although this step can ultimately
be automated, it is quite common to floorplan overlay
designs in order to improve timing performance.

II. BACKGROUND AND RELATED WORK
A. Overlays and CGRAs

Overlay architectures can be thought of as pre-compiled
circuits that are reconfigurable themselves. A number of
overlay architectures have been previously proposed,

including IF [7], MXP [8] and Mesh-of-FUs [9], revealing
the potential to boost design productivity. However, these
overlays still suffer from very long place-and-route times. To
overcome this issue and to demonstrate the use of the ROB
methodology, this paper adopts a 2D array of processing
elements (PEs) as may be found in a typical CGRA.

In the CGRA under study, each PE contains an integer
ALU that communicates with its four nearest neighbours. To
demonstrate use of heterogeneous circuits, a predesigned IP
block called FPGA Driver [10] is instantiated to connect the
CGRA with DDR3, Ethernet, and a PC host over PCIe. The
FPGA Driver occupies an area equivalent to 30 PEs. To meet
I/O timing, it is constrained in the right side of the device. It
should be apparent how to adapt ROB to other overlays.

B. Module Variants

A placed and routed module is called a pre-built module
in this paper. For a pre-built module, we define its footprint
mask as the set of underlying column resources covered by
the module. For example, a placed module spans columns of
type {D, M, M, B}, we say this region has a footprint mask
width of 4. The letters indicate the type of column resource
used: DSPs (D), slice-L logic only LUTs (L), slice-M logic-
or-memory LUTs (M), and BRAMs (B).

A pre-built module is relocatable to locations with an
identical resource footprint. However, if the destination
footprint mask differs, the module needs to be re-placed and
re-routed within an appropriate bounding box [5]; it may also
need to be re-synthesized to better match available resources
(eg, to use LUT-based multipliers). After this, we call the
new module instance a variant of the original module. The
ROB methodology creates a set of module variants to
increase relocation flexibility. The targeted device in our
case study is a Xilinx XC6VLX240T-FF1156 from an
ML605 board. Its footprint mask width is 101 columns. The
left and right sides of the device have similar sub-footprint
masks, reducing the number of required variants by half.

C. Module Relocation

Module relocation with component-based design is an
efficient technique to accelerate placement and routing.
Although Xilinx tools do not support module relocation well,
various other works support this feature. Recent work on
module relocation is based on hard macros at the netlist level
[2][3][4]. These utilize custom CAD tools to find valid
placements that match the footprint mask requirements. In
ROB, module relocation has greater flexibility due to module
variants. The variants result in a set of equivalent pre-built
hard macros that can be placed in more candidate locations.

D. Routerless Stitching

In addition to module relocation, this work stitches
modules without invoking the router. This saves run-time
and area as gaps are not required to route between modules.

One way to achieve this routerless objective is to use bus
macros [11]. However, this option was not considered here
for three reasons: (1) bus macros need considerable extra

logic, (2) they add extra latency, and (3) bus macros would
have impacted the placement flexibility (e.g. they cannot be
placed on BRAM columns).

Instead, it is possible to directly connect wires in adjacent
modules if the wiring requirements line up on both sides of a
shared edge. This was previously demonstrated to produce
zero logic and delay overhead [6] using the GoAhead tool to
generate appropriate constraints for the Xilinx place and
route tools [6]. We follow the same approach using
GoAhead, but generate all of the constraints automatically as
part of the ROB flow. We name this process zipping.

III. RAPID OVERLAY BUILDER METHODOLOGY
This section presents the Rapid Overlay Builder

methodology, or ROB for short. We will demonstrate the use
of this methodology to build the CGRA described in Section
II while targeting a Xilinx XC6VLX240T-FF1156 device.

There are seven tasks needed to build an overlay in ROB.
Out of the seven tasks, only the first two tasks presently
require manual engagement from the users, while scripts
automate the other five tasks. The first two tasks are also
ultimately scriptable, but this is currently not implemented.
Below, we cover these seven tasks in greater detail.

1. Resource budgeting for a PE tile. Before floorplanning
the CGRA, an initial synthesis and placement of the PE tile
is required to obtain the set of required resources as a
reference. This is a standard Xilinx ISE compilation run and
does not require any constrained floorplan of the PE tile.
However, a PE design may require heterogeneous types of
resources. Later on, we may find this resource mixture does
not match the available footprint of the required placement,
such as providing enough hard multiplier blocks. In such a
case, the PE tile can be re-synthesized with some soft
multipliers, for example. Therefore, the PE tile sometimes
needs to be built with different synthesis options. This
provides a comprehensive set of reference designs with
different resource demands and that add flexibility when
creating placed PE variants later. Designers need a
preliminary understanding of the size of the PE tile and the
resource footprint of the device.

2. Floorplanning the CGRA design. On the targeted
Virtex 6 device, the height of one multiplier block is

 (a) (b)

Figure 1. (a) CGRA floorplan (b) 101-PE physical implementation

equivalent to the height of five CLBs. To simplify vertical
relocation, the height of the PE tile needs to be a multiple of
five CLBs as well. After reserving room for the FPGA
Driver, Table I shows floorplan alternatives consisting of PE
tiles with different aspect ratios that accommodate about 230
logic slices (115 CLBs), which is the amount needed for one
PE. It also gives the external fragmentation (leftover CLBs)
after instantiating the maximum number of PE tiles on the
device. In some of the floorplan alternatives, logic-only PE
tiles (of the same height as the other PE tiles) are used when
DSP blocks are not available at the target placement position.

Table I shows that floorplan options #3 and #4 yield the
lowest external fragmentation. We will use floorplan option
#4 because the resulting PE tiles will be half the height of a
clock region. Hence, PE tiles will not span across the clock
region boundary. This also allows future work to use the
floorplan as part of a dynamically reconfigurable system.

 As shown in Figure 1(a), the chosen floorplan consists of
11 PE tiles in the horizontal direction and 12 PE tiles in the
vertical direction. Since the PE tiles are relocatable in the
vertical direction, only one PE variant is needed for every
column of PE tiles. Furthermore, with the feature similarity
found on the left and right side of the device, only 6 variants
of each PE are required across the 11 PE columns. Using
these 6 PE variants, we decided to build CGRAs of 8
different sizes to test scalability of the ROB methodology.

3. Placing and routing initial PE variants using Xilinx ISE.
The next step is to manually define the PE-to-PE connection
wires with the help of connection anchors to be located
around a PE tile. A PE tile is a bounding-box constrained
region (of size PE Width x PE Height) that contains all of the
PE logic and routing. One PE tile will be produced for each
PE variant. The connection anchors are temporary
appendages that will be discarded.

For each PE tile, a set of connection anchors is required
on each of the four sides of the rectangular PE tile. A
connection anchor is a pre-built hard macro that will connect
the signals for communication between adjacent PE tiles,
each one forming one half of the interface for zipping later.
When PE tiles are abutted, it is important for interconnect
between adjacent PE tiles to lie in a straight line. Otherwise,
a wasteful “dogleg” shape connection would be required. To
avoid doglegs, the connection anchors on the opposite sides
of a PE tile must physically correspond to each other.

Although not supported by our CGRA, communication
between non-adjacent PE tiles can also be achieved. If the
communication is a one-time case, the user can add a path to

route through the intermediate PE tiles; those tiles may end
up being new variants. If the array itself must support long
wires, then the CGRA tiles must be designed to
accommodate wire twisting in exactly the same way an
FPGA array with long wires is built using a single layout tile.

In our early experiments, we found was that the routing is
more congested at the boundary of the PE tile. This
congestion manifests itself as longer route times in ISE and
lower clock frequency. This is because logic resources at the
border have access to fewer wires for routing than the logic
resources that are located in the center of the PE. To address
this issue, we prohibited the logic from being placed in the
top or bottom tile rows for faster routing times.

Once the physical constraints of the PE variants are set,
every PE variant needs to be placed and routed using ISE.
Since the compilation process is independent for every
variant, this process can be trivially parallelized across
workstations. Depending upon the precise overlay design and
usage, it may be possible to precompute this initial PE build
process so it is not observed by users.

4. Extracting the PE tiles from the initial PE variants. Once
the PE variants are placed and routed, the NCD netlists of the
PE variants are automatically converted to XDL netlists by
scripts. With the XDL netlists, the PE variants can be cut out
along the boundary of the PE tile, leaving the data bus wires
as floating antennas; these cut interconnect wires will be
zipped to adjacent tiles. These XDL representations are
stored in a pre-built PE tile library. The library of pre-built
PE tiles will be used for assembling the final CGRA.

5. Relocating PE tiles on the device. In the case study, every
pre-built PE tile spans 20 rows of CLBs, which is half the
height of a clock region. Five PE tiles have a footprint mask
width of 8; one PE tile contains only logic resources and has
a footprint mask width of 10. The PE tiles from the library
are relocated and instantiated according to a floorplan.

6. Interconnecting adjacent PE tiles. In this case study,
adjacent PE tiles are placed next to each other. By design,
the floating interconnect located along the zipping boundary
of each tile perfectly aligns with each adjacent tile, so no
additional routing is needed. Not having to use the router
saves time and also avoids the potential for allocating
additional logic or routing resources to form connections
between mismatched components. This also helps achieve a
size-independent clock rate for the overlay.

7. Interconnecting the CGRA design and the FPGA Driver.
After all the PE tiles are stitched together, the CGRA and the
FPGA Driver are also automatically stitched together using
similar netlist manipulations. As shown in Figure 1(b), the
FPGA Driver was floorplanned and built in such a way that
all of the IO ports of the FPGA driver correspond with their
adjacent PE tiles. Since the FPGA Driver is a common part
of the design and can be fit in the compilation process as a
hard macro partition, the corresponding compile time is not
included in the standard ISE flow nor in the ROB flow
below. Therefore, the CAD time for building the FPGA
Driver is excluded from all experimental run-time results.

Floorplan
Option #

PE Width
(CLBs)

PE Height
(CLBs)

Number
of PEs

External
Fragmentation

(CLBs)
1 24 5 93 1920
2 12 10 95 1680
3 8 15 102 720
4 6 20 101 840
5 5 25 78 3330
6 4 30 81 3360

TABLE I. FLOORPLAN ALTERNATIVES

In the present system, the FPGA Driver is the only
interface enabled in the ROB methodology to control data
flow inside the CGRA, to carry out the personalization
process, and to write CGRA bitstreams to the PEs.

IV. EXPERIMENTAL RESULTS
All the experiments used a Dell Workstation T5500, which
features an Intel Xeon 3.33GHz processor and 8GB RAM.
Xilinx ISE 14.7 was used under Windows 7 (64-bit). The
FPGA device was specified as a -1 speed grade.

In the case of building the array of integer-only PEs, two
user scenarios were considered: (1) user builds CGRAs from
scratch; (2) user builds CGRAs with pre-built PE tiles. Table
II shows the elapsed CAD time for both the Xilinx ISE and
the new ROB methodology. The process of building initial
PE tiles takes 18 minutes to complete using 4 CPU cores and
the associated CAD time is included in Table II. While the
ROB methodology obtained considerable speedup in
building CGRA designs, the bottleneck of obtaining further
speedups lies in the final XDL conversion process, which
converts back to NCD netlists for bitstream generation. We
anticipate that Xilinx can greatly accelerate this conversion
process. The ROB flow is able to obtain speedups up to 92x
with the final XDL netlist conversion time excluded.

In addition to speeding up the process of building
overlays, maintaining high logic utilization levels and clock
rates are also goals of the ROB methodology. It was found in
the experiments that ROB was able to achieve logic
utilization levels over 89%. However, utilization levels
resulting from the ROB methodology are slightly lower than
ISE. This is likely because the initial PE tiles were
implemented with their top and bottom rows of the resource
in the bounding box prohibited, as described in Section III.

The clock rates from the ROB methodology are
consistent and always higher than ISE. When increasing the
size of CGRAs, the Fmax from ISE fluctuates between
88.1MHz and 115.8MHz, while the Fmax from the ROB
methodology consistently stays at 120.7MHz. While the ISE
Fmax can be stabilized and made faster using multiple
placement seeds, this is not necessary with ROB.

V. CONCLUSION
In this work, we present the ROB methodology that

efficiently builds overlays which contains a high degree of
regularity and repetition on Xilinx FPGAs. By applying the
techniques of module relocation, module variants, and

stitching, we are able to obtain up to 22x speedup in
building CGRAs. The ROB methodology could have been
implemented using HMFlow [2], but only at the cost of
substantial lower logic utilization levels (HMFlow does not
work well above 50%) and at lower clock speeds (HMFlow
invokes the router to connect modules). In contrast, ROB
achieved over 89% utilization levels while outperforming
ISE on clock speed.

REFERENCES
[1] D. Capalija and T. Abdelrahman, “Tile-based Bottom-up

Compilation of Mesh-of-FUs FPGA Overlays,” in Proc. of
FPL’12.

[2] C. Lavin et al., "HMFlow: Accelerating FPGA Compilation
with Hard Macros for Rapid Prototyping," in Proc. of
FCCM’11.

[3] C. Beckhoff, D. Koch, and J. Torresen, "GoAhead: A Partial
Reconfiguration Framework", in Proc. of FCCM’12.

[4] J. Coole and G. Stitt, "BPR: Fast FPGA Placement and
Routing Using Macroblocks," in Proc. of CODES+ISSS’12.

[5] A. Wold, D. Koch, and J. Torresen, "Component-based
design using constraint programming for module placement
on FPGAs," in Proc. of ReCoSoC’13.

[6] D. Koch, C. Beckhoff , J. Torresen, "Zero Logic Overhead
Integration of Partially Reconfigurable Modules, " in Proc.
of SBCCI’10.

[7] J. Coole and G. Stitt, "Intermediate Fabrics: Virtual
Architectures for Circuit Portability and Fast Placement and
Routing," in Proc. of CODES+ISSS’10.

[8] A. Severance, and G.G.F. Lemieux, "Embedded
supercomputing in FPGAs with the VectorBlox MXP Matrix
Processor," in Proc. of CODES+ISSS’13.

[9] D. Capalija and T.S. Abdelrahman, "A High-performance
Overlay Architecture for Pipelined Execution of Data Flow
Graphs," in Proc. of FPL’13.

[10] P. Lysaght et al., “Invited Paper: Enhanced Architecture,
Design Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAs,” in Proc. of FPL’06.

[11] K. Vipin et al., "System-level FPGA Device Driver with
High-level Synthesis Support," in Proc. of FPT’13

CGRA
Size

Total Time (seconds)
User

Scenario 1
User

Scenario 2 ROB
Methodology

Xilinx
ISE

18 PEs 1189 2397 2.0x 22.0x
41 PEs 1346 3642 2.7x 13.7x
49 PEs 1435 4405 3.1x 12.4x
57 PEs 1538 5739 3.7x 12.5x
65 PEs 1617 5583 3.5x 10.4x
77 PEs 1881 9767 5.2x 12.2x
89 PEs 2037 9698 4.8x 10.1x

101 PEs 2259 10988 4.9x 9.3x

TABLE II. CAD TIME COMPARISON

