
FPGA Defect Tolerance: Impact of Granularity∗

Anthony J. Yu Guy G. Lemieux
Department of Electrical and Computer Engineering

University of British Columbia, Vancouver, BC, Canada
Email: { anthonyy| lemieux} @ ece.ubc.ca

Abstract

As device sizes shrink, FPGAs are increasingly prone to
manufacturing defects. The ability to toleratemultiple de-
fects is anticipated to be very important at 45nm and be-
yond. One possible approach to this growing problem is to
add redundancy to create a defect-tolerant FPGA architec-
ture. Using area, delay and yield metrics, this paper com-
pares two redundancy strategies: a coarse-grain approach
using spare rows and columns and a fine-grain approach
using spare wires. For low defect levels and large array
sizes, the coarse-grain approach offers a lower area over-
head, but it is relatively intolerant to an increase in defect
count. In contrast, the fine-grain approach has a fixed over-
head of up to 50%, but the architecture can tolerate an in-
creasing number of defects as array size grows. To achieve
a similar level of yield recovery, the coarse-grain approach
requires an area overhead in excess of 100%.

1 Introduction

As FPGA density increases through transistor geometry
scaling, FPGA devices are increasingly susceptible to man-
ufacturing defects [3, 4, 9]. FPGAs also adopt advanced
technology nodes as early as possible, well before they
reach mature yield rates. In the future, FPGAs based on
nanotechnology may experience defect rates as high as
20% [15]. Hence, it is imperative that FPGA manufacturers
have an approach for tolerating device-level defects.

In terms of silicon area, modern FPGAs are predomi-
nantly programmable interconnect, where interconnect in-
cludes the physical wiring as well as transistors making up
switches, buffers, and configuration bits. As a result, de-
fects are more likely found in the interconnect than logic
blocks. This makes the ability to tolerate interconnect
defects extremely important. In this paper, we consider
schemes to tolerate interconnect defects by adding spare or
redundant interconnect resources. Since interconnect is of-
ten made up of irregular connection patterns, it can be very
difficult to determine exactly where to place these spares.

∗Code available at http://www.ece.ubc.ca/∼lemieux/downloads

R

o
w

D

e

c
o

d

e
r

Spare Row

Spare vertical

wiring

Defect

R

o
w

D

e

c
o

d

e
r

Bypassed Row

a) Original
 b) Corrected

Figure 1: Overview of coarse-grain hardware redundancy

Defect
Spare

a) Original
 b) Corrected

Figure 2: Overview of fine-grain hardware redundancy

The traditionalcoarse-grainapproach for defect toler-
ance uses spare rows and columns [10]. As shown in Fig-
ure 1, defects are tolerated by bypassing the defective row
or column and utilizing the spare. This tolerates clustered
defects, but the consolidation of spare resources limits its
ability to tolerate multiple, distributed random defects.

In comparison, afine-grainapproach [18] can tolerate
multiple, distributed random interconnect defects. Figure 2
shows how a defect is avoided by shifting individual signals.
This eliminates the need for rerouting, localizes the repair
region, and minimizes timing variance due to correction.

This paper presents a yield model and compares the de-
fect recovery ability of coarse-grain and fine-grain redun-
dancy architectures. The comparison is based on four ar-
chitectural parameters that influence yield: switch imple-
mentation, switch flexibility, array size and wire length.

2 Background
Fault-tolerant redundancy can be loosely classified into
three groups: hardware redundancy, software redundancy
and run-time redundancy. In hardware redundancy, spare
resources facilitate the correction and avoidance of defects
by swapping them with defective resources [8, 10]. In soft-
ware redundancy, CAD tools are used to map around defec-
tive resources [11, 12]. This method typically has no hard-
ware overhead but requires some form of reprogramming.
Run-time redundancy deals exclusively with errors that oc-
cur during the operation of the FPGA, including transient
faults caused by single-event upsets [2, 9].

This paper focuses exclusively on the yield of the two
different approaches to hardware redundancy: coarse-grain
redundancy (CGR) and fine-grain redundancy (FGR). Each
of these are presented in detail below.

2.1 Coarse-grain Redundancy (CGR)

The spare row and column technique was one of the first
proposed hardware redundancy approaches [10], and has
been successfully applied in industry [1, 6]. This architec-
ture adds one spare row and one spare column to the existing
FPGA layout. It also changes the detailed routing switch
design so that, in the event of a defect, the defective row or
column can be bypassed. The spare takes up the slack as a
large chunk of the design is shifted by one row/column.

This architecture can tolerate multiple defects or defect
clusters within the same channel. However, as array size
grows, it becomes increasingly unlikely that multiple ran-
domly distributed defects will lie in the same row/column.
Hence, additional spares are needed.

This paper considers two coarse-grain redundant (CGR)
architectures which add multiple spares:

• CGR-Gn denotes a multipleglobal spare architec-
ture withn global spare rows/columns (2n total spare
rows+columns).

• CGR-Ln-Sp denotes a multiplelocal spare architec-
ture divided intop row andp column subdivisions with
n spares each (2pn total spare rows+columns).

Figure 3 illustrates CGR-G2 and CGR-L1-S2.
The added cost of the global spare approach is: (1) the in-

creased length of the routing wires, which increases capaci-
tance, delay, and power; (2) the 2n spare rows+columns;
and (3) the extra multiplexing in the routing switches to
perform the bypass. Usually,n is small, so the spare
rows/columns do not add significantly to area. However, the
extra multiplexing required ineveryswitch element to by-
pass 1 ton defective rows/columns is very significant [17].

In the local spare approach, the spares are evenly divided
among subdivisions of the chip where defect correction is

Ro
w

De
co

de
r

Ro
w

De
co

de
r

Spare Row

Spare Row

b) CGR-L1-S2

Ro
w

De
co

de
r

Spare Row

Spare Row

a) CGR-G2

Wire
extensions

Subdivision

Figure 3: Multiple spare rows and columns

handled locally. This approach can add more total spares at
a lower cost by increasingp and makingn smaller, hence
reducing the spare wire extensions and extra multiplexing.

2.2 Fine-grain Redundancy (FGR)

Rather than consolidating the spare resources into rows and
columns, a fine-grain approach can be used instead [7, 18].
Spare routing resources are distributed evenly across the
FPGA, allowing the architecture to tolerate multiple ran-
domly distributed defects.

The first approach [7] adds spare switches in the switch
block to bypass defective switches. However, the proposed
design cannot tolerate defective wires, and defect correction
imposes a severe timing penalty, making it impractical.

In the latter approach [18], two types of shifting multi-
plexers are introduced in the switch block. Theomuxmulti-
plexer allows signals to shift up by 1 or 2 tracks and is used
for defect avoidance. Theimux multiplexer allows signals
to shift down by 1 or 2 tracks and is used for signal restora-
tion. The up/down shifts by 2 are required to correct wire
bridging defects, but these can be left out if bridging is rare.
Together, theimuxandomuxallow signals to route around
defective resources. This approach is can tolerate defects
in the switch block and in the wiring. Furthermore, defect
correction does not significantly change signal timing.

To accommodate the shifting, spare wires are inserted
into every trackgroup1. For trackgroups of lengthL, a total
of 4L spare wires are needed with bridging support, and
2L without. These spare wires are normally unused. In the
event of a defect, the faulty wire is bypassed and the shifting
multiplexers reroute signals onto these spare wires.

1A trackgroup is a group of wires with the same start and end points.

Trackgroup

Affected
Trackgroups

CLB

Switch
Block

-1 shift

+1

CLB

CLB

CLB

CLB

-1
-1

-1

-1

-1 -1

-1

CLB CLB

CLB

CLB

CLB

-1

-1

-1

-1 shift

Affected
Trackgroups

CLB

+1

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

CLB

-1

Figure 4: Track shifting to correct a double-length defect:a) direct fanout regions (left), b) direct fanin regions (right)

Figure 4 presents an example of defect correction. The
defect in question spans two trackgroups (red/striped) and
affects the same track number. To avoid the defect, all sig-
nals in these two defective trackgroups are shifted by “+1”.
To localize the defect, all direct fanouts,i.e. downstream
trackgroups, are restored by “-1” (Figure 4a, blue/dark-
gray). Signals entering the defective trackgroup from the
far left are already shifted and avoid the defect. Signals en-
tering the defective trackgroup from the vertical channel in
the circled switch block are considereddirect faninsto the
defective trackgroup (Figure 4b, green/light-gray). The de-
fect and contention prevents correction at this switch block.
Instead, the “+1” is applied at their source, and all of their
fanouts are restored by “-1” (Figure 4b, blue/dark-gray).

As Figure 4 shows, correcting a defect involves partici-
pation of a number of neighbouring trackgroups. The max-
imum number of trackgroups affected by defect correction
is called theminimum fault-free radius (MFFR). The MFFR
of the previous example encompasses direct fanouts, direct
fanins, and all fanouts of the direct fanins.

In this paper, we assume that multiple defects can be
tolerated if their MFFR areas are non-overlapping. This is
slightly pessimistic, but it simplifies our calculations.

2.3 Types of Defects

In CGR, all defects are treated equally. A channel con-
taining any defect is always replaced with a spare row or
column. This simplifies the correction process, but has the

drawback of being inefficient with resource usage.
In FGR, interconnect defects can be classified as: single-

length, double-length, and bridging defects [18]. Each cat-
egory differs in the MFFR required to repair the defect.

3 Computing Yield

For our yield analysis, we assume that all faults are bridg-
ing defects (worst case). We also assume that there are no
logic faults, which are intolerable in the present FGR archi-
tecture. Furthermore, we assume that all implementation
options require the same amount of silicon die area. This
allows us to compare architectures in terms of how many
defects they can tolerate, but in so doing this ignores the
increase in defect count that arises from an area increase.

3.1 Course-grain Redundancy (CGR)

Our CGR yield model assumes the following:

• all channels have identical routing resources and thus
have an equal probability of being defective;

• the vertical and horizontal channels are disjoint (a de-
fect can be isolated to just a row or just a column);

• M×M FPGAs are perfectly symmetrical; and

• equal spare rows and columns to keep the array square.

d) CGR-L1-S2 - Uncorrectable

Ro
w
De
co
de
r

Ro
w
De
co
de
r

Bypassed

Bypassed

b) CGR-L1-S2 - Correctable

Ro
w
De
co
de
r

Ro
w
De
co
de
r

Spare Row

Bypassed

Uncorrectable
Defect

Ro
w
De
co
de
r

a) CGR-G2 - Correctable

Bypassed

Bypassed

Ro
w
De
co
de
r

c) CGR-G2 - Correctable

Bypassed

Bypassed

Figure 5: Comparison between CGR-G2 and CGR-L1-S2

To inject a random defect, a row/column is randomly se-
lected and the defect count for that row/column is incre-
mented. For CGR-G1, a failure occurs when there are de-
fects in two different rows or two different columns. Archi-
tectures with multipleglobal spare rows and columns are
evaluated in a similar manner. A failure occurs when there
are more defective rows or columns than there are spares.

In CGR-Ln-Sp, each subdivision has exactlyn desig-
nated spare rows/columns and can tolerate at mostn defec-
tive rows/columns per subdivision. Figure 5 highlights the
differences in terms of defect correction between CGR-G2
and CGR-L1-S2.

3.2 Fine-grain Redundancy (FGR)

To model the behaviour of defect correction for FGR, we
assign state variables to every trackgroup within the FPGA.
A trackgroup can have one of three states:perfect, faulty,
or must be perfect. The faulty state indicates the presence
of a defect. Themust be perfectstate is used to mark the
MFFR of a defect. As mentioned before, the MFFR defines
the region needed for shifting to avoid and restore around
the defect. To guarantee that a defect can be correctable,
the MFFR must be defect-free.

Defects are injected into the model by randomly select-
ing a trackgroup and setting its state tofaulty. The neigh-

bouring trackgroups as defined by the MFFR are marked as
must be perfect. The MFFR will vary depending on the de-
fect type and the underlying routing architecture. Chip fail-
ure occurs when thefaulty or must be perfecttrackgroups
for a newly injected defect are already in a non-perfectstate.

Our yield approximation for FGR is pessimistic in two
ways. First, we always inject bridging defects into our
model which have very large MFFRs. Second, we do not
allow MFFR overlaps. In reality, not all defects are bridges,
so significantly smaller MFFRs are possible. Further, the
avoidance and correction of certain defects can be over-
lapped. We suspect that accounting for these two factors
will greatly improve yield for the fine-grain architecture.

4 Architectural Considerations

Several factors can affect yield. This section discusses a few
important ones. Results will follow in the next section.

4.1 Switch Implementation and Flexibility
Impact on Yield

As presented in [18], the routing switches in FGR can be
implemented in a variety ways. First, theimuxcan be built
out of an encoded tree of pass transistors or as a flattened
1-level multiplexer. These two essentially trade off between
area and delay, and do not impact yield. Theimuxcan also
be embedded into the directional switch. This inflates the
area of the switch, but the added connectivity was shown
to improve circuit routability and reduce the MFFR of de-
fects. Out of delay considerations, theomuxwas built using
a flattened 1-level multiplexer.

The shifting ability of the switch can also be varied. If
the ability to shift by 2 is eliminated, the size of the switch
will decrease. Bridging defects and source-drain shorts can
still be tolerated, but avoiding them requires two “+1” shifts
followed by two “-1” shifts. In fact, any combination of
shifts, a “+2” followed by two “-1”, two “+1” followed by
a “-2” is acceptable. However, changing the shifting abil-
ity of the multiplexers increases both the number of defect
categories and the MFFR.

Of the seven different switch implementations investi-
gated in [18], we chose the “EM22” switch for this work:
an embeddedimuxwith shifts by 1 and 2. This has the high-
est area overhead, but tolerates the most defects.

The number of wires connected to a given switch block
wire is defined as its flexibility,Fs [16]. With long wires,
Fs can describe different flexibility in switch blocks atend-
points and atmidpointsof a wire [14]. Lower Fs val-
ues equate to fewer connections, and thus smaller MFFRs.
Based on [18], we choseFs = 3 for endpoints andFs = 1 for
midpoints. This is “E3M1” in the notation used in [18].

4.2 Array Size Impact on Yield

In future technology nodes, the expected number of defects
per fixed die area will increase [3, 9]. This is attributed
to an increased sensitivity to smaller defects and increased
process variation. Future technologies also allow construc-
tion of bigger array sizes in the same fixed die area. It is
thus desirable to have an architecture that can tolerate an
increasing number of defects as the array size grows.

CGR-G1 demonstrates a decreasing amount of area over-
head as array size increases [4]. However, as array size
grows, it also becomes increasingly unlikely that multiple
defects will lie in the same row/column. Thus, to maintain
a fixed yield for growing array sizes in future technologies,
more spare rows and columns will be needed.

In FGR, spare resources are distributed across the FPGA.
Increasing the array size increases the number of track-
groups in the FPGA, and thus the amount of available spare
resources. Since the amount of spare resources naturally
grows with size, the number of tolerable defects increases.

4.3 Wire Length Impact on Yield

In CGR, we assume that the routing network within the
rows and columns are identical and disjoint. Since all rows
and columns contain the same routing resources, the ability
to replace a defective row/column containing wires of any
wire length with a spare row/column is guaranteed. This
eliminates the dependency of wire length on defect correc-
tion for the spare row and column architecture.

For FGR, increasing wire length increases both the
fanout and fanin of all routing wires due to an increase in
the number of midpoint locations. This increases the MFFR
and negatively impacts yield.

Current FPGA routing architectures utilize multiple wire
lengths within their routing architecture. In FGR, wires of
different lengths are modeled as disjoint routing networks.
Each routing network has its own unique set of spare re-
sources. Defect correction is restricted to the individual
routing networks. These disjoint networks “join together”
at the connection blocks which can correct for defects in
any of them.

4.4 Limitations

Our yield model does not account for switch area. The area
of the switch is an important consideration because larger
circuits have a greater probability of being defective than
smaller ones. For CGR-Gn and CGR-Ln-Sp, significantly
larger switch areas are needed because of the necessary by-
pass circuitry. We do not model this, so we are overestimat-
ing CGR yield.

We assume defects in CGR requires either a spare row or
a spare column to be tolerated. Some defects require both,

hence we over estimate yield for this architecture.
Power/ground shorts have been ignored in our fault sim-

ulation. These defects cannot be tolerated in either archi-
tecture. We also assume no defects in the logic blocks. For
a more accurate estimation, the yield model should be sup-
plemented with manufacturing data.

We assume that routing tracks within the same channel
are laid out beside one another. When we inject bridging
defects into the model, two adjacent tracks are made un-
usable. This assumption allows us to bypass bridging de-
fects by performing shifts by 2. Larger faults (e.g., 3 wires)
would not be tolerable in the fine-grain architecture.

Our FGR model assumes that there can be at most one
defect per trackgroup. However, certain types of single and
double-length faults can in fact be overlapped. For exam-
ple, two defects can be overlapped if the underlying defect-
tolerant architecture supports bridging defects, the faults
themselves are not bridging defects, and the defects do not
reside on adjacent tracks. Provided that these conditions
are met, the defect on the lower track can be avoided using
a “+1” shift while the one on the higher track with a “+2”
shift. Also, defects in the same tracks should be tolerable.

When computing yield, we assume that the delay bypass
path of theomuxis not being used [18]. If it is utilized, we
must either perturb timing when correcting a defect or limit
device defects to one-per-channel.

Lastly, when we compute the MFFR for FGR, we as-
sumed that the defects are injected into the middle of an
infinitely sized FPGA. This results in worst-case MFFRs
for the defects. Since the trackgroups near the edge of the
FPGA have lower connectivity than those in the center, the
use of the worst-case MFFR value for all defects is overly
pessimistic.

5 Results

The yield estimates for CGR and FGR were obtained
through Monte Carlo simulations. For a given number of
defects, random faults were injected into the interconnect
for 100,000 different FPGA die. We do not consider intol-
erable defects such as power/ground shorts.

The area and delay numbers were obtained from an en-
hanced version of the VPR place and route tool, VPRx [14].
VPRx was used to map the largeclma MCNC benchmark
circuit [5] into an island-style FPGA consisting of direc-
tional wires [13] and CLBs containing eight 4-input LUTs.

5.1 Fixed Array Size

Figure 6 presents the yield for an 32×32 FPGA with the
indicated number ofadditionalglobal rows/columns. The
yield for CGR-Gn remained at 100% up until the defect
count became greater than the total spare rows+columns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Y
ie

ld

Number of Defects (log scale)

Figure 6: Increasing number of global spares (M=32)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Y
ie

ld

Number of Defects (log scale)

Figure 7: Increasing number of local spares (M=32)

in the architecture. After this threshold, the yield decreases
dramatically. This curve represents the best case yield for
the spare row and column architecture. Yield for this par-
ticular architecture is especially sensitive to the numberof
spare rows/columns in the system. There is a significant
yield improvement when we move from oneglobal spare
to two global spares. FGR demonstrate similar yields as
CGR-G4.

The CGR-Ln-Sp architecture demands that defects are
spaced far apart from one another. If too many defects re-
side in the same subdivision, chip failure occurs. The im-
pact of this restriction is shown in Figure 7. The figure
shows the yield of a 32×32 FPGA with the indicated num-
ber ofadditionallocal spare rows/columns. Notice that the
yield decreases almost immediately and is significantly less
than that of the global approach. The break even point for
this architecture is 16 partitions with one spare row/column
each. At this point, CGR-L1-S16 demonstrate yields simi-
lar to FGR.

Figures 8 and 9 presents the yield curves for CGR-Gn

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Y
ie

ld

Number of Defects (log scale)

Legend
 FGR

 CGR-G1
 CGR-G2
 CGR-G4
 CGR-G8

 CGR-G16
 CGR-G32

Figure 8: Increasing number of global spares (M=256)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Y
ie

ld

Number of Defects (log scale)

Legend
FGR

CGR-L1-S1
CGR-L1-S2
CGR-L1-S4
CGR-L1-S8

CGR-L1-S16
CGR-L1-S32
CGR-L1-S64

CGR-L1-S128
CGR-L1-S256

Figure 9: Increasing number of local spares (M=256)

and CGR-Ln-Sp, but the array size of 256×256 is used. At
this array size, we notice that number of defects tolerated by
FGR increases. FGR is now approximately equivalent to the
yield of CGR-G16 and has higher yield than all implemen-
tations of CGR-L1-Sp. Note that a large number of global
spare rows/columns is impractical (and potentially infeasi-
ble) because of the long wire extensions and significantly
larger switch area needed for the bypassing circuitry.

5.2 Increasing Array Size

CGR can tolerate multiple defects in the channel. How-
ever, as array size grows, it becomes increasingly unlikely
that defects will lie in the same channel. The yield for a
fixed number of spare rows and columns was observed to
be largely independent of array size. The only way to in-
crease yield is through the addition of spare resources.

For the FGR architecture, the amount of spare resources
increases as array size grows. Since the amount of re-
sources needed for defect correction is constant, increasing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Y
ie

ld

Number of Defects (log scale)

CGR-G1 (M = 32)
CGR-G4 (M = 256)

CGR-G16 (M = 256)
FGR (M = 32)
FGR (M = 64)

FGR (M = 128)
FGR (M = 256)

Figure 10: Increasing array size for FGR (L=4)

the number of spare resources means the ability to tolerate
more defects. The yield for increasing values ofM for FGR
is shown in Figure 10. We observe that this architecture can
tolerate an increasing number of defects as array size grows.

Figure 11 presents an area comparison between FGR and
CGR for different values ofM. For FGR, the reported area
includesall necessary shifting multiplexers and spare wires
for the given value ofM. For CGR-Gn and CGR-Ln-Sp,
the n and p values were chosen to match the number of
tolerable defects at the 80% yield level to the FGR archi-
tecture. As well, the area of CGR-G1 is shown which can
tolerate only 1-2 defects. The area overhead for these CGR
architectures is estimated from (1) the required number of
spare rows/columns, and (2) the bypass circuitry. The by-
pass circuitry is estimated to be 30% for CGR-G1, and 50%
(optimistically) for the other CGR variants [17]. For large
values ofM, the results show that CGR-Gn and CGR-Ln-Sp
requires greater area to tolerate the same number of defects
as FGR.

5.3 Wire Length

Long wires have a greater number of fanins and fanouts.
This results in a larger MFFR and yield reduction. In Fig-
ure 12, we see that the yield for the FGR decreases as wire
lengthL increases. Also note that the yield for mixed wire
lengths is lower than the yield of the individual wire lengths
it is composed of. This is largely the consequence of how
mixed wires are implemented and modeled. In the fine-
grain architecture, the routing network for different length
wires are disjoint.

The area and delay numbers for theclmabenchmark cir-
cuit are presented in Figure 13. The circuit was mapped
into an FGR architecture of length 4, 8 and 16 wires. The
delay results have been normalized to an architecture with-

 1

 2

 3

 4

 5

 6

256
(39 defects)

128
(19 defects)

64
(10 defects)

32
(5 defects)

A
re

a
(n

or
m

al
iz

ed
 to

 n
on

-f
au

lt-
re

du
nd

an
t a

rc
h.

)

Array size (M)

FGR
CGR-Gn

CGR-L1-Sp
CGR-L2-Sp

CGR-G1

Figure 11: Area comparison between FGR and CGR at
same number of defects (L=4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

Y
ie

ld

Number of Defects (log scale)

L = 1
L = 4
L = 8

L = 4, 8
L = 4, 16

Figure 12: Yield for varying wire lengths for FGR (M=32)

out redundancy. The channel width was fixed at 224 for all
wire lengths. 224 is the minimum channel width needed to
routeclmausing length 16 wires. Figure 13 shows the area
breakdown for the circuit.

6 Conclusions

This paper presented a comparison between coarse-grain re-
dundancy (CGR) and fine-grain redundancy (FGR). Both
approaches embody the idea of replacing a defective re-
source with a spare unused one; however our investigation
indicates that the choice of defect tolerant architecture has
a significant impact on yield and area overhead.

We found that at low defect levels, CGR has a lower
area overhead than FGR. For sufficiently low defect lev-
els, the area overhead for CGR diminishes as array size in-

 0

 5

 10

 15

 20

 25

 30

 35

 40

1684
 0

 0.5

 1

 1.5

 2

 2.5

 3

A
re

a
(1

e6
 u

m
2)

D
el

ay
 (

no
rm

al
iz

ed
 to

 n
on

-f
au

lt
re

du
nd

an
t a

rc
h.

)

Wire Length

Shifting Muxes
Spare Routing Resources

Switch Block
Connection Block

Configurable Logic Block
Non-fault Redundant Arch. Area

Delay

Figure 13: FGR area, delay with varying wire lengths

creases. This is not the case for FGR, where the area over-
head for this approach is fixed at up to 50% for all array
sizes. Despite the fixed cost of redundancy, FGR can tol-
erate an increasing number of defects as array size grows.
This is extremely important as the expected number of de-
fects increases as devices shrink. When comparing CGR
and FGR at equal defect levels, we found that CGR requires
more area overhead to tolerate the same number of defects
as FGR.

Another factor that influences yield is wire length. For
FGR, we observed that yield decreases as wire length in-
creases. This is not so for CGR. Using spare rows and
columns for defect correction is wire length independent.

Taking these factors into account, we feel that future re-
dundancy architectures should take a median approach to
defect tolerance. By combining CGR and FGR, we can ef-
ficiently tolerate random distributed defects as well as clus-
tered and bridging defects.

Future work will investigate ways to reduce area over-
head of CGR and FGR. As well, when defect densities are
very high, it is unlikely that they will all appear as intercon-
nect faults. Hence, it is important to extend FGR to tolerate
clustered defects, logic defects, as well as seemingly intol-
erable defects. Perhaps this can be done by producing a
FGR/CGR hybrid.

References

[1] Altera Corp. Altera’s patented redundancy technology dra-
matically increases yields on high-density APEX 20KE de-
vices. InPress Release, Nov. 27 2000.

[2] G. Asadi and M. B. Tahoori. Soft error rate estimation and
mitigation for SRAM-based FPGAs. InFPGA, 2005.

[3] N. Campregher et al. Analysis of yield loss due to random
photolithographic defects in the interconnect structure of FP-
GAs. InFPGA, pages 138–148, February 2005.

[4] N. Campregher et al. Yield modelling and yield enhancement
for FPGAs using fault tolerant schemes. InFPL, 2005.

[5] Collaborative Benchmarking Laboratory. Lgsynth93 bench-
mark set: Version 4.0. Technical report, North Carolina State
University, 1993.

[6] Crosspoint Solutions Inc. FPGA redundancy. InUnited
states patents #5,777,887, 1998.

[7] A. Doumar and H. Ito. Design of switching blocks tolerating
defects/faults in FPGA interconnection resources. InIEEE
Int’l Symp. on Defect and Fault-Tolerance in VLSI Systems,
pages 134–142, 2000.

[8] A. Doumar, S. Kaneko, and H. Ito. Defect and fault tolerance
FPGAs by shifting the configuration data. InInt’l Symp. on
Defect and Fault-Tolerance, pages 377–385, 1999.

[9] S. Hareland et al. Impact of CMOS process scaling and SOI
on the soft error rates of logic processes. InIEEE Nuclear
and Space Radiation Effects Conf., pages 73–74, 2001.

[10] F. Hatori, T. Sakurai, et al. Introducing redundancy infield
programmable gate arrays. InIEEE CICC, 1993.

[11] W.-J. Huang and E. McCluskey. Column-based precompiled
configuration technique for FPGA fault tolerance. InIEEE
Field-Programmable Custom Computing Machines, 2001.

[12] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Effi-
ciently supporting fault-tolerance in FPGAs. InFPGA, 1998.

[13] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional and
single-driver wires in FPGA interconnect. InIEEE Int’l Conf
on Field-Programmable Technology, 2004.

[14] G. Lemieux and D. Lewis.Design of Interconnection Net-
works for Programmable Logic. Kluwer Academic Publish-
ers, Boston, 2004.

[15] H. Naeimi and A. DeHon. A greedy algorithm for tolerating
defective crosspoints in nanoPLA design. InFPT, 2004.

[16] J. Rose and S. Brown. Flexibility of interconnection struc-
tures in field-programmable gate arrays.Journal of Solid
State Circuits, 26(3):277–282, 1991.

[17] A. J. Yu. Defect tolerance for yield enhancement of FPGA
interconnect using fine-grain and coarse-grain redundancy.
Master’s thesis, Dept. of Electrical and Computer Engineer-
ing, Univ. of British Columbia, August 2005.

[18] A. J. Yu and G. G. Lemieux. Defect-tolerant FPGA switch
block and connection block with fine-grain redundancy for
yield enhancement. InFPL, 2005.

