
DEFECT-TOLERANT FPGA SWITCH BLOCK AND CONNECTION BLOCK WITH
FINE-GRAIN REDUNDANCY FOR YIELD ENHANCEMENT

Anthony J. Yu Guy G. F. Lemieux

Department of Electrical and Computer Engineering
University of British Columbia, Vancouver, BC, Canada

email: { anthonyy | lemieux } @ ece.ubc.ca

ABSTRACT
Future process nodes have such small feature sizes that there will
be an increase in the number of manufacturing defects per die. For
large FPGAs, it will be critical to tolerate multiple defects [6]. We
propose a number of changes to the detailed routing architecture
of island-style FPGAs to tolerate multiple random, distributed in-
terconnect defects without re-routing and with minimal impact on
signal timing. Our scheme is a user option prebuilt into an ar-
chitecture, requiring +11% area for additional multiplexers. Un-
used (spare) wiring tracks are also needed, bringing total over-
head to 24% to tolerate stuck-at or open faults, or 34% to include
bridging. User circuits that do not fully stress the routing net-
work already have these tracks freely available. The delay penalty
is programmable: 5–10% if defect rates are expected to be suffi-
ciently low, but can be as high as 25% if defect rates are high. Our
schemes can tolerate more than 10 interconnect defects for large ar-
ray sizes of 128 × 128. Unlike row/column redundancy schemes,
our schemes are scalable: they naturally tolerate more defects as
the FPGA array size increases. This work is the first detailed anal-
ysis of fine-grained defect-tolerant schemes in FPGAs.

1. INTRODUCTION

Field programmable gate arrays (FPGAs) are large integrated cir-
cuits comprised of programmable logic blocks and programmable
routing. Their size, density and regular layout makes them attrac-
tive for aggressive tuning in the latest technology processes. As
such, they are also prone to manufacturing defects [6].

Since FPGAs are routing dominated, defects are more likely
found in the interconnect than in the logic blocks. This makes the
ability to tolerate defects in the interconnection network extremely
important. In this paper, the interconnection network encompasses
the physical wiring, the switch elements, and the configuration bits
found in both the switch block and the connection block.

Traditional defect-tolerant schemes involve the use of entire
spare rows and/or columns in the array of logic blocks. This method
is capable of tolerating clusters of defects, however the consolida-
tion of spare resources severely restricts its ability to tolerate mul-
tiple distributed defects. Our approach addresses this problem by
embodying a fine-grain approach to redundancy: spare resources
are distributed in every routing channel.

This paper presents a new switch and connection block ar-
chitecture that is capable of tolerating multiple distributed defects
within the interconnection network. Our approach is based on de-
fect avoidance by shifting. As shown in Figure 1, shifting allows
signals to route around a defect. We show that this can be done in
a controlled, localized fashion without re-routing.

a) original routing solution b) avoiding a defect
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Fig. 1. Shifting signals to avoid defects.

To successfully correct a defect, we need to know where the
defects are. One such way to provide this information is through
the use of a list of defective resources, called a defect map. This
map can be stored on-chip in non-volatile storage, or in an off-chip
database indexed using a unique on-chip ID. When an FPGA is be-
ing programmed, the defect map specific to that FPGA is called up
and the correction is applied. Our architecture is designed so that
correction can be applied through bitstream manipulation alone.
The correction can be applied during programming or bitstream
generation. It can even be applied by means of an embedded pro-
cessor within the FPGA. With this latter method, defect correction
can be completely hidden from the user.

Our architecture has some disadvantages. First, like any spare-
based redundancy scheme, it requires some amount of overhead
which cannot be avoided. We evaluate a number of detailed vari-
ations to our scheme and precisely quantify the impact on area,
delay and yield. Next, our architecture does not tolerate transient
faults (single event upsets), clusters of defects, or defects in the
logic blocks. To address these latter two issues, our architecture
can be complemented with spare row/column techniques, although
there are other possibilities as well.

Despite these disadvantages, there are also notable advantages:

• Tolerates multiple distributed random defects,

• Scalable: more defects are tolerated in larger FPGA arrays,

• Defect corrections do not change signal timing,

• Defect corrections can be applied very quickly, and

• Crosstalk defects [19] can be repaired by separating nets.

2. PREVIOUS WORK

Fault redundancy can be loosely classified into three groups: soft-
ware redundancy, hardware redundancy and run-time redundancy.



Each of these approaches have their advantages, and typically trade
off between time (critical path delay and processing/application
time) and resources (silicon area, external storage, etc). Our ap-
proach is a combination of software and hardware redundancy.

2.1. Software-based Redundancy

In a software redundancy approach, CAD tools are used to map
around faulty resources. This method typically has no hardware
overhead. The effectiveness and efficiency of correction is depen-
dent on the abilities of the CAD tools. Furthermore, this method
is impractical in a production environment because: 1) generating
a unique placement and routing solution for each FPGA is time-
consuming, and 2) verifying timing of each solution is impossible.

Xilinx solves these problems with their EasyPath [20] technol-
ogy. Rather than forcing the configuration bitstream to avoid the
defects, Xilinx forces the defects to avoid the bitstream. They do
this by obtaining the customer’s final bitstream and selecting chips
which contain defects only in the unused portions of the chip.

Two other approaches have been proposed to solve these prob-
lems. The first method is to precompute a number of placement and
routing solutions for a particular design. Each precomputed solu-
tion differs by its resource usage. When programming a defective
chip, defect correction simply involves selecting the appropriate
solution (one that does not use the defective resource(s)) [12, 13].

The second method requires the reservation of spare resources.
By carefully avoiding the use of certain resources, it is possible to
avoid defects by “shifting” the entire design [9] by one row or col-
umn in the array. Design shifting can be applied in a relatively
short amount of time. Without special hardware support, however,
shifting results in a slight variance in IO timing. It can also be com-
plicated by heterogeneous (memory or DSP) blocks in the array.
Furthermore, to support multiple defects, they must be perfectly
aligned to the spare locations.

2.2. Hardware-based Redundancy

Hardware redundancy involves the addition of extra or spare re-
sources. The spare resources allow defective parts to be swapped
with empty spare ones. This exchange reduces correction time
since the time required to swap is typically less than the time needed
to generate a new placement and routing solution.

The spare row and column technique is one of the first hard-
ware redundancy approaches [11] and has been successfully ap-
plied in industry [3]. This method adds one spare row and one
spare column to the layout. It also requires the routing network to
be modified. In the event of a defect, the row or column containing
the defect is bypassed, and the spare row or column is utilized. The
ability to bypass entire rows and columns gives this approach the
ability to tolerate defect clusters. Unfortunately, published research
does not present the delicate circuit details needed to perform the
bypass. Altera patents provide some insight [4] and indicate that
additional circuitry is required for bypassing.

Redundancy can be implemented at a finer level. For example,
additional connections can be added inside the switch block to tol-
erate one transistor defect per switch block [8]. Unfortunately, this
approach is impractical because it significantly alters delay.

2.3. Run-time Fault Tolerance

Fault tolerance can also be addressed during run-time. As tran-
sistor sizes shrink, FPGAs become susceptible to transient faults

such as single event upsets [5, 10]. To alleviate this problem, tech-
niques have been developed to detect and correct transient errors
through reprogramming or bit scrubbing [2, 7]. However, it is not
clear whether these techniques can be extended to correct perma-
nent manufacturing defects; simply reprogramming is insufficient.

2.4. New Approach

The proposed approach is a combination of software and hardware
redundancy. Additional routing resources are added to facilitate
and simplify defect correction. A new switch block design al-
lows defects to be bypassed by computing a new configuration for
a small, localized part of the FPGA. This ensures that areas out-
side of the neighbourhood of the first defect can still tolerate other
defects. The affected neighbourhood is so small that defect cor-
rection can be achieved by modifying the configuration bitstream
alone. The defect correction also introduces minimal timing dis-
turbances.

3. ARCHITECTURE AND IMPLEMENTATION DETAILS

This section describes the architecture and implementation details
of our approach, the type of defects we consider, how defect cor-
rection is applied, and the limitations of our design.

3.1. Switch Block Changes for Defect Tolerance

The proposed defect redundant switch block builds upon the direc-
tional switch block described in [16], which is not defect tolerant.
Figure 2 shows both a detailed and high-level representation of the
directional switch for length 1 wires. In the high-level representa-
tion, individual wires and buffers are replaced by arrows.

To make this switch block defect tolerant, we wrapped two
layers of multiplexers around the directional switch. This is shown
as the two outer layers in Figure 3. The outer-most layer represents
the shift-avoid layer of multiplexers (omux), and the middle layer
represents the shift-restore layer of multiplexers (imux). Clearly,
this extra multiplexing costs in area (11%+) and delay (15%+).

The omux allows signals to “steer” away from a downstream
defect. By means of these multiplexers, signals routed on track t
can be shifted up to tracks t+1 or t+2. When there is a defect on
track t, the defect is avoided by shifting up all signals routed on
tracks ≥ t. Signals on tracks < t remain in place. Clearly, the
shifting requires that there be spare routing tracks. These spares
incur about 10% area overhead for each spare set, but this amount
diminishes as device channel widths increase.

The imux is used to reverse or restore the shift-avoid action in
an upstream switch block. These multiplexers allow a signal on
track t+1 or t+2 to shift down to track t, thereby nullifying any
upstream shifting action. To keep the effects of track shifting lo-
calized, we have designed the switch block such that any signal
leaving a perturbed neighbourhood can be restored to the original
track number. This localization allows our architecture to tolerate
multiple distributed defects.

To reduce the delay of long nets, a bypass path similar to [17]
is introduced into the switch block. This bypass path connects
a straight-through wire endpoint directly with the corresponding
omux on the opposite side of the switch block. Bypassing the imux
and the directional switch creates an alternate, reduced delay path
for signals travelling across a channel.
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Fig. 2. Directional switch block.

3.2. Switch Block Changes for Area Reduction

In an attempt to reduce area and delay overhead, we considered re-
ducing the flexibility of the directional switch, Fs. Fs is the num-
ber of other wires connected to a given switch block wire [18]. By
decreasing Fs, we can shrink the size of the multiplexers in the
switch, hence improving both area and delay. With long wires, the
flexibility at the end switch blocks or endpoints is different than at
the middle switch blocks or midpoints. We considered the follow-
ing switch flexibilities:

1. The E3M2 switch is the directional switch described in [16].
It has Fs = 3 for endpoints and Fs = 2 for midpoints.

2. The E3M1 switch also uses Fs = 3 at endpoints. How-
ever, midpoints are reduced to Fs = 1, meaning they can
only turn either left or right (not both). The turn direction
alternates along the length of a wire.

3. The E2M1 switch has Fs = 2 for endpoints and Fs = 1 for
midpoints. Endpoints include only straight-through connec-
tions. Turns are handled in the same manner as E3M1.

3.3. Connection Block Changes

As a consequence of track shifting, signals that were once routed
on track t can now reside on tracks t+1 or t+2. To accommodate
for this variability, the connection block must also be modified.
In our architecture, the CLB outputs do not need to be modified
because they are already fully connected to all of the tracks. How-
ever, the CLB input connectivity is increased by adding the addi-
tional required connections to the shifted tracks. This modification
is shown in Figure 4ab.

Initially, the CLB inputs are connected to half of the routing
tracks. To adjust for the track shifting, for every track t that is
connected to a CLB input, we ensure that tracks t+1 and t+2 are
also connected to the input. Thus, if a signal gets shifted up by
1 or 2, the CLB can still extract the correct signal. Clearly, we
can reduce this overhead by maximizing the number of consecutive
tracks that are connected to a particular CLB input, as shown in
Figure 4c. However, this optimization is left for future work.
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Fig. 3. High-level view of defect-tolerant switch block.
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Fig. 4. Connection block modifications.

3.4. Supported Defects

With our schemes, interconnect defects can be categorized into
three disjoint classes: single-length, double-length and intolerable
defects. Examples of the first two classes are shown in Figure 5.

For example, if an open or stuck-at fault occurs on the wire, or
there is a stuck-at fault in the wire driver or the output of the omux,
the defect is a single-length defect. In this case, one switch block
avoids the defect and all adjacent “downstream” switch blocks do
the restore. This kind of defect is isolated to one wire length. Fig-
ure 5a demonstrates how a single-length defect is corrected using
two parallel straight-through signals. With single-length defects,
the change is purely localized in the channel to a group of wires
with common start and ending points in the array. Such a group of
wires is called a trackgroup.

If a defect is found in any of the multiplexers (aside from the
output of the omux), the defect is categorized as a double-length
defect. Due to their location, these defects actually impair the
defect-correcting ability of the current switch block. To fix this,
the switch block of the adjacent “upstream” trackgroup is used to
avoid the defect, and the downstream switch blocks do the restore.
Hence, this kind of defect requires two wire lengths to correct.

Figure 5b indicates how a double-length defect spans two ad-
jacent trackgroups: the upstream trackgroup on the left, and the
defective one on the right. In fact, for this example there are addi-
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tional upstream switch blocks (above and below) that reside in the
vertical channel. As shown in Figure 6a, contention arises when
a straight-through signal is shifted up onto a track that is expected
to be available for turning signals. To avoid contention, signals on
tracks ≥t in the vertical channel must be shifted before arriving.

All of the switch blocks in the vertical channel within a dis-
tance of one wire length must participate in correcting a double-
length defect. Hence, they must all be defect-free (or contain a
defect in exactly the same track). This results in a fairly large (but
still localized) neighbourhood which must be defect-free.

The upstream pre-shifting just described is one way to solve
the conflict problem with double-length defects. A more robust so-
lution is shown in Figure 6b. Here, the imux is embedded within
the switch block and the internal switch block multiplexers are du-
plicated. This shrinks the requisite defect-free area to just the two
adjacent trackgroups. We find this increases total area by about 4%,
but due to mux sizes this also improves delay by a similar amount.
Multiplexer embedding also produces better yield results.

Wire bridges and certain source-drain shorts in the multiplexer
are usually categorized as double-length defects. These defects
have the potential to render two adjacent tracks as unusable. To
avoid such a defect, the upstream switch block(s) must shift tracks
up by 2 and the downstream switch blocks must shift down by 2.
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Fig. 6. Embedding imux to avoid contention.

If this must be implemented by two +/-1 shifts, the surrounding
neighbourhood that must be defect-free is considerably larger than
the double-length defect situation and this also harms yield.

There exists a class of intolerable defects that is not shown in
Figure 5. This includes power/ground shorts and clusters of de-
fects. The first type of defect cannot be tolerated. However, it is
possible to tolerate the latter by complementing our architecture
with a spare row/column technique, e.g. [11].

3.5. Modes of Operation and True Overhead

Our architecture makes defect redundancy an option to the user.
This means we expect FPGA devices to operate in two modes: nor-
mal defect-tolerant mode and recovery mode.

The normal mode assumes the customer will buy imperfect,
low-cost devices by applying defect correction. In this mode, the
routing software reserves a spare routing track in each trackgroup.1

This reduces the number of routing tracks available to the applica-
tion, but the spares are needed for defect correction. For many ap-
plications which do not stress the routing network, this is an easy
way to lower device cost.

The recovery mode assumes the customer will buy perfect de-
vices at a price premium. In this mode, the routing software uses
the additional imux and omux routing multiplexers to increase the
flexibility of the interconnect. In essence, the router is using the
redundant resources to recover some area/delay efficiency that was
sacrificed when they were added. This mode is used for those few
applications that have high interconnect demands where the result-
ing increase in interconnect flexibility is even more helpful. How-
ever, in this mode, there is no natural ability to tolerate defects.

When recovery mode is used, our results show an increase of
11% in area and 6% in delay. Recovery mode is the true over-

1Two spares are needed for devices with bridging defects, which may
be sold at even lower cost.
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head cost of our redundancy scheme. It is the additional cost im-
posed on aggressive applications with high interconnect demands.

When normal mode is used, the overhead appears to be higher
because spare tracks are also counted as overhead. This is mis-
leading! Applications with low interconnect demands already have
an abundance of unused routing tracks, so this extra capacity is
already built-in. The customer has already paid for these unused
routing tracks, so there is no real end-user cost to supplying them.
Our redundancy scheme merely finds a use for these free tracks by
calling them spare tracks.

3.6. Detailed Transistor-level Design

The transistor circuit model used for HSPICE simulations is shown
in Figure 7. The components in the circuit (from left-to-right) are:
input buffer, directional multiplexer, strengthening buffer, shift-
restore multiplexer (imux), shift-avoid multiplexer (omux), tapered
driver and the wire model with loads.

For area considerations, the directional multiplexer is imple-
mented using a tree of minimum-sized transistors. This allows us
to use encoded control lines and reduce SRAM usage. We also
assumed both true and complemented outputs are available from a
6-transistor SRAM cell.

The omux is implemented using a decoded one-level multi-
plexer of minimum-width pass transistors. Each pass transistor is
controlled by an independent SRAM cell. The motivation for this
is to reduce delay.

We explored 3 different implementations of the imux: decoded,
encoded and embedded. The decoded multiplexer is identical in
implementation as the omux. This kind of multiplexer trades area
for delay. The encoded imux is built like the directional multi-
plexer. It trades delay for area.

As mentioned earlier, it is also possible to embed the imux into
the directional multiplexer. This enhanced multiplexer is built by
duplicating the inputs of the directional multiplexer for track t+1
and t+2, and connecting them to the directional multiplexer for
track t. An embedded imux allows signals to turn and shift at the
same time. This improves yield with double-length defects at the
expense of some area.

By varying the implementation of the imux and shifting ability
of the multiplexers, we obtained 7 different defect-tolerant imple-
mentations. The +/-2 shifts use additional area to improve yield of
bridging defects. The attributes and differences between the switch
implementations are summarized in Table 1.

The area and delay performance of the implementations are
also sensitive to the precise transistor-level circuit design of the

Arch. imux implementation imux “-2” shift omux “+2” shift
EM22 embedded Y Y
EM12 embedded N Y
EM11 embedded N N
FL22 flat Y Y
EN22 encoded Y Y
EN12 encoded N Y
EN11 encoded N N

Table 1. Defect-tolerant switch implementations.

multiplexers and buffers. We used the procedures described in [15,
16] to determine the best transistor sizes for lowest area-delay prod-
uct. Delay results are computed from HSPICE simulations of TSMC’s
180nm technology.

3.7. Limitations

In order to implement our redundancy scheme, we assume that
FPGA and VLSI testing strategies can identify the defect locations
to produce a defect map. This map may be provided by the vendor
or even generated by the user. Furthermore, the defect map does
not need to be overly detailed. For each defect, it must identify the
wire segment location in the array (x, y and track numbers) and
type (single- or double-length). Bridges are adjacent defect pairs.

Our method of dealing with bridging defects assumes that rout-
ing tracks within the same channel are laid out beside one another.
This may not be a realistic assumption since there are many factors
that influence the layout of an FPGA. Our solution should only
be viewed as a general approach. To fully protect an FPGA from
bridging defects, the final FPGA layout must be considered.

As described earlier, defects must be surrounded by some defect-
free resources for successful repair. As a result, our approach can-
not tolerate clusters or closely-spaced defects. To reconcile this
shortcoming, it is possible to complement our architecture with a
spare row/column technique [11].

Finally, defects in the logic block have been ignored in this
paper. This issue has been addressed in the past [12, 13, 14]. We
feel these techniques, or a spare row/column technique, can be used
to complement our interconnect-based schemes.

3.8. Trade-offs

In our architecture, area and delay trade-offs can be made in two
places. First, the implementation of multiplexers can be varied: re-
ducing multiplexer levels by flattening increases area but improves
delay. Second, the addition of a bypass path also increases area but
improves delay.

Next, there are trade-offs between the amount of defect toler-
ance (yield) and area or delay. First, we can eliminate the ability to
shift by two. This reduces the size of the shifting multiplexers. To
continue to tolerate bridging and source-drain shorts, we require
two +1 shifts followed by two -1 shifts. In fact, any combination of
shifts, a +2 shift followed by two -1, two +1 followed by a -2 is ac-
ceptable. However, changing the shifting nature of the architecture
increases the number of defect classes and the repair length. An
increase in repair length negatively affects the number of defects
we can tolerate. Second, usage of the bypass path improves delay,
but this increases the repair length and consequently lowers yield.
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4. RESULTS

The new architectural features were incorporated into an enhanced
version of the VPR place and route tool, VPRx [16], which now
supports directional wires [15]. VPRx was then used to map the 20
largest MCNC benchmark circuits [1] into an island-style FPGA
consisting of directional length 4 wires and CLBs containing eight
4-input LUTs. The area and critical path delay results we present
are the geometric averages of all benchmarks as reported by VPRx.
The yield results were obtained from Monte Carlo simulations.

4.1. Area

Routing experiments with non-defect tolerant switch blocks indi-
cated that the directional switch E3M1 uses 1.5% less area than
E3M2 and E3M1. The average critical path delay for E3M1 was
also 4.5% lower than the other two architectures. In comparison,
the average channel width increased by 3.2% and 8.9% for E3M1
and E2M1, respectively. Hence, we selected the non-defect tolerant
E3M1 to be the basis for all area and delay normalization (=1.0).

Figure 8 presents the average area overhead for the defect-
tolerant switch blocks. The results have been normalized to the
non-defect tolerant E3M1, the best alternative without defect toler-
ance. When routing the design in normal mode, two spare sets of
wires were added in the channel for the 7 architectures that tolerate
bridging defects. Only one spare set of wires is inserted for the
architectures that do not tolerate bridging defects (2 architectures
with -NB). These spare wires were not used during routing. The
EN11-E3M1 architecture was the most area-efficient, having an
area overhead of 24% for non-bridging defects and 34% for bridg-
ing defects. The difference in area cost (10%) is one set of spare
wires. Notice that the second-best area architecture, EM11-E3M1,
needs +4% to embed the imux but it tolerates more defects.

We should note that we do not compare our area results to the
traditional spare row/column approach. Although the area over-
head of spare rows/columns is very clear, the additional circuitry
required within each CLB to bypass a faulty row/column is non-
trivial and is not reported in previous work.
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4.2. Delay

The average critical path delay for each architecture is shown in
Figure 9. These numbers were obtained by rerouting the 20 bench-
mark circuits using a channel width equal to the minimum channel
width obtained from the defect-tolerant area investigation plus one
additional set of wires. Unlike the spare wires that are held in re-
serve, the router was allowed to use this new set of wires to relieve
delay increases caused by congestion. Our experiment indicated
that the EM11-E3M2 architecture gave the lowest average critical
path delay overhead of 15%. Overhead for the non-embedded ver-
sion, EN11-E3M1 was 24%.

Figure 9 also shows the importance of the bypass path. Re-
sults without the bypass are labelled -NRST (no route on straight
through) and experience higher delay. However, section 4.4 below
explains why using the bypass negatively impacts yield.

4.3. Area and Delay Recovery

Next, we explored the true area and delay overhead by using the
routing tool in recovery mode. In general, we observed that the
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router needs lower channel widths for defect-tolerant architectures
in recovery mode than non-defect-tolerant architectures. Hence,
the additional multiplexers do help improve interconnect flexibility.

Figure 8 shows the true area overhead for our defect-tolerant
implementations in recovery mode. The EN11-E3M1 architecture
demonstrated the lowest area overhead of 11%.

The critical path delay overhead in recovery mode is shown in
Figure 9. The EM11-E3M2 architecture demonstrated the lowest
true delay overhead of 5%.

Using the delay and area results obtained from the previous
two experiments, we computed the area-delay product for each
architecture in recovery mode. Figure 10 shows that the EM11-
E3M1 architecture produced the lowest area-delay product.

4.4. Failure Analysis

In addition to comparing the defect tolerance of the different im-
plementations of our architecture, we also compared the expected
yield of our approach to an architecture containing both one spare
row and one spare column. The ability to swap a row and a column
allows the latter architecture to tolerate multiple defects within the
same channel. However, as the array size grows, it becomes in-
creasingly unlikely that a second defect lies in the same row/column.
Hence, this architecture fails when there are defects in two (or
more) different rows or columns.

Yield estimates were obtained through Monte Carlo simula-
tions. For a given number of defects, random faults were injected
into the interconnects for 100,000 different FPGA dies. When a de-
fect is injected into the FPGA, its trackgroup was marked. Neigh-
bouring trackgroups that must also be perfect to ensure successful
defect correction were also marked. The first defect was always
tolerable, but yield failure occurs when a new defect lands in a lo-
cation that was previously marked.

To simplify our results, we fixed the switch block flexibility at
E3M1 since this generally produced the best area, delay and area-
delay product results. We also fixed the channel width at 80 tracks,
and initially fixed the FPGA array size M × M to M = 33.

Figure 11 shows the result of our yield analysis for single-
length defects (SLD, best case) and double-length bridging defects
(BD, worst case). BD are worst-case because implementations
without +/-2 shifting ability need larger regions to be defect-free.
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Fig. 12. Yield comparison of defect-tolerant implementations.
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In practice, the actual yield will lie somewhere between the SLD
and BD curves. This could be determined using real manufacturing
data.

Figure 12 shows a yield comparison between our 7 switch im-
plementations for double-length bridging defects.

Figure 13 shows that our least-favourable architecture can tol-
erate an increasing number of the worst-case defects as the array
size scales (M is increased). The spare row/column approach does
not scale beyond 2 defects at all. This is important because it is an-
ticipated that devices manufactured in future process generations
will have multiple interconnect faults [6].

In these yield estimates, we are overly optimistic in two ways.
First, our results assume all implementations use the same area.
We anticipate that tolerating multiple defects significantly offsets
the area overhead and ultimately leads to an increase in ‘good die
per wafer’. Second, our yield results assume the ‘delay bypass’
path of the omux is not being utilized. If it is utilized, then we must
either: (a) perturb timing when correcting a defect, or (b) limit
device defects to one-per-channel (instead of per-trackgroup) and
use the embedded imux.
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Arch Area Delay Area Recovery Delay Recovery Yield
EM22 7 3 7 3 1
EN22 4 7 4 7 2
FL22 6 6 5 6 2
EM12 5 2 6 1 4
EM11 2 1 2 2 5
EN12 3 5 3 5 6
EN11 1 4 1 4 7

Table 2. Summary ranking of defect-tolerant schemes w/ E3M1.

5. CONCLUSIONS

This paper is the first detailed study of the true area and delay over-
heads required for a hardware-based fine-grained defect-tolerant
interconnect scheme in FPGAs.

We presented a new defect-tolerant switch block and connec-
tion block architecture that can tolerate an increasing number of
permanent manufacturing defects as the FPGA array size scales
up. Our proposed scheme handles tens of distributed random de-
fects. Previous approaches do not scale beyond 2 distributed de-
fects. However, previous approaches are much better for clustered
defects.

Our approach has a true area overhead of approximately 11%
and delay overhead of 4% on aggressive applications that do not
wish to be defect-tolerant.

When defect-tolerance is desired, it is tempting to include the
cost of reserving a spare track. This increases area overhead to
25–40% and delay overhead to 15–25%. However, we note that
less aggressive applications will already have these spare (unused)
routing tracks available for free, so the actual cost is much closer
to the true area overhead.

We have presented a range of implementation options that have
a range of area and delay costs. Of these options, EN11-E3M1
has the lowest area, EM11-E3M2 has the lowest delay, and EM22-
E3M1 has the highest yield.

Table 2 ranks the defect-tolerant switch implementations in
terms of area, delay, area recovery, delay recovery, and yield. Fig-
ure 14 gives another view of the area/delay overhead and yield per-
formance of the implementations.

6. REFERENCES

[1] Lgsynth93 benchmark set: Version 4.0. Technical report,
Collaborative Benchmarking Laboratory, 1993.

[2] M. Abramovici, J. M. Emmert, and C. E. Stroud. Roving
stars: An integrated approach to on-line testing, diagnosis,
and fault tolerance for FPGAs. In NASA/DoD Workshop on
Evolvable Hardware, 2001.

[3] Altera Corp. Altera’s patented redundancy technology dra-
matically increases yields on high-density APEX 20KE de-
vices. In Press Release, Nov. 27 2000.

[4] Altera Corp. In United States patents 6,034,536, 6,166,559,
6,337,578, 6,344,755, 6,600,337 and 6,759,871, 2000–2004.

[5] G. Asadi and M. B. Tahoori. Soft error rate estimation and
mitigation for SRAM-based FPGAs. In FPGA, pages 149–
160. ACM Press, 2005.

[6] N. Campregher et al. Analysis of yield loss due to random
photolithographic defects in the interconnect structure of FP-
GAs. In FPGA, pages 138–148, February 2005.

[7] C. Carmichael, M. Caffrey, and A. Salazar. Correcting single-
event upsets through Virtex partial configuration. In Xilinx
Application Notes, XAPP216 (v1.0), 2000.

[8] A. Doumar and H. Ito. Design of switching blocks tolerating
defects/faults in FPGA interconnection resources. In IEEE
Symp. on Defect and Fault-Tolerance, pages 134–142, 2000.

[9] A. Doumar, S. Kaneko, and H. Ito. Defect and fault tolerance
FPGAs by shifting the configuration data. In IEEE Symp. on
Defect and Fault-Tolerance, pages 377–385, 1999.

[10] S. Hareland et al. Impact of CMOS process scaling and SOI
on the soft error rates of logic processes. In IEEE Nuclear
and Space Radiation Effects Conference, pages 73–74, 2001.

[11] F. Hatori, T. Sakurai, et al. Introducing redundancy in FP-
GAs. In Custom Integrated Circuits Conference, 1993.

[12] W.-J. Huang and E. McCluskey. Column-based precompiled
configuration technique for FPGA fault tolerance. In Field
Programmable Custom Computing Machines, 2001.

[13] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Effi-
ciently supporting fault-tolerance in FPGAs. In FPGA, pages
105–115. ACM Press, 1998.

[14] V. Lakamraju and R. Tessier. Tolerating operational faults in
cluster-based FPGAs. In FPGA, pages 187–194, 2000.

[15] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional
and single-driver wires in FPGA interconnect. In Field-
Programmable Technology, 2004.

[16] G. Lemieux and D. Lewis. Design of Interconnection Net-
works for Programmable Logic. Kluwer, 2004.

[17] D. Lewis, E. Ahmed, et al. The Stratix II logic and routing
architecture. In FPGA, pages 14–20, February 2005.

[18] J. Rose and S. Brown. Flexibility of interconnection struc-
tures in FPGAs. J. of Solid State Circuits.

[19] S. J. E. Wilton. A crosstalk-aware timing-driven router for
FPGAs. In FPGA, pages 21–28. ACM Press, 2001.

[20] Xilinx, San Jose, CA. EasyPath Solutions, 2005.
http://www.xilinx.com/products/easypath/.


