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Abstract—Overlays are emerging as useful design patterns 
for solving reconfigurable computing problems. Overlays 
consist of compiler-like tools and an architecture written in 
RTL, making it easier for users to quickly compile high-level 
languages into FPGAs. Despite a high degree of regularity and 
repetition present in most overlays, it takes a long time for 
FPGA tools to generate the configuration bitstream. This 
paper proposes a methodology called Rapid Overlay Builder, 
or ROB, that combines module relocation, module variants 
and an efficient form of “routerless” module stitching that we 
call zipping. Our case study demonstrates up to 22 times 
speedup in compile-time over a regular Xilinx ISE compilation, 
while achieving higher clock speeds. By applying ROB, we 
anticipate that overlays can be implemented more quickly and 
with more consistent clock rates.1  
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I.  INTRODUCTION 
Modern FPGA devices contain over 1 million LUTs and 

over 1000 dedicated memory and multiplier blocks. As 
circuits continue to scale up, the long place-and-route 
process required by the CAD tools forms a growing concern. 
To address this issue, vendor tools accelerate the compilation 
process using different techniques, including parallel 
compilation, design partitions, netlist preservation and 
trading circuit performance for faster compilation. However, 
the speedup provided by these approaches is still limited. 

Recently, overlays have emerged as a way to solve 
reconfigurable computing problems. They provide promise 
of portability across devices and rapid development tools for 
compiling algorithms into the overlay architecture. However, 
implementing an overlay architecture in an FPGA device still 
suffers from long place-and-route times [1]. With long place-
and-route times, overlays cannot be as nimble and dynamic, 
e.g. through specialization, where the overlay architecture is 
highly customized to the needs of the application. 

To overcome these limitations, we propose the Rapid 
Overlay Builder (ROB) methodology for Xilinx FPGAs. 
ROB can be used to place-and-route any logic design that 
can be floorplanned into a set of adjacent modules. Most 
overlays fall into this category and also contain a high degree 
of repetition and regularity. For example, array-based coarse-
grained reconfigurable architectures (CGRAs) are ideal in 
that they have a regular layout and they replicate a similar 

                                                             
1 Complete details for using the ROB methodology can be 
downloaded from http://www.ece.ubc.ca/~lemieux/downloads  

(but not necessarily identical) processing element (PE) at 
each site. Although the ROB methodology can build both 
homogeneous and heterogeneous overlay architectures, its 
effectiveness rises with repetitions found in the floorplan. 

ROB is a methodology, including a set of scripts and 
tools, that interacts with the Xilinx ISE toolchain. To obtain 
fast place and route speeds, it takes advantage of three key 
underlying techniques: (1) module relocation, (2) module 
variants, and (3) stitching modules by zipping. Module 
relocation compiles a module into a (placed and routed) hard 
macro; due to the column-wise resource layout of Xilinx 
FPGAs, modules can usually be relocated almost anywhere 
vertically with little or no additional CPU effort. Module 
variants (aka design alternatives) are modules with the exact 
same functionality but use a different resource mixture (e.g. 
the ratio of LUTs to DSP blocks). This assists horizontal 
relocation in the presence of heterogeneous columns found in 
modern FPGAs. Zipping is a routerless method of stitching 
adjacent modules with zero logic overhead, such that their 
interconnect aligns perfectly without any extra logic. Zipping 
allows very tight packing of adjacent modules. Although 
these three techniques have been previously reported [2-6], 
they have not been demonstrated together within a single 
methodology to reduce place-and-route effort. In particular, 
module relocation and module variants have never been used 
together with zipping to place-and-route an entire design. 

A number of previous research efforts accelerate place-
and-route, most notably based on the module relocation in 
Xilinx FPGAs. All prior hard macro-based approaches, 
however, rely upon an extra routing step for module 
stitching. In contrast, ROB is able to pack modules more 
tightly, employ module variants to reduce the amount of 
effort even further, and skip the routing process entirely. 
Moreover, by implementing modules in predefined bounding 
boxes, we achieve a better placement than the vendor tools. 
This results in consistently higher clock rates. 

One limitation that needs to be addressed is that the ROB 
methodology currently requires users to manually floorplan 
their designs on the device. Although this step can ultimately 
be automated, it is quite common to floorplan overlay 
designs in order to improve timing performance. 

II. BACKGROUND AND RELATED WORK  
A. Overlays and CGRAs 

Overlay architectures can be thought of as pre-compiled 
circuits that are reconfigurable themselves. A number of 
overlay architectures have been previously proposed, 



including IF [7], MXP [8] and Mesh-of-FUs [9], revealing 
the potential to boost design productivity. However, these 
overlays still suffer from very long place-and-route times. To 
overcome this issue and to demonstrate the use of the ROB 
methodology, this paper adopts a 2D array of processing 
elements (PEs) as may be found in a typical CGRA. 

In the CGRA under study, each PE contains an integer 
ALU that communicates with its four nearest neighbours. To 
demonstrate use of heterogeneous circuits, a predesigned IP 
block called FPGA Driver [10] is instantiated to connect the 
CGRA with DDR3, Ethernet, and a PC host over PCIe. The 
FPGA Driver occupies an area equivalent to 30 PEs. To meet 
I/O timing, it is constrained in the right side of the device. It 
should be apparent how to adapt ROB to other overlays. 

B. Module Variants 

A placed and routed module is called a pre-built module 
in this paper. For a pre-built module, we define its footprint 
mask as the set of underlying column resources covered by 
the module. For example, a placed module spans columns of 
type {D, M, M, B}, we say this region has a footprint mask 
width of 4. The letters indicate the type of column resource 
used: DSPs (D), slice-L logic only LUTs (L), slice-M logic-
or-memory LUTs (M), and BRAMs (B). 

A pre-built module is relocatable to locations with an 
identical resource footprint. However, if the destination 
footprint mask differs, the module needs to be re-placed and 
re-routed within an appropriate bounding box [5]; it may also 
need to be re-synthesized to better match available resources 
(eg, to use LUT-based multipliers). After this, we call the 
new module instance a variant of the original module. The 
ROB methodology creates a set of module variants to 
increase relocation flexibility. The targeted device in our 
case study is a Xilinx XC6VLX240T-FF1156 from an 
ML605 board. Its footprint mask width is 101 columns. The 
left and right sides of the device have similar sub-footprint 
masks, reducing the number of required variants by half. 

C. Module Relocation 

Module relocation with component-based design is an 
efficient technique to accelerate placement and routing. 
Although Xilinx tools do not support module relocation well, 
various other works support this feature. Recent work on 
module relocation is based on hard macros at the netlist level 
[2][3][4]. These utilize custom CAD tools to find valid 
placements that match the footprint mask requirements. In 
ROB, module relocation has greater flexibility due to module 
variants. The variants result in a set of equivalent pre-built 
hard macros that can be placed in more candidate locations. 

D. Routerless Stitching 

In addition to module relocation, this work stitches 
modules without invoking the router. This saves run-time 
and area as gaps are not required to route between modules. 

One way to achieve this routerless objective is to use bus 
macros [11]. However, this option was not considered here 
for three reasons: (1) bus macros need considerable extra 

logic, (2) they add extra latency, and (3) bus macros would 
have impacted the placement flexibility (e.g. they cannot be 
placed on BRAM columns). 

Instead, it is possible to directly connect wires in adjacent 
modules if the wiring requirements line up on both sides of a 
shared edge. This was previously demonstrated to produce 
zero logic and delay overhead [6] using the GoAhead tool to 
generate appropriate constraints for the Xilinx place and 
route tools [6]. We follow the same approach using 
GoAhead, but generate all of the constraints automatically as 
part of the ROB flow. We name this process zipping. 

III. RAPID OVERLAY BUILDER METHODOLOGY 
This section presents the Rapid Overlay Builder 

methodology, or ROB for short. We will demonstrate the use 
of this methodology to build the CGRA described in Section 
II while targeting a Xilinx XC6VLX240T-FF1156 device.  

There are seven tasks needed to build an overlay in ROB. 
Out of the seven tasks, only the first two tasks presently 
require manual engagement from the users, while scripts 
automate the other five tasks. The first two tasks are also 
ultimately scriptable, but this is currently not implemented. 
Below, we cover these seven tasks in greater detail. 

1. Resource budgeting for a PE tile. Before floorplanning 
the CGRA, an initial synthesis and placement of the PE tile 
is required to obtain the set of required resources as a 
reference. This is a standard Xilinx ISE compilation run and 
does not require any constrained floorplan of the PE tile. 
However, a PE design may require heterogeneous types of 
resources. Later on, we may find this resource mixture does 
not match the available footprint of the required placement, 
such as providing enough hard multiplier blocks. In such a 
case, the PE tile can be re-synthesized with some soft 
multipliers, for example. Therefore, the PE tile sometimes 
needs to be built with different synthesis options. This 
provides a comprehensive set of reference designs with 
different resource demands and that add flexibility when 
creating placed PE variants later. Designers need a 
preliminary understanding of the size of the PE tile and the 
resource footprint of the device.  

2. Floorplanning the CGRA design. On the targeted 
Virtex 6 device, the height of one multiplier block is 
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Figure 1.    (a) CGRA floorplan  (b) 101-PE physical implementation 



equivalent to the height of five CLBs. To simplify vertical 
relocation, the height of the PE tile needs to be a multiple of 
five CLBs as well. After reserving room for the FPGA 
Driver, Table I shows floorplan alternatives consisting of PE 
tiles with different aspect ratios that accommodate about 230 
logic slices (115 CLBs), which is the amount needed for one 
PE. It also gives the external fragmentation (leftover CLBs) 
after instantiating the maximum number of PE tiles on the 
device. In some of the floorplan alternatives, logic-only PE 
tiles (of the same height as the other PE tiles) are used when 
DSP blocks are not available at the target placement position. 

Table I shows that floorplan options #3 and #4 yield the 
lowest external fragmentation. We will use floorplan option 
#4 because the resulting PE tiles will be half the height of a 
clock region. Hence, PE tiles will not span across the clock 
region boundary. This also allows future work to use the 
floorplan as part of a dynamically reconfigurable system. 

 As shown in Figure 1(a), the chosen floorplan consists of 
11 PE tiles in the horizontal direction and 12 PE tiles in the 
vertical direction. Since the PE tiles are relocatable in the 
vertical direction, only one PE variant is needed for every 
column of PE tiles. Furthermore, with the feature similarity 
found on the left and right side of the device, only 6 variants 
of each PE are required across the 11 PE columns. Using 
these 6 PE variants, we decided to build CGRAs of 8 
different sizes to test scalability of the ROB methodology.  

3. Placing and routing initial PE variants using Xilinx ISE. 
The next step is to manually define the PE-to-PE connection 
wires with the help of connection anchors to be located 
around a PE tile. A PE tile is a bounding-box constrained 
region (of size PE Width x PE Height) that contains all of the 
PE logic and routing. One PE tile will be produced for each 
PE variant. The connection anchors are temporary 
appendages that will be discarded. 

For each PE tile, a set of connection anchors is required 
on each of the four sides of the rectangular PE tile. A 
connection anchor is a pre-built hard macro that will connect 
the signals for communication between adjacent PE tiles, 
each one forming one half of the interface for zipping later. 
When PE tiles are abutted, it is important for interconnect 
between adjacent PE tiles to lie in a straight line. Otherwise, 
a wasteful “dogleg” shape connection would be required. To 
avoid doglegs, the connection anchors on the opposite sides 
of a PE tile must physically correspond to each other.  

Although not supported by our CGRA, communication 
between non-adjacent PE tiles can also be achieved. If the 
communication is a one-time case, the user can add a path to 

route through the intermediate PE tiles; those tiles may end 
up being new variants. If the array itself must support long 
wires, then the CGRA tiles must be designed to 
accommodate wire twisting in exactly the same way an 
FPGA array with long wires is built using a single layout tile. 

In our early experiments, we found was that the routing is 
more congested at the boundary of the PE tile. This 
congestion manifests itself as longer route times in ISE and 
lower clock frequency. This is because logic resources at the 
border have access to fewer wires for routing than the logic 
resources that are located in the center of the PE. To address 
this issue, we prohibited the logic from being placed in the 
top or bottom tile rows for faster routing times. 

Once the physical constraints of the PE variants are set, 
every PE variant needs to be placed and routed using ISE.  
Since the compilation process is independent for every 
variant, this process can be trivially parallelized across 
workstations. Depending upon the precise overlay design and 
usage, it may be possible to precompute this initial PE build 
process so it is not observed by users. 

4. Extracting the PE tiles from the initial PE variants. Once 
the PE variants are placed and routed, the NCD netlists of the 
PE variants are automatically converted to XDL netlists by 
scripts. With the XDL netlists, the PE variants can be cut out 
along the boundary of the PE tile, leaving the data bus wires 
as floating antennas; these cut interconnect wires will be 
zipped to adjacent tiles. These XDL representations are 
stored in a pre-built PE tile library. The library of pre-built 
PE tiles will be used for assembling the final CGRA. 

5. Relocating PE tiles on the device. In the case study, every 
pre-built PE tile spans 20 rows of CLBs, which is half the 
height of a clock region. Five PE tiles have a footprint mask 
width of 8;  one PE tile contains only logic resources and has 
a footprint mask width of 10. The PE tiles from the library 
are relocated and instantiated according to a floorplan. 

6. Interconnecting adjacent PE tiles. In this case study, 
adjacent PE tiles are placed next to each other. By design, 
the floating interconnect located along the zipping boundary 
of each tile perfectly aligns with each adjacent tile, so no 
additional routing is needed. Not having to use the router 
saves time and also avoids the potential for allocating 
additional logic or routing resources to form connections 
between mismatched components. This also helps achieve a 
size-independent clock rate for the overlay. 

7. Interconnecting the CGRA design and the FPGA Driver. 
After all the PE tiles are stitched together, the CGRA and the 
FPGA Driver are also automatically stitched together using 
similar netlist manipulations. As shown in Figure 1(b), the 
FPGA Driver was floorplanned and built in such a way that 
all of the IO ports of the FPGA driver correspond with their 
adjacent PE tiles. Since the FPGA Driver is a common part 
of the design and can be fit in the compilation process as a 
hard macro partition, the corresponding compile time is not 
included in the standard ISE flow nor in the ROB flow 
below. Therefore, the CAD time for building the FPGA 
Driver is excluded from all experimental run-time results. 

Floorplan 
Option # 

PE Width 
(CLBs) 

PE Height 
(CLBs) 

Number 
of PEs 

External 
Fragmentation 

(CLBs) 
1 24 5 93 1920 
2 12 10 95 1680 
3 8 15 102 720 
4 6 20 101 840 
5 5 25 78 3330 
6 4 30 81 3360 

TABLE I.        FLOORPLAN ALTERNATIVES 



In the present system, the FPGA Driver is the only 
interface enabled in the ROB methodology to control data 
flow inside the CGRA, to carry out the personalization 
process, and to write CGRA bitstreams to the PEs.  

IV. EXPERIMENTAL RESULTS  
All the experiments used a Dell Workstation T5500, which 
features an Intel Xeon 3.33GHz processor and 8GB RAM. 
Xilinx ISE 14.7 was used under Windows 7 (64-bit). The 
FPGA device was specified as a -1 speed grade.  

In the case of building the array of integer-only PEs, two 
user scenarios were considered: (1) user builds CGRAs from 
scratch; (2) user builds CGRAs with pre-built PE tiles. Table 
II shows the elapsed CAD time for both the Xilinx ISE and 
the new ROB methodology. The process of building initial 
PE tiles takes 18 minutes to complete using 4 CPU cores and 
the associated CAD time is included in Table II. While the 
ROB methodology obtained considerable speedup in 
building CGRA designs, the bottleneck of obtaining further 
speedups lies in the final XDL conversion process, which 
converts back to NCD netlists  for bitstream generation. We 
anticipate that Xilinx can greatly accelerate this conversion 
process. The ROB flow is able to obtain speedups up to 92x 
with the final XDL netlist conversion time excluded.  

In addition to speeding up the process of building 
overlays, maintaining high logic utilization levels and clock 
rates are also goals of the ROB methodology. It was found in 
the experiments that ROB was able to achieve logic 
utilization levels over 89%. However, utilization levels 
resulting from the ROB methodology are slightly lower than 
ISE. This is likely because the initial PE tiles were 
implemented with their top and bottom rows of the resource 
in the bounding box prohibited, as described in Section III. 

The clock rates from the ROB methodology are 
consistent and always higher than ISE. When increasing the 
size of CGRAs, the Fmax from ISE fluctuates between 
88.1MHz and 115.8MHz, while the Fmax from the ROB 
methodology consistently stays at 120.7MHz. While the ISE 
Fmax can be stabilized and made faster using multiple 
placement seeds, this is not necessary with ROB. 

V. CONCLUSION 
In this work, we present the ROB methodology that 

efficiently builds overlays which contains a high degree of 
regularity and repetition on Xilinx FPGAs. By applying the 
techniques of module relocation, module variants, and 

stitching, we are able to obtain up to 22x speedup in 
building CGRAs. The ROB methodology could have been 
implemented using HMFlow [2], but only at the cost of 
substantial lower logic utilization levels (HMFlow does not 
work well above 50%) and at lower clock speeds (HMFlow 
invokes the router to connect modules). In contrast, ROB 
achieved over 89% utilization levels while outperforming 
ISE on clock speed. 
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CGRA         
Size 

Total Time (seconds) 
User 

Scenario 1 
User 

Scenario 2 ROB 
Methodology 

Xilinx 
ISE 

18 PEs 1189 2397 2.0x 22.0x 
41 PEs 1346 3642 2.7x 13.7x 
49 PEs 1435 4405 3.1x 12.4x 
57 PEs 1538 5739 3.7x 12.5x 
65 PEs 1617 5583 3.5x 10.4x 
77 PEs 1881 9767 5.2x 12.2x 
89 PEs 2037 9698 4.8x 10.1x 

101 PEs 2259 10988 4.9x 9.3x 

TABLE II.        CAD TIME COMPARISON 


