
Cache Abstraction for Data Race Detection in
Heterogeneous Systems with Non-coherent

Accelerators
May Young

Department of Computer Science
University of British Columbia

Canada
youngmay@cs.ubc.ca

Alan J. Hu
Department of Computer Science
University of British Columbia

Canada
ajh@cs.ubc.ca

Guy G. F. Lemieux
Department of Electrical and

Computer Engineering
University of British Columbia

Canada
lemieux@ece.ubc.ca

Abstract
Embedded systems are becoming increasingly complex and
heterogeneous, featuring multiple processor cores (which
might themselves be heterogeneous) as well as specialized
hardware accelerators, all accessing shared memory. Many
accelerators are non-coherent (i.e., do not support hardware
cache coherence) because it reduces hardware complexity,
cost, and power consumption, while potentially offering
superior performance. However, the disadvantage of non-
coherence is that the software must explicitly synchronize
between accelerators and processors, and this synchroniza-
tion is notoriously error-prone.

We propose an analysis technique to find data races in soft-
ware for heterogeneous systems that include non-coherent
accelerators. Our approach builds on classical results for data
race detection, but the challenge turns out to be analyzing
cache behavior rather than the behavior of the non-coherent
accelerators. Accordingly, our central contribution is a novel,
sound (data-race-preserving) abstraction of cache behavior.
We prove our abstraction sound, and then to demonstrate
the precision of our abstraction, we implement it in a simple
dynamic race detector for a system with a processor and
a massively parallel accelerator provided by a commercial
FPGA-based accelerator vendor. On eleven software exam-
ples provided by the vendor, the tool had zero false positives
and was able to detect previously unknown data races in 2
of the 11 examples.

CCS Concepts: • Software and its engineering → Soft-
ware verification and validation; • Computer systems
organization → Heterogeneous (hybrid) systems; Em-
bedded software.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
LCTES ’21, June 22, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8472-8/21/06.
https://doi.org/10.1145/3461648.3463856

Keywords: Data Race, Hardware Accelerator, Memory Co-
herence, Caching

ACM Reference Format:
May Young, Alan J. Hu, and Guy G. F. Lemieux. 2021. Cache Ab-
straction for Data Race Detection in Heterogeneous Systems with
Non-coherent Accelerators. In Proceedings of the 22nd ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’21), June 22, 2021, Virtual,
Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3461648.3463856

1 Introduction
Embedded systems are becoming increasingly complex and
heterogeneous, with multiple processor cores and diverse
accelerators [10, 25]. Common accelerators include GPUs,
TPUs, specialized processors for software-defined network-
ing, and FPGAs to allow acceleration of arbitrary user-
specified computations. With the rise of open ISAs like RISC-
V and agile hardware development, even processor cores will
increasingly be customized and heterogeneous, with custom
instructions for specific computations.

Accelerators and processors commonly communicate via
shared memory, creating the problem of memory coherence:
how to prevent processors and accelerators from accessing
stale data. One solution is to require all processors and all ac-
celerators to support a common, hardware cache-coherence
protocol. Non-coherent accelerators, however, offer several
advantages: simpler hardware, lower cost, and lower power
consumption. Non-coherent accelerators can also achieve
higher performance (e.g., up to 3x [9]) by performing coher-
ence actions only when necessary and by using the higher
throughput of large DMA bursts. Furthermore, even if we
wish to support hardware cache coherence in an accelerator,
the computational patterns within the accelerator can be
very different from those in CPUs, necessitating different
cache coherence protocols [22], and creating the possibility
of mutually non-coherent coherence domains.
Thus, the burden of coherence shifts to software, which

must insert cache flushing and synchronization instructions
into application programs (or into library code that tries to

https://doi.org/10.1145/3461648.3463856
https://doi.org/10.1145/3461648.3463856
https://doi.org/10.1145/3461648.3463856

LCTES ’21, June 22, 2021, Virtual, Canada May Young, Alan J. Hu, and Guy G. F. Lemieux

hide this complexity). Too much flushing or synchroniza-
tion results in poor performance. Too little or incorrect syn-
chronization results in bugs, often notoriously hard-to-find,
irreproducible, non-deterministic, concurrency bugs.

Data races are a major source of concurrency bugs. A data
race occurs when there are two (or more) operations affect-
ing a memory location, of which at least one is a write, whose
order of occurrence isn’t fixed by the program [3]. The impor-
tance of data race detection has spawned an extensive and
highly impactful body of research on their detection (briefly
surveyed in Sec. 5), and manifested in widely deployed tools
like Thread Sanitizer [20] and TSVD [12].
All prior work, however, has neglected the problem of

data races arising from the interaction of caching and non-
coherent memory accesses. This omission is understandable
— the whole point of cache coherence is to maintain the
abstraction of an atomic shared memory, which allows soft-
ware (and data race analysis of software) to ignore caching
altogether. Unfortunately, heterogeneous systems mixing
coherent and non-coherent memory accesses break this ab-
straction, and this problem has become important with the
proliferation of non-coherent accelerators. For example, both
CUDA and OpenCL require that caching be disabled or ex-
plicit coherence operations be performed if an application
requires a memory operation to be visible across all proces-
sors and accelerators [22].
Although the importance of the problem is due to non-

coherent accelerators, the root cause of the problem is ac-
tually the caches. Non-coherent memory accesses behave
exactly as existing data race theory expects: as explicit reads,
writes, and synchronizations through a shared atomic mem-
ory. Even (non-cached) accesses to a local memory shared
among parts of an accelerator can be handled this way. The
problem with caching is that caches can generate reads or
writes to shared memory at unpredictable times, due to cache
line allocations, evictions, pre-fetching, writebacks, etc. To
employ existing data race analyses, one could conceivably
emulate the caches using software threads that model all
possible behaviors of the specific caches in a heterogeneous
system, and then analyze the resulting software combination.
However, such an ad hoc approach is labor-intensive, and
error-prone, with no guarantee of soundness.
In this paper, we introduce the first systematic approach

to find data races arising from the interaction of cached
memory accesses and non-coherent memory accesses (or
accesses from a different coherence domain), as arise in het-
erogeneous systemswith non-coherent accelerators. Because
the analysis of cache behavior is the root problem, our cen-
tral contribution is a novel abstraction of cache behavior,
which we prove to be sound (i.e., any data race in an ex-
ecution is guaranteed to be detected). To demonstrate the
precision of our abstraction, we implement it in a simple,
proof-of-concept dynamic race detector for a commercial,
FPGA-based accelerator, and find zero false positives while

discovering two previously unknown races in code published
by the vendor.

2 Example
For a concrete example, consider the code in Fig. 1, for a
simple, heterogeneous system consisting of a single scalar
CPU and a single vector accelerator (Fig. 2). (Details are in
the figure captions.)
This is actual code from a test/demonstration program

formerly supplied with the SDK for the VectorBlox MXP
FPGA-based matrix accelerator.1 The VectorBlox API is con-
veniently simple, but it captures all of the issues that arise in
more complicated APIs like CUDA or OpenCL: cached and
uncached accesses to memory from CPU or accelerator, as
well as synchronization and cache management instructions.
We will use this code and this API as a running example
throughout this paper.
It is important to note that VectorBlox API functions are

non-blocking and therefore execute asynchronously to the
CPU program order. Internally, the MXP hardware places
vector-compute requests and vector-DMA requests in sepa-
rate queues and executes each queue in FIFO order. Between
queues, it detects read-after-write hazards and uses inter-
locks to maintain program order.
Even this simple code uses two types of synchronization

to avoid data races. The vbx_sync() on line 27 stalls the
CPU until the accelerator has completed all outstanding re-
quests. It is necessary to prevent a data race between when
the DMA engine writes vector_out on line 26 and when
the CPU reads vector_out on line 29, because otherwise,
the CPU might (or might not) reach line 29 before the accel-
erator completes the DMA requested in line 26. The other
synchronization happens because the vector_ variables are
specified as uncached. If they had been allowed to be ac-
cessed via cached reads and writes (which would improve
performance in lines 14, 17 and 19), the cached values for
vector_in1 and vector_in2 might not be written back to
memory in time for the DMAs on lines 23–24. An alternative
to specifying the uncached memory accesses would be to
insert flush instructions before line 23. Getting the synchro-
nization correct to eliminate data races is notoriously hard —
in fact, our analysis discovered a previously unknown data
race even in this simple example (described in Sec. 4.4).

3 Theoretical Framework
3.1 Happens-Before Graph
A data race is defined as two (or more) operations on a mem-
ory location, of which at least one is a write, whose order of

1 The code presented here has been modified slightly for brevity and clarity.
VectorBlox was acquired by Microchip Technology in late 2019. Although
the original SDK is no longer online, a copy of the SDK can be found at
http://www.github.com/ubc-guy/mxp.

http://www.github.com/ubc-guy/mxp

Cache Abstraction for Data Race Detection in Heterogeneous Systems with Non-coherent Accelerators LCTES ’21, June 22, 2021, Virtual, Canada

1 vbx_mm_t *scalar_in1 = malloc(N*sizeof(vbx_mm_t));

2 vbx_mm_t *scalar_in2 = malloc(N*sizeof(vbx_mm_t));

3 vbx_mm_t *scalar_out = malloc(N*sizeof(vbx_mm_t));

4
5 vbx_mm_t *vector_in1 = vbx_shared_malloc(N*sizeof(vbx_mm_t));

6 vbx_mm_t *vector_in2 = vbx_shared_malloc(N*sizeof(vbx_mm_t));

7 vbx_mm_t *vector_out = vbx_shared_malloc(N*sizeof(vbx_mm_t));

8
9 vbx_sp_t *v_in1 = vbx_sp_malloc(N*sizeof(vbx_sp_t));

10 vbx_sp_t *v_in2 = vbx_sp_malloc(N*sizeof(vbx_sp_t));

11 vbx_sp_t *v_out = vbx_sp_malloc(N*sizeof(vbx_sp_t));

12
13 test_zero_array(scalar_out , N);

14 test_zero_array(vector_out , N);

15
16 test_init_array(scalar_in1 , N, 1);

17 test_copy_array(vector_in1 , scalar_in1 , N);

18 test_init_array(scalar_in2 , N, 1);

19 test_copy_array(vector_in2 , scalar_in2 , N);

20
21 scalar_time = test_scalar(scalar_out , scalar_in1 , scalar_in2 , N);

22
23 vbx_dma_to_vector(v_in1 , (void *)vector_in1 , N*sizeof(vbx_sp_t));

24 vbx_dma_to_vector(v_in2 , (void *)vector_in1 , N*sizeof(vbx_sp_t));

25 test_vector(v_out , v_in1 , v_in2 , N, scalar_time);

26 vbx_dma_to_host((void *)vector_out , v_out , N*sizeof(vbx_sp_t));

27 vbx_sync ();

28
29 errors += test_verify_array(scalar_out , vector_out , N);

Figure 1. Example Code for CPU with Vector Accelerator. This code is part of a test program in the SDK of the VectorBlox
MXP.2 The CPU (with cache) and the vector accelerator (with non-coherent scratchpad memory) communicate via shared
memory. The code performs the same vector addition twice, once on the CPU and once on the vector accelerator, to demonstrate
the programming model and speedup. Lines 1–3 allocate 3 vectors in main memory. The names start with scalar_ because
they are intended for the scalar CPU to perform the vector addition. Lines 5–7 allocate 3 more vectors, also in main memory.
These are intended for communication with the vector accelerator, and the vbx_shared_malloc directive tells the compiler
to require the CPU to use uncached reads and writes when accessing these locations. Lines 9–11 allocate 3 vectors in the
accelerator’s private scratchpad memory. Lines 13–19 initialize the input and output vectors in the main memory. Line 21 calls
a function for the scalar CPU to iterate through its vectors, performing the vector addition. Lines 23–26 perform the same
vector addition using the accelerator. This entails the CPU requesting the accelerator to use DMA to copy the input vectors
into its scratchpad memory (lines 23–24), perform the vector addition in the scratchpad (line 25), and use DMA to copy the
result back into shared memory (line 26). Requests from the CPU to the accelerator are non-blocking, so the sync on line 27
stalls the CPU until the accelerator finishes. Line 29 compares the results from the scalar CPU and vector accelerator to check
for errors. The code appears to be properly synchronized to avoid data races between the CPU and accelerator.

occurence isn’t determined. Therefore, any data race anal-
ysis must reason about when two operations must be or
might not be ordered, and hence we start with Lamport’s
happens-before relation [11]. The happens-before relation,
which we’ll denote by 𝑥 → 𝑦, is a strict, partial order on the
events in a system’s execution. It captures all ordering that
must occur between the events in the execution. So, if 𝑥 → 𝑦,
it means event 𝑥 must occur before event𝑦, regardless of any

possible reordering of concurrent actions, non-determinism,
etc. We can define the happens-before relation as the transi-
tive closure of the program order for each thread of execution
(i.e., the order of the instructions as they are executed by

2https://github.com/ubc-guy/mxp/blob/master/examples/software/
bmark/vbw_vec_add_t/test.c

https://github.com/ubc-guy/mxp/blob/master/examples/software/bmark/vbw_vec_add_t/test.c
https://github.com/ubc-guy/mxp/blob/master/examples/software/bmark/vbw_vec_add_t/test.c

LCTES ’21, June 22, 2021, Virtual, Canada May Young, Alan J. Hu, and Guy G. F. Lemieux

D$

I$
RISC
CPU

MXP Instruction

& DMA Queue

Custom

Instruction Port

MXP Vector Engine

& Scratchpad

AXI

Interconnect

MXP DMA

Engine

MasterSlave

Main

Memory

(DRAM)

VectorBlox MXP Matrix Processor

Figure 2. Example Heterogenous System with Accelerator.
The code in Fig. 1 was written for an embedded systemwith a
VectorBlox MXP [21] accelerator (with non-coherent scratch-
pad) and scalar CPU with caches (configurable with Vector-
Blox ORCA (RISC-V), Altera Nios II, or Xilinx MicroBlaze
soft cores, or ARM Cortex-A9 or A53 hard cores), connecting
to main memory through an AXI interconnect. The CPU
sends the accelerator requests through a custom instruction
port, but data transfers occur through main memory.

do_dma_read vec_in1

do_dma_read vec_in2 dma_r vec_in1

dma_r vec_in2

Figure 3. Example Graph of Happens-Before Relation. The
do_dma_read nodes are CPU operations requesting that the
accelerator perform a DMA read, and the dma_r nodes are
when the accelerator actually does the read.

a CPU or accelerator3) and any causal ordering, where one
event causes or enables the other event.

For example, in the code listing in Sec. 2, the program or-
der on the CPU says that line 1 happens before line 2, which
happens before line 3, etc. An example of causal ordering is
that on line 23, the CPU executes an instruction (which is
ordered in program order on the CPU), which requests the
accelerator to perform a DMA operation at some later time.
So, the CPU request happens before (causally) the DMA op-
eration. However, the request is non-blocking, so the DMA
operation itself is unordered with respect to the next CPU op-
eration on line 24. The VectorBlox MXP accelerator performs
operations in-order, so there would also be a program order
relationship between when the accelerator performs the two
3 This definition assumes sequential consistency. The soft CPU cores and
VectorBlox accelerator are in-order, so they meet this assumption. With
a relaxed memory model, defining happens-before is more subtle, but es-
sentially, entails removing program order edges as allowed by the memory
model (e.g., [4] for the ARM). Alternatively, we can use the order in which
operations appear at the memory interface of the CPU.

DMA operations. Fig. 3 shows the Hasse diagram for these
four operations. For convenience, we will refer to “graphs”
and “edges” interchangeably with partial order terminology.

3.2 Idioms for Shared Memory Access
Data race detection reduces to building the happens-before
graph (or an efficient abstraction) and checking for two un-
ordered nodes that access the same memory location, of
which at least one is a write. In the classical literature on
data race detection, the nodes correspond to memory reads
and writes, which are assumed to happen atomically. In a het-
erogeneous system, with different types of memory accesses,
we must model memory operations more precisely.

Fortunately, we’ve found that main memory accesses fall
into just a few idiomatic categories: CPUs make cached and
uncached reads and writes, and non-coherent accelerators
access main memory via DMA or other uncached transfers.
Also, CPUs make requests to accelerators, and there are sync
or barrier instructions to stall a thread until completion of
requested actions. Cache flushing instructions can be used
to force writebacks. For all of these operations except cached
reads/writes, the rules for generating the happens-before
graph are straightforward. Uncached reads and writes create
nodes in the happens-before graph exactly as in classical
data race analysis. DMA reads and writes do, too, except that
there is an additional causal edge from the node requesting
the DMA to the node performing the DMA (e.g., Fig. 3). Pro-
gram order edges connect consecutive operations performed
by a single thread or by an in-order accelerator. Synchro-
nization/barrier instructions relate different program orders:
they take their place in the program order of the thread that
executes them, but they have causal edge from all opera-
tions they depend on. Table 1 lists the types of nodes in our
happens-before graphs for the simple VectorBlox API. (The
cache-related nodes are explained more below.)
Caches are modeled similarly to accelerators: just as the

do_dma_write CPU operation generates a causal edge to
the corresponding dma_w operation on the accelerator, the
cached_write CPU operation generates a causal edge to
the corresponding cw node in the cache, which denotes the
cache accepting the written data. The cache, in turn, would
have a causal edge to a wb writeback node, because the data
will eventually be written back to memory, and it is this wb
operation that accesses main memory and must be checked
for data races (Fig. 4a). Similarly, a cached_read operation
has a causal edge to its cr node in the cache, which denotes
the cache supplying the requested data, and which has a
causal edge to the next instruction in that thread (because
the thread must stall until receiving data). The cr node has
a causal edge from the alloc node that allocated this cache
line from main memory, and it is the alloc node that is
checked for data races (Fig. 4b). Flushing is similar to sync:
the cache_flush node takes its place in the program order,
but has causal edges from all wb nodes for prior cw nodes,

Cache Abstraction for Data Race Detection in Heterogeneous Systems with Non-coherent Accelerators LCTES ’21, June 22, 2021, Virtual, Canada

Table 1. Operations Tracked for the VectorBlox Happens-
Before Graph. All operations (except sync) are parameterized
with the addresses affected.

Type of Node Meaning
cached_read CPU tries to read data from cache.
cr Cache returns data to CPU.
alloc Cache allocates cache line and reads

data from main memory.
cached_write CPU tries to write data to cache.
cw Cache accepts data from CPU.
wb Cache writes back data to main mem-

ory.
cache_flush CPU tells cache to remove data, per-

forming wb if dirty.
uncached_read CPU reads data from main memory,

bypassing cache.
uncached_write CPU writes data to main memory, by-

passing cache.
do_dma_read CPU asks accelerator to read from

main memory.
dma_r Accelerator reads data frommainmem-

ory.
do_dma_write CPU asks accelerator to write to main

memory.
dma_w Accelerator writes data to main mem-

ory.
sync CPU waits for outstanding DMA oper-

ations to complete.

cached_write x

cw x

wb x

(a) The CPU does a cached write, which causes the
cache to accept the data, which eventually generates
a writeback.

alloc x

cr x

cached_read x

(b) The CPU does a cached read, which causes the
cache to supply the data, but that requires the cache
line to have been allocated already.

Figure 4. Basic Modeling of Cached Writes and Reads in
Happens-Before Graph.

cached_read x

cr x

alloc x

cached_read x alloc x

cr x

Figure 5. Did the second alloc happen? If so, we would
have the solid green edges in the graph. If not, we would
have the dashed red edge in the graph, instead. Theorem 3.1
says that it is safe to consider only the first case. The dotted
lines are shorthand that there may be other instructions in
between.

and to all alloc nodes for subsequent cr nodes, to the same
address. Multiple threads/CPUs in a single cache-coherent
domain can be modeled as if accessing a single, shared cache.

3.3 Safely Abstracting Cached Reads and Writes
As noted earlier, the real problem for data race analysis with
mixed coherent and non-coherent memory accesses is the
caches and the unpredictable memory traffic they can gen-
erate. To create a broadly applicable data race analysis, we
must avoid modeling excessive details of specific caches, e.g.,
associativity, eviction and replacement policies, pre-fetching,
etc. These details might change in different hardware con-
figurations, are not reasonable for programmers to depend
on, and are hard to model accurately. On the other hand,
an excessively conservative abstraction will result in too
many false data race detections. We do make the assumption
of writeback caches, which are typical in multiprocessing
systems, although our theory could be modified to handle
writethrough caches. Also, we do require knowledge of the
cache line size and writeback granularity, so that our analy-
sis can correctly compute the memory addresses touched by
cache allocations and writebacks.
Specifically, the challenge is that without modeling ex-

cessive details, it is unknowable when (or even if) certain
cache line allocations or writebacks occur. For example, for
a cached read, the CPU’s cached_read node generates a
causal edge to a cr node, which has a causal edge from an
alloc node, because the cache line must have been allocated
before the value can be returned to the CPU. But maybe that
alloc didn’t happen, because the cache line was already in
the cache and might not have been evicted (e.g., Fig. 5).

There are 4 cases to consider. The first case, a cached read
followed later by a cached write to the same address, requires
no special handling.
The second case is a cached read followed by another

cached read (to the same address) (Fig. 5). Because we don’t

LCTES ’21, June 22, 2021, Virtual, Canada May Young, Alan J. Hu, and Guy G. F. Lemieux

cached_write x

cw x

wb x

cw x

cached_write x

wb x

Figure 6. Did the first writeback happen? If so, the the first
wb node would be in the graph (the solid green edge and wb
node); if not, it wouldn’t. Theorem 3.2 says that it is safe to
consider only the first case. The dotted lines are a reminder
that there may be other instructions in between.

know whether the cache line had been evicted after the first
alloc, we don’t know whether the second alloc happened
or not. Which nodes/edges do we add to the happens-before
graph? For efficiency, we must avoid case-splitting, which
would create an exponential number of graphs to analyze.
Fortunately, we establish the following theorem:

Theorem 3.1. It is safe (i.e., data-race preserving) to build
only the graph with both alloc nodes.

Proof. The second alloc node doesn’t create any additional
ordering in the graph, other than with itself. (The second cr
node is already ordered after the first alloc node, by transi-
tivity.) Therefore, if there were a race with the first alloc
node, then adding the second alloc node can’t eliminate
the race. □

A cached write followed by a cached write produces an
analogous situation (Fig. 6). Did the first write’s wb happen?

Theorem 3.2. It is safe to build only the graph with both wb
nodes.

Proof. Similar to the proof for Theorem 3.1, the first wb node
doesn’t create any additional ordering in the graph, other
than with itself. (The first cw node is already ordered before
the second wb node, by transitivity.) Therefore, if there were
a race with the second wb node, then adding the first wb node
can’t eliminate the race. □

The most interesting case is a cached write followed by
a cached read (Fig. 7). Did the writeback happen before the
cached read occurs. If so, then the cached read needs an
alloc node; if not, then the cache line is still dirty, and
the cr node happens before the wb node. Our solution is to
create a graph that is a safe abstraction of both situations,
even though it doesn’t correspond to actual cache behavior.

cached_write x

cw x

wb x

alloc x

cr x

cached_read x

wb x

Figure 7.Did the cache line get written back? If so, wewould
have the solid green edges in the graph. If not, we would
have the dashed red edges in the graph. The dashdotted blue
edges are part of a safe abstraction. The dotted lines are a
reminder that there may be other instructions in between.

Theorem 3.3. It is safe to build the graph which assumes the
writeback happened, but also add another copy of the wb node
with an edge from the cr node.

Proof. Assuming the writeback happened means adding the
alloc node, which, unlike the earlier proofs, does create new
ordering between nodes, specifically that wb → alloc → cr.
This means that adding the alloc node might eliminate a
race with the original wb node, if the race node happens after
the cr node. However, any such node would now have a race
with the newly created, second wb node that happens after
the cr node. So, this construction is also race-preserving. □

Together, these theorems allow us to abstract away cache
details like associativity, eviction and replacement policies,
and pre-fetching, yet still be guaranteed to detect any possi-
ble races.

3.4 Active Frontier
There is one more challenge for our theoretical framework.
Even a few seconds of execution might generate billions of
memory operations, meaning the full happens-before graph
can be intractably large. To make our analysis scalable, it
must be “on-the-fly”, building the graph incrementally as it
reads the trace file of memory operations, and just as impor-
tantly, deleting older nodes when they become irrelevant. So,
rather than building the entire happens-before graph, the
analysis maintains only an “active frontier” of nodes that
might matter for data races.
For node creation, we maintain an as-soon-as-possible

property: no node is created in the graph until the earliest
point in time when that operation could execute (i.e., when
all nodes that happen before it have already been created),
and the value being read or written is known to be visible
to the CPU or accelerator. The first part of this property is

Cache Abstraction for Data Race Detection in Heterogeneous Systems with Non-coherent Accelerators LCTES ’21, June 22, 2021, Virtual, Canada

𝑦

𝑥
𝑧

race

race?

Figure 8. Illustration of Lemma 3.4. Node 𝑥 is a write node
newly added to the active frontier, and node 𝑦 is a memory
operation to the same address that was already in the active
frontier. If we delete 𝑦 from the active frontier, might we
miss a race between 𝑦 and a node 𝑧 added later? The answer
is that we will still detect a race (between 𝑥 and 𝑧 instead of
between 𝑦 and 𝑧): 𝑧 ̸→ 𝑥 because 𝑥 was added before 𝑧, and
𝑥 ̸→ 𝑧 or else 𝑦 → 𝑥 → 𝑧, which contradicts that 𝑦 and 𝑧

are in a race.

natural and the same as in classical data race analysis. The
italicized part means that an alloc node is created only
when the corresponding cached_read node is created. This
late creation is necessary because when analyzing the prefix
of a trace, in principle, any address might be pre-fetched into
the cache. However, if we were to pre-emptively create these
alloc nodes, we would flag many spurious data races that
have no actual relevance (because the racy value loaded into
the cache would be overwritten before being used).

The policy for node deletion is more complex.Wemaintain
a set of “marked” nodes, which is a set of operations that
read or write shared memory, checking against which is
sufficient to detect a race if the full graph had any races.
To help keep track of program order, it’s also convenient
to mark the latest operation in each program-order thread.
When we add a new node to the graph, we update the set of
marked nodes. Then, any node that is not either marked or
reachable from a marked node via happens-before edges is
deleted.

Lemma 3.4. If a newly added node 𝑥 is a write to shared
memory, we can mark node 𝑥 , and unmark any other read or
write node 𝑦 to the same address and not lose the ability to
detect races in the execution.

Proof. (Fig. 8 illustrates the intuition behind this proof.) First,
if neither 𝑥 → 𝑦 nor𝑦 → 𝑥 , then 𝑥 and𝑦 are in a race, which
we would detect immediately upon adding 𝑥 , and hence we
do not lose the ability to detect races in the execution. Now,
is it possible that 𝑥 → 𝑦? The answer is no, by the as-soon-
as-possible property: the edges from 𝑥 → 𝑦 can’t be program
order edges (because 𝑦 was already in the graph before 𝑥)
and can’t be causal edges (because 𝑦 couldn’t have happened
without 𝑥 in the graph). Therefore, the only remaining case is
when𝑦 → 𝑥 . Suppose that later in the analysis, we encounter
a memory operation 𝑧 that’s in a race with node 𝑦 that we

unmarked in this step. By the same argument that 𝑥 ̸→ 𝑦,
we know that 𝑧 ̸→ 𝑥 . On the other hand, if 𝑥 → 𝑧, then we
have 𝑦 → 𝑥 → 𝑧, which contradicts the fact that 𝑦 and 𝑧 are
in a race. Hence, 𝑥 ̸→ 𝑧 and 𝑧 ̸→ 𝑥 , which means 𝑥 and 𝑧

are in a race. Therefore, we will still detect a race, even if we
delete 𝑦 from the active frontier. □

For read nodes, the ordering relationships are weaker, so
we have a weaker result.

Lemma 3.5. If a newly added node 𝑥 is a read to shared
memory, we can mark node 𝑥 , and unmark any other read
node𝑦 to the same address with𝑦 → 𝑥 , and not lose the ability
to detect races in the execution.

Proof. Suppose that later in the analysis, we encounter a
memory operation 𝑧 (which must be a write) that’s in a race
with a node 𝑦 that we unmarked in this step. By the same
arguments as above, we know that 𝑧 ̸→ 𝑥 (because 𝑥 was
already in the graph) and 𝑥 ̸→ 𝑧 (else 𝑦 → 𝑥 → 𝑧 which
contradicts that 𝑦 and 𝑧 are in a race), which means 𝑥 and 𝑧
are in a race. So, we will still detect a race. □

Lemma 3.6. We can delete any unmarked node 𝑦 and not
lose the ability to detect races in the execution.

Proof. If 𝑦 is a read or write to shared memory, we have
already established that if it’s unmarked, it’s safe to delete.
If 𝑦 is not a read or write to shared memory, then it can’t be
part of a race itself. Deleting 𝑦 therefore can only reduce the
amount of ordering in the happens-before relation, so the
set of races can only stay the same or increase. □

Theorem 3.7. If there’s a data race in the full happens-before
graph, then the online algorithm will find a data race in the
active frontier.

Proof. The result follows directly from Lemma 3.6, since we
always preserve the existence of races as we maintain the
active frontier by deleting unmarked nodes. □

The preceding theorem states that our method is sound
(guaranteed to find races if they exist), even if we delete all
unmarked nodes from the active frontier. However, keep-
ing the nodes that happen after the marked nodes avoids
spurious reports of data races:

Theorem 3.8. If the online algorithm flags a data race, then
the same race exists in the full happens-before graph.

Proof. (Fig. 9 illustrates the intuition behind this proof.) Let
node 𝑧 be a newly added memory operation that triggers
a race, and let node 𝑦 be the pre-existing shared memory
operation in the active frontier that it is in a race with. By
definition, 𝑧 ̸→ 𝑦 and 𝑦 ̸→ 𝑧 in the active frontier, and we
need to prove that 𝑧 ̸→ 𝑦 and 𝑦 ̸→ 𝑧 in the full happens-
before graph. By the same as-soon-as-possible argument
we’ve used already, we know that 𝑧 ̸→ 𝑦 in the full graph,
because if 𝑧 → 𝑦, then 𝑦 couldn’t have been created before

LCTES ’21, June 22, 2021, Virtual, Canada May Young, Alan J. Hu, and Guy G. F. Lemieux

𝑦

𝑧

𝑥

race

Active Frontier

Figure 9. Illustration of Theorem 3.8. Node 𝑧 is a newly
added memory operation, and the analysis detects a race
between 𝑧 and existing node 𝑦 in the active frontier. Could
it be that 𝑦 and 𝑧 are not in a race if we considered the full
happens-before graph? The answer is no. It’s easy to see that
𝑧 ̸→ 𝑦 in the full graph, because 𝑦 was added to the graph
before 𝑧. In the other direction, if 𝑦 → 𝑧 in the full graph
but not in the active frontier, there must be a node 𝑥 not in
the active frontier, with 𝑦 → 𝑥 → 𝑧. However, 𝑥 must have
been added before 𝑧, because 𝑥 → 𝑧, and 𝑥 could not have
been deleted from the active frontier, because 𝑦 → 𝑥 . Thus,
any race detected in the active frontier is also a race in the
full happens-before graph.

𝑧. To establish that 𝑦 ̸→ 𝑧 in the full graph, assume the
opposite, that 𝑦 → 𝑧 in the full graph. By Lemma 3.6, we can
assume without loss of generality that 𝑦 is marked. Now, we
know that 𝑦 ̸→ 𝑧 in the active frontier, so if 𝑦 → 𝑧 in the
full graph, there must be a node 𝑥 in the full graph such that
𝑦 → 𝑥 → 𝑧 in the full graph. Because 𝑥 → 𝑧, the node 𝑥
must have been added to the active frontier before 𝑧. Because
𝑦 is marked and 𝑦 → 𝑥 , the node 𝑥 cannot have been deleted
from the active frontier. Therefore, 𝑦 → 𝑥 → 𝑧 in the active
frontier as well, which contradicts that 𝑦 and 𝑧 are in a race
in the active frontier. Therefore, both 𝑧 ̸→ 𝑦 and 𝑦 ̸→ 𝑧 in
the full graph, and the same race exists in the full graph as
in the active frontier. □

4 Experimental Results
4.1 A Dynamic Race Detector
As proof-of-concept for our theory, we built a simple pro-
totype dynamic race detector. A dynamic race detector (e.g.,
Eraser [19], FastTrack [8], SPD3 [18]) detects any possible
data race that could have happened (even if it didn’t) in a sin-
gle execution of a program. It represents a practical compro-
mise between fully formal static verification, which detects
any possible data race in all possible executions of a program,
and conventional software testing, which detects only data
races which went the “wrong way” and produced observably
incorrect results in a single execution of a program. Com-
pared to static formal verification, dynamic race detection is

more scalable (unless the static formal verification is highly
abstracted), and avoids the need to perform complicated (and
generally imprecise) alias analysis, because the actual trace
of memory accesses is known. However, like conventional
software testing, attention must be paid to code coverage, to
exercise as many program paths as possible. From an exper-
imental perspective, dynamic race detection is a pure and
direct evaluation of the precision and effectiveness of our
abstraction, without the confounding influences of which
formal verification algorithms we use to enumerate program
paths, what other abstractions we might employ, and how
lossy we make the joins in our analysis.

Note that our race detector is rather rudimentary, being a
straightforward tracking of the happens-before graph. We
do not pretend that it is state-of-the-art. The novelty is that
it implements our model of abstracted cache behavior, so
that it can soundly detect data races in the heterogeneous
system with mixed cached and uncached memory accesses.
Our analysis is proven sound, so the main empirical question
is whether the analysis is precise enough to avoid excessive
false positives. Another important question is whether real
code has data races caused by the interaction of cached and
uncached memory accesses. We built the tool only to answer
these two questions.
Our race detector is for the CPU/accelerator system in

Fig. 2. The race detector processes a trace of the memory
accesses from a program execution. How to derive such
traces is well-established (e.g., in debuggers and other anal-
ysis tools), but is labor-intensive to implement, so for our
proof-of-concept, we instrumented our test programs man-
ually to print out each memory operation as it executes.4
To improve efficiency, we condense sequences of identical
operations on consecutive addresses into a single operation
on a memory range. When each memory operation is added,
it is checked to see whether it is ordered with respect to all
other memory operations that touch the same address range.
If two operations are unordered, and at least one is a write,
then the tool flags the data race and exits.5

4 Instrumenting at the source-code level does mean that our proof-of-
concept implementation assumes sequential consistency. This is a limitation
of the implementation only, not the theory. Instrumenting the binary would
bypass this problem, or one could use SC-preserving compilation (e.g., [15]).
5 Our example CPU/accelerator system can be configured for several dif-
ferent CPU architectures, and these architectures vary in how they handle
uncached memory accesses. For example, the Nios II has uncached read-
/write instructions that are allowed to incoherently bypass the cache; ARM
makes cacheability a property of an address, rather than an access; and
MicroBlaze specifies writethrough caches, rendering the distinction moot.
Our tool has a flag for whether to include CPU data races between cached
and uncached accesses (assuming Nios-II-style semantics) or flag only data
races between CPU and accelerator. Given our emphasis on heterogeneous
systems, our experiments use the latter setting.

Cache Abstraction for Data Race Detection in Heterogeneous Systems with Non-coherent Accelerators LCTES ’21, June 22, 2021, Virtual, Canada

4.2 Experimental Setup
To test our tool on real-world examples, we selected eleven
open-source examples from the VectorBlox MXP SDK. The
examples in the GitHub repository were chosen to be used
in our experiments if they were non-trivial and were written
in C. Table 2 summarizes the examples.

All the examples were executed using the VectorBlox MXP
simulator; it models a single-core CPU with one MXP vector
accelerator. We analyzed each program in its original form,
and also, to produce a greater variety of buggy examples,
we introduced bugs by removing necessary synchronization
(e.g., sync statements).

4.3 Time Required for Analysis
As noted already, our implementation was rudimentary, as
it was not our goal to attain state-of-the-art performance.
The shortest runtime took 30ms for 6,013 lines in the trace
file (vbw_libfixmath), and the longest runtime took ap-
proximately 9 days for almost 29 million lines in the trace
(vbw_mtx_sobel). Ten out of the 11 examples completed in
less than 45 minutes each. Fig. 10 plots the analysis runtime
for examples without races. (Examples with races completed
quickly because the tool stops at the first race detected.)

4.4 Data Race Detection Results
The experiments with injected bugs were unremarkable. The
tool was able to detect the injected bugs easily in all cases. In-
terestingly, in some cases, the system simulator still showed
the test as passing, even though we had eliminated neces-
sary synchronization, because the race went the right way by
chance. This highlights how data races can produce elusive
bugs, which are not caught in debugging, but emerge only
late (and sporadically) in a production system, underscoring
the importance of data race detection tools.

In all experiments, we had zero false positives: every time
the tool flagged a possible data race, it was indeed a real data
race. Hence, despite our safe abstractions, our tool achieved
100% precision. (As for false negatives, our analysis is sound.)

Remarkably, the tool found subtle, previously unknown
races in two out of the eleven examples (in their original
form, without injected bugs). One example is actually the
vector addition example vbw_vec_add in Fig. 1. The tool
detects a potential race at the first DMA read from main
memory (line 23) vs. a writeback node for the cached writes
at line 13:

test_zero_array(scalar_out , N);

...

vbx_dma_to_vector(v_in1 , (void *)vector_in1 ,

N*sizeof(vbx_sp_t));

At the source-code level, the bug is not obvious: the con-
flicting variables are scalar_out, a cached vector that even-
tually has its values written back when the test zeroes this

array, and vector_in1, an uncached vector in main mem-
ory that is accessed by the accelerator via DMA. However,
although they are two different variables, when executed in
the VectorBlox simulator, the end of scalar_out mapped to
the same cache line as the beginning of vector_in1. Thus,
although the source code is careful to use uncached reads
and writes on vector_in1, the writebacks for scalar_out
can overwrite the first few bytes of vector_in1 in main
memory, due to writeback granularity. The DMA read may
thus read wrong data values. (This data race is similar to the
problem of false sharing, but this is a correctness bug rather
than a performance issue.)
The other data race detected had the same root cause: in

the vbw_mtx_motest example, the compiler had allocated
memory in such a manner that writebacks from cached mem-
ory affected regions of memory that were supposed to be
accessed only via uncached reads and writes. Once discov-
ered, the bugs are easily fixed via careful data alignment, but
both bugs were previously undiscovered in the SDK. These
examples highlight the subtlety of data races for heteroge-
neous systems, and the ability of our analysis to find them.

5 Related Work
As noted in the introduction, there is an extensive body of
research on data race detection. Here, we briefly mention a
few of the more influential and relevant lines of research.
Data race detectors can be broadly grouped into those

based on locksets versus those that reason about the happens-
before relation, plus hybrids of the two. Lockset approaches
presume that any concurrent object should be protected by a
lock and compare the sets of locks guaranteed to be held by
concurrent accesses. Representative lockset-based data race
detectors include Warlock [23], Eraser [19], RacerX [6], RE-
LAY [26], and Locksmith [17]. Lockset approaches typically
exhibit superb scalability, but suffer from imprecision and
false positives. Locksets also reflect a higher-level view of
memory accesses and don’t reflect the data races in low-level
code that concern us. Type-based analyses (e.g., [1, 7]) can
be viewed as generalizations and extensions of lockset-based
approaches.

Pure happens-before reasoning tends to be too slow, given
its low-level view of tracking of all memory operations. State-
of-the-art tools typically use happens-before reasoning for
low-level precision, but combine it with more sophisticated,
higher-level analyses for efficiency. Examples of such hybrids
include the methods of O’Callahan and Choi [16], which ex-
plore a wide variety of lightweight static analyses combined
with happens-before reasoning; FastTrack [8], which uses an
adaptive representation for the happens-before relation that
requires only constant space for common cases (thread local,
lock protected, read shared) without loss of precision; and

LCTES ’21, June 22, 2021, Virtual, Canada May Young, Alan J. Hu, and Guy G. F. Lemieux

Table 2. Test Programs. We evaluated our analysis on these eleven programs, selected from the accelerator vendor’s SDK. Our
selection criterion was all non-trivial programs written in C. The asterisks (*) indicate examples where our analysis discovered
previously unknown data races.

Test Name Test Description
vbw_libfixmath Square root and division
vbw_mtx_fir 2D FIR filter using matrices
vbw_mtx_median_argb32 Median filter with 32-bit data type
vbw_mtx_median Median filter with 8-bit data type
vbw_mtx_motest * Motion estimation
vbw_mtx_sobel Sobel filter
vbw_mtx_xp Matrix transpose
vbw_vec_add * Vector addition
vbw_vec_fft FFT
vbw_vec_fir FIR filter using vectors
vbw_vec_power Vector exponentiation

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·107

101

102

103

104

105

106

107

108

109

vbw_libfixmath

vbw_vec_power

vbw_mtx_median

vbw_mtx_fir
vbw_vec_fir

vbw_mtx_median_argb32

vbw_vec_fft

vbw_mtx_xp

vbw_mtx_sobel

Number of Lines in Trace

Ru
nt
im

e
(m

s)

Figure 10. Analysis Runtime of Examples Without Data Races. (All examples with data races terminated quickly.) As noted
in the text, our implementation is a straightforward tracking of the happens-before graph, so we make no claims of stellar
performance. Nevertheless, this semi-log plot shows runtime growing sub-exponentially in the number of lines in the trace.
With our abstraction of cache behavior, runtime is not prohibitively expensive, even with a rudimentary implementation.

IFRit [5], that uses static analysis to determine interference-
free regions to eliminate most potential data races. LiteR-
ace [14] is also happens-before-based, but pioneered the use
sampling, focusing the analysis only on portions of the code

that have not been executed extensively. (IFRit also does
some sampling.)

Our prototype data race detector uses pure happens-before
reasoning and is definitely not state-of-the-art. However, the

Cache Abstraction for Data Race Detection in Heterogeneous Systems with Non-coherent Accelerators LCTES ’21, June 22, 2021, Virtual, Canada

novelty is our abstraction of cache behavior, to allow rea-
soning about and detecting data races involving interaction
between caches and non-coherent memory accesses. This is
an issue not addressed by prior work.
Closer in spirit to our work, GRace [27] is a data race

detector for GPU programs. Like our work, their focus is
on data races and hardware accelerators. Unlike our work,
their focus is exclusively on data races within the accelerator
itself, whereas we focus exclusively on data races occurring
from the interaction between cached memory and uncached
accelerators.
The specification of memory models for shared-memory

multiprocessors has some similarities to our problem. Both
problems require reasoning about the ordering of operations
on a sharedmemory in the presense of complicated hardware
optimizations. For that problem, the research community
has gravitated towards axiomatic specifications that relax
typical ordering constraints in subtle ways, to permit the
behaviors exhibited by high-performance microarchitectures
(e.g., [2] is a classic survey, and we have already cited [4],
which employs such an approach for the ARM and Power
ISAs). Such a solution is appropriate for that problem, since
the memory model is part of the ISA, so it is desirable to
have underspecified behavior to allow future optimizations,
and there are few different ISAs, so only a few different
memory models need be formalized. In contrast, for modern,
accelerator-rich systems, every configuration might have
different data races, so the task of specifying correct behavior
must be more precise, yet less laborious than for general
memory models. Accordingly, we follow a different direction:
rather than try to create a more complex ordering formalism
to abstract what a broad class of microarchitectures might do,
we simply follow the microarchitecture of the specific caches,
but provide a safe abstraction to prevent a combinatorial
explosion of possible happens-before graphs.

6 Conclusion and Future Work
We have introduced the first systematic approach to finding
data races arising from the interaction of cached memory
accesses and non-coherent memory accesses, as arise in het-
erogeneous systems with non-coherent accelerators. The
key contribution is a novel abstraction for cache behavior.
We formally prove the abstraction sound (i.e., any data race
in an execution is guaranteed to be detected), and empiri-
cally demonstrate that even in a basic implementation, it is
scalable enough to be useful, yielded zero false positives, and
discovered two previously unknown data races.

The obvious direction for future work is to try embedding
our abstraction into a state-of-the-art dynamic race detector.
This should be possible for any race detector that reasons
about the happens-before graph. The result would be greatly

improved performance and scalability over our implementa-
tion, and the capability to detect an emerging class of data
races for the state-of-the-art race detector.

As raised in footnotes 3 and 4, our simple, proof-of-concept
dynamic race detector assumes sequential consistency, so
another obvious improvement would be to extend our imple-
mentation for “full-stack” soundness (a la “full-stackmemory
consistency models” [24]), through the high-level language
memory model, any compiler optimizations, and any relaxed
ISA memory model. As noted earlier, this could be done by
instrumenting at lower levels, e.g., the memory interface of
the CPU (perhaps implemented using a system simulator).
An alternative would be to formalize the composition of
memory models (e.g., [13, 24]) and use the resulting relaxed,
composite model instead of program order as the basis of the
happens-before relation. Combinations are also possible, e.g.,
SC-preserving compilation [15] or binary instrumentation,
combined with a formalization of the relaxed ISA memory
model (e.g., [4]).
From a more conceptual perspective, two opposing di-

rections seem promising. One direction would be towards
fully formal verification, by embedding our analysis into a
bounded model checker or static analyzer. Challenges here
would be disambiguating memory references and finding a
way to join the graphs when program paths join, without
being too lossy. The other direction would be to try to sim-
plify the approach to be fast enough to be used as a runtime
checker. This would require a much smaller and simpler
approximation of the happens-before relation and a much
faster check for races, as well as exploiting known tech-
niques for pre-analyzing the code to be checked and possible
hardware support. Another interesting direction would be
automatic synthesis/optimization of synchronization code.
With a data race checker, one could exhaustively explore in-
serting/deleting synchronization operators. SAT/SMT-style
heuristics might make such an approach practical.

Acknowledgments
The authors would like to thank Sam Bayless for insightful
comments early in this work. This work was supported by
Discovery Grants from the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References
[1] Martin Abadi, Cormac Flanagan, and Stephen N Freund. 2006. Types

for safe locking: Static race detection for Java. ACM Transactions on
Programming Languages and Systems (TOPLAS) 28, 2 (2006), 207–255.
https://doi.org/10.1145/1119479.1119480

[2] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory
Consistency Models: A Tutorial. Computer 29, 12 (1996), 66–76. https:
//doi.org/10.1109/2.546611

[3] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H. B. Net-
zer. 1991. Detecting Data Races in Weak Memory Systems. In 18th
ACM/IEEE International Symposium on Computer Architecture (ISCA).
234–243. https://doi.org/10.1145/115953.115976

https://doi.org/10.1145/1119479.1119480
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/115953.115976

LCTES ’21, June 22, 2021, Virtual, Canada May Young, Alan J. Hu, and Guy G. F. Lemieux

[4] Jade Alglave, Anthony C. J. Fox, Samin Ishtiaq, Magnus O. Myreen,
Susmit Sarkar, Peter Sewell, and Francesco Zappa Nardelli. 2009. The
Semantics of Power and ARM Multiprocessor Machine Code. In POPL
2009 Workshop on Declarative Aspects of Multicore Programming. 13–24.
https://doi.org/10.1145/1481839.1481842

[5] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and
Hans-J. Boehm. 2012. IFRit: Interference-Free Regions for Dynamic
Data-Race Detection. In ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA’12).
467–484. https://doi.org/10.1145/2384616.2384650

[6] Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detec-
tion of race conditions and deadlocks. ACM SIGOPS Operating Systems
Review 37, 5 (2003), 237–252. https://doi.org/10.1145/1165389.945468

[7] Cormac Flanagan and Stephen N Freund. 2000. Type-based race detec-
tion for Java, In ACMSIGPLANConference on Programming Language
Design and Implementation (PLDI’00). ACM SIGPLAN Notices 35, 5,
219–232. https://doi.org/10.1145/349299.349328

[8] Cormac Flanagan and Stephen N Freund. 2009. FastTrack: efficient
and precise dynamic race detection, In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’09).
ACM SIGPLAN Notices 44, 6, 121–133. https://doi.org/10.1145/1543135.
1542490

[9] Davide Giri, Paolo Mantovani, and Luca P Carloni. 2018. Accelerators
and Coherence: An SoC Perspective. IEEE Micro 38, 6 (2018), 36–45.
https://doi.org/10.1109/MM.2018.2877288

[10] John L. Hennessy and David A. Patterson. 2019. A New Golden Age
for Computer Architecture. Commun. ACM 62, 2 (2019), 48–60. https:
//doi.org/10.1145/3282307

[11] Leslie Lamport. 1978. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM 21, 7 (1978), 558–565. https:
//doi.org/10.1145/359545.359563

[12] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. 2019. Efficient Scalable Thread-Safety-Violation Detection:
Finding Thousands of Concurrency Bugs During Testing. In 27th ACM
Symposium on Operating System Principles (SOSP’19). ACM, 162–180.
https://doi.org/10.1145/3341301.3359638

[13] Yatin A. Manerkar, Daniel Lustig, and Margaret Martonosi. 2020.
RealityCheck: Bringing Modularity, Hierarchy, and Abstraction to
Automated Microarchitectural Memory Consistency Verification.
arXiv:2003.04892 [cs.DC]

[14] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009.
LiteRace: Effective Sampling for Lightweigth Data-Race Detection.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’09). ACM, 134–143. https://doi.org/10.1145/
1542476.1542491

[15] Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musu-
vathi, and Satish Narayanasamy. 2011. A Case for an SC-Preserving
Compiler. In ACM SIGPLAN Conference on Programming Language
Design and Implementation(PLDI’11). 199–210. https://doi.org/10.1145/
1993498.1993522

[16] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data
Race Detection. InACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’03). 167–178. https://doi.org/10.1145/
781498.781528

[17] Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. 2011. LOCK-
SMITH: Practical static race detection for C. ACM Transactions
on Programming Languages and Systems (TOPLAS) 33, 1 (2011), 3.
https://doi.org/10.1145/1889997.1890000

[18] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection
for Structured Parallelism. In 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’12). 531–542.
https://doi.org/10.1145/2345156.2254127

[19] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. 1997. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on Computer Systems
(TOCS) 15, 4 (1997), 391–411. https://doi.org/10.1145/265924.265927

[20] Konstantin Serebryany and Timur Iskhodzhanov. 2009. Thread-
Sanitizer: data race detection in practice. In Workshop on Binary
Instrumentation and Applications (WBIA’09). ACM, 62–71. https:
//doi.org/10.1145/1791194.1791203

[21] Aaron Severance and Guy G. F. Lemieux. 2013. Embedded super-
computing in FPGAs with the VectorBlox MXP matrix processor. In
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS’13). IEEE/ACM/IFIP, 1–10. https://doi.org/10.
1109/CODES-ISSS.2013.6658993

[22] Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike
O’Connor, and Tor M. Aamodt. 2013. Cache Coherence for GPU Archi-
tectures. In IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 578–590. https://doi.org/10.1109/HPCA.
2013.6522351

[23] Nicholas Sterling. 1993. WARLOCK–A Static Data Race Analysis Tool.
In USENIX Winter Technical Conference. USENIX Association, 97–106.

[24] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. 2017. TriCheck: Memory Model Verification
at the Trisection of Software, Hardware, and ISA. In 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’17). 119–133. https://doi.org/10.1145/
3037697.3037719

[25] Ana Lucia Varbanescu and Jie Shen. 2016. Heterogeneous com-
puting with accelerators: an overview with examples. In 2016 Fo-
rum on Specification and Design Languages (FDL). IEEE, 1–8. https:
//doi.org/10.1109/FDL.2016.7880387

[26] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static
race detection on millions of lines of code. In 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC-FSE’07).
ACM, 205–214. https://doi.org/10.1145/1287624.1287654

[27] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2011.
GRace: A Low-Overhead Mechanism for Detecting Data Races in GPU
Programs. In ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP’11). 135–146. https://doi.org/10.1145/2038037.
1941574

https://doi.org/10.1145/1481839.1481842
https://doi.org/10.1145/2384616.2384650
https://doi.org/10.1145/1165389.945468
https://doi.org/10.1145/349299.349328
https://doi.org/10.1145/1543135.1542490
https://doi.org/10.1145/1543135.1542490
https://doi.org/10.1109/MM.2018.2877288
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3341301.3359638
https://arxiv.org/abs/2003.04892
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1542476.1542491
https://doi.org/10.1145/1993498.1993522
https://doi.org/10.1145/1993498.1993522
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1145/2345156.2254127
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1145/3037697.3037719
https://doi.org/10.1145/3037697.3037719
https://doi.org/10.1109/FDL.2016.7880387
https://doi.org/10.1109/FDL.2016.7880387
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/2038037.1941574
https://doi.org/10.1145/2038037.1941574

	Abstract
	1 Introduction
	2 Example
	3 Theoretical Framework
	3.1 Happens-Before Graph
	3.2 Idioms for Shared Memory Access
	3.3 Safely Abstracting Cached Reads and Writes
	3.4 Active Frontier

	4 Experimental Results
	4.1 A Dynamic Race Detector
	4.2 Experimental Setup
	4.3 Time Required for Analysis
	4.4 Data Race Detection Results

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

