
Reliable high-throughput
FPGA interconnect using

source-synchronous surfing and
wave pipelining

by

Paul Leonard Teehan

B.A.Sc., The University of Waterloo, 2006

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

The University Of British Columbia

(Vancouver)

October, 2008

c© Paul Leonard Teehan 2008

Abstract

FPGA clock frequencies are slow enough that only a fraction of the interconnect’s

bandwidth is used. By exploiting this bandwidth, the transfer of large amounts of

data can be greatly accelerated. Alternatively, it may also be possible to save area

on fixed-bandwidth links by using on-chip serial signalling. For datapath-intensive

designs which operate on words instead of bits, this can reduce wiring congestion

as well. This thesis proposes relatively simple circuit-level modifications to FPGA

interconnect to enable high-bandwidth communication. High-level area estimates

indicate a potential interconnect area savings of 10 to 60% when serial links are used.

Two interconnect pipelining techniques, wave pipelining and surfing, are adapted

to FPGAs and compared against each other and against regular FPGA interconnect

in terms of throughput, reliability, area, power, and latency. Source-synchronous

signalling is used to achieve high data rates with simple receiver design. Statistical

models for high-frequency power supply noise are developed and used to estimate the

probability of error of wave pipelined and surfing links as a function of link length

and operating speed. Surfing is generally found to be more reliable and less sensitive

to noise than wave pipelining. Simulation results in a 65nm process demonstrate a

throughput of 3Gbps per wire across a 50-stage, 25mm link.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vii

List of Figures . viii

Acknowledgements . xi

Dedication . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Questions . 3

1.2.1 Design targets . 3

1.3 Overview of this work . 3

2 Background and Related Work . 5

2.1 FPGAs . 5

2.1.1 Datapath FPGAs . 6

2.2 Pipelined interconnect . 6

2.2.1 Register pipelining . 8

2.2.2 Wave pipelining . 8

2.2.3 Surfing . 10

iii

Table of Contents

2.3 Serial signalling schemes . 11

2.3.1 Asynchronous . 11

2.3.2 Source-synchronous . 12

2.3.3 Receiver-clocked systems . 12

2.3.4 Data encoding . 13

2.4 Timing uncertainty . 15

2.4.1 Skew and jitter . 15

2.4.2 Sources of timing uncertainty 17

2.4.3 Process corners . 17

2.4.4 Statistical static timing analysis 18

2.4.5 Statistical jitter modelling . 19

2.4.6 Normal distributions . 19

2.5 Summary . 20

3 Design and Implementation . 21

3.1 System-level design . 21

3.2 Choice of serial signalling scheme . 22

3.2.1 Global clock . 23

3.2.2 Asynchronous . 24

3.2.3 Source-synchronous signalling 25

3.3 High-throughput pipelined circuit design 26

3.3.1 Rise time as a measure of throughput 26

3.3.2 Driving buffer strength . 29

3.3.3 Multiplexor design . 30

3.3.4 Wire length sensitivity . 33

3.3.5 Wave-pipelining stage . 35

3.3.6 Surfing stage . 35

3.4 System-level area estimation . 36

iv

Table of Contents

3.5 Summary . 41

4 Robustness Analysis . 42

4.1 Reliable transmission . 42

4.1.1 Edge interference . 43

4.1.2 Incorrect sampling . 47

4.1.3 Summary of criteria for reliable transmission 51

4.2 Quantifying timing uncertainty . 52

4.2.1 Process and temperature . 53

4.2.2 Crosstalk . 53

4.2.3 Supply noise model . 56

4.2.4 Supply noise analysis . 58

4.3 Jitter and skew propagation . 60

4.4 Reliability estimate . 63

4.5 Summary . 69

5 Simulation and Evaluation . 71

5.1 Throughput . 71

5.1.1 Methodology . 71

5.1.2 Results . 73

5.1.3 Comparison . 73

5.2 Latency . 76

5.3 High-throughput wave pipelining . 79

5.4 Area . 80

5.5 Energy . 81

5.6 Summary . 83

6 Summary and Conclusion . 85

6.1 Summary . 85

v

Table of Contents

6.2 Interpretation of results . 88

6.3 Future work . 89

6.3.1 Low-power design . 89

6.3.2 Architectural exploration . 89

6.3.3 Noise and reliability modelling 90

6.3.4 Silicon implementation . 90

6.3.5 Wave-pipelined FIFO implementation 90

References . 91

Appendices

A Auxiliary Circuit Designs . 99

A.1 Serializer and Deserializer . 99

A.2 Edge-to-pulse converter . 101

A.3 Delay element . 102

B Area Calculation Details . 103

B.1 Area measurement methodology . 103

B.2 System-level area calculations . 103

B.3 Block-level area tabulation . 106

C Bounded Worst-Case Timing Uncertainty 107

vi

List of Tables

2.1 Probabilities for standard normal distribution 20

3.1 Approximate area cost of serializers, deserializers, and serial buses . 38

5.1 Supply voltages used . 72

5.2 Area tabulation . 81

5.3 Energy per transition measurements (fJ) 83

5.4 Energy estimates for 8b and 16b transfers 83

B.1 Summary of area savings (min-transistors) 104

B.2 Pre-serialization area . 104

B.3 Post-serialization area . 105

B.4 Area tabulation . 106

vii

List of Figures

1.1 Regular and serial programmable interconnect 2

1.2 Increased throughput with pipelined interconnect 2

2.1 Architectural drawing of an island-style FPGA 7

2.2 FPGA switch block detail . 8

2.3 Skew definition . 16

2.4 Jitter definition . 17

2.5 Illustration of process corners . 18

3.1 Schematic of input and output connections, with existing parts in bold 22

3.2 High-level schematic showing interaction with user clock 23

3.3 High-level timing diagram . 25

3.4 Basic interconnect stage schematic 26

3.5 Detail of 4-tile wire . 27

3.6 RC wire model used in simulations 27

3.7 Illustration of wide, minimum-width, and attenuated pulses 28

3.8 Driving buffer size analysis . 31

3.9 Sixteen-input multiplexor schematic 32

3.10 Rise time of muxes . 32

3.11 Rise time of varying length wires . 34

3.12 Wave pipeline interconnect stage . 35

3.13 Surfing interconnect stage . 37

viii

List of Figures

3.14 Surfing timing diagram . 37

3.15 System-level interconnect area estimation 40

4.1 Waveforms showing pulse propagation through five stages 44

4.2 Pulse width measurement circuit . 45

4.3 Pulse transfer behaviour . 46

4.4 Pulse width transfer characteristic simulations 48

4.5 Skew transfer measurement circuit 49

4.6 Skew transfer characteristic simulations 50

4.7 Crosstalk simulation setup . 55

4.8 Delay variation due to crosstalk . 56

4.9 VDD noise waveforms . 58

4.10 Experimental setup measuring delay impact of VDD noise 59

4.11 Delay variation due to variations in DC level (σ = 15mV). 60

4.12 Delay variation due to transient supply noise (µ = 0.95V.) 61

4.13 Experimental setup measuring skew and jitter propagation 62

4.14 Jitter and skew propagation (simulation in bold) 63

4.15 Illustration of arrival time probabilities for consecutive edges 64

4.16 Probability of error estimates . 68

5.1 Throughput simulation results . 74

5.2 Waveforms showing data at the end of a 50-stage link 75

5.3 Waveforms showing stage-by-stage propagation 76

5.4 Throughput comparison for all schemes 77

5.5 Latency normalized to a regular wire, VDD µ = 0.95V, σ = 30mV . . 78

5.6 Latency with 400ps FIFOs at 5Gbps 80

A.1 Serializer (with clock generator) and deserializer circuits 100

A.2 Serializer and deserializer timing diagrams 101

ix

List of Figures

A.3 Edge-to-pulse converter circuit . 102

A.4 Delay element . 102

C.1 Comparison of normal and bounded models 108

x

Acknowledgements

I would first like to thank my supervisors, Dr. Guy Lemieux and Dr. Mark Green-

street, for their guidance, support, dedication, and patience. Each of them has taught

me so much in such a short time.

I would like to thank Dr. Jesus Calvino-Fraga for giving me an opportunity to

teach; I will fondly recall my time in his superb introductory circuit lab courses. Also,

I would like to thank Dr. David Pulfrey for his friendship and guidance.

This work would not have been possible without the support of my friends and

colleagues in the System on Chip lab at UBC. In particular, thank you to Daryl Van

Vorst, Andrew Lam, Cindy Mark, David Grant, Rosemary Francis, Alastair Smith,

Scott Chin, Marcel Gort, Darius Chiu, Faizal Karim, Mark Yamashita, and Roberto

Rosales.

Thank you finally to my parents for their unwavering love and support.

xi

To Shabnam, my favourite person in the world. Your love and encouragement has

kept me going. Sorry to be cheesy, but I couldn’t have done it without you. This

thesis is for you. <3

xii

Chapter 1

Introduction

In field-programmable gate arrays (FPGAs), user-created digital circuits are mapped

onto prefabricated programmable logic and interconnect. The overhead required

to make this logic and interconnect programmable is significant. Compared to an

application-specific integrated circuit (ASIC) implementation which fabricates a cus-

tom device, FPGAs face a 3 to 4X latency penalty, a 12X power penalty, and a 20

to 40X area penalty [1]. This thesis explores the design of reliable, high-throughput

pipelined serial interconnect. By employing this with datapath interconnects, word-

wide links can be replaced with serial links to offer a potentially large reduction in

area. This approach may open new serial FPGA architectural styles.

1.1 Motivation

Large designs, especially datapath-oriented designs which route words of data instead

of single bits, are often wire-constrained when mapped to FPGAs [2]. Adding more

wiring resources to an FPGA is not always possible because programmable intercon-

nect consumes a large amount of area. However, the existing wiring resources are

underutilized.

FPGA designs tend to run at relatively slow clock speeds, on the order of 100 to

200 MHz. Because a wire can carry at most one bit per clock cycle, the throughput

of a wire is fixed by the clock speed at 100 to 200 Mbps. However, FPGA wires are

regularly buffered as they travel through the programmable fabric and should be able

to support a considerably higher throughput. A properly buffered wire, if pipelined,

1

Chapter 1. Introduction

switchesswitches

Serial programmable

Serializer Deserializer

interconnect interconnect

InputOutput

Data sinkData source

Regular programmable

Figure 1.1: Regular and serial programmable interconnect

1

1

1

1

2

2

1

1

1

1

2

2

2

2

3

3

3

4

43

4

4

One bit at a time

Stage 1

Stage 2

Regular interconnect Pipelined interconnect

Multiple bits in flight

Stage 3

Stage 4

Figure 1.2: Increased throughput with pipelined interconnect

requires a minimum of about 11 fanout-of-four (FO4) delays between bits in order to

prevent intersymbol interference (ISI) [3]. In a typical 65nm CMOS process with a

FO4 delay of about 15ps, this translates to a bit period of about 165ps. A properly

buffered wire could therefore support a throughput of about 6Gbps, a value 30 to 60

times higher than its typical utilization.

Two key changes are required in order to increase wire bandwidth utilization.

First, circuitry to access the high-bandwidth interconnect must be added. For exam-

ple, Figure 1.1 shows how a 4-bit word can be transmitted serially across one wire.

Second, interconnect must be pipelined, as shown in Figure 1.2, so that the through-

put does not depend on the latency through the link or an externally imposed clock,

but rather on the capacity of the wire itself.

2

Chapter 1. Introduction

1.2 Research Questions

This research is intended to address the following two questions:

1. Is it possible to achieve the theoretical maximum pipelined interconnect through-

put of 6Gbps in a 65nm FPGA?

2. How would such a scheme work, and what are the benefits and costs to imple-

menting it?

3. How reliable would this scheme be?

1.2.1 Design targets

Implementing high-throughput pipelined interconnect will require modifications to

the FPGA interconnect at the circuit level The proposed scheme should meet the

following targets:

• throughput of 6Gbps in a 65nm CMOS technology;

• significant area savings while keeping power and latency penalties low;

• support for long cross-chip links, with turns and fanout;

• reliable, despite noise and variation; and

• minimal modification to existing programmable FPGA interconnect structure.

1.3 Overview of this work

This work is an application of previously published techniques for interconnect pipelin-

ing, namely wave pipelining and surfing, to FPGAs, with a specific focus on reliability.

Wave pipelined interconnect in FPGAs has been recently studied [4], but that work

3

Chapter 1. Introduction

did not address reliability. Prior work in this area is surveyed in more detail in

Chapter 2.

The primary contributions are as follows:

1. Two pipelining techniques, wave pipelining and surfing, are adapted to enable

high-bandwidth serial communication in FPGA interconnect in Chapter 3. A

system-level area estimation shows a potential 10 to 60% reduction in intercon-

nect area if serial communication is adopted.

2. The effects of supply noise and crosstalk noise are simulated in HSPICE in

Chapter 4. From this, a statistical model of jitter and skew is developed which

is used to estimate the reliability of both wave pipelining and surfing.

3. The throughput, latency, area, and power of wave pipelining and surfing in

FPGAs are evaluated using HSPICE simulations and compared against a tra-

ditional parallel bus in Chapter 5.

Both schemes are able to achieve throughputs of about 3Gbps per serial data wire,

though wave pipelining can operate at higher speeds if the link is sufficiently short.

Area savings are considerable, but power and latency penalties may be prohibitive.

The reliability estimates in Chapter 4 expose noise vulnerability in wave pipelining

which is not well-modelled in the literature. The surfing scheme, which is more reliable

by design, is demonstrated to be considerably less sensitive to noise.

4

Chapter 2

Background and Related Work

This section provides some background and prior work related to FPGA interconnect,

including techniques in on-chip pipelining, serial signalling, and timing uncertainty

modelling.

2.1 FPGAs

In a typical “island-style” FPGA, logic cells cover the FPGA in a grid with vertical

and horizontal routing tracks between them; the logic is like an island surrounded

by interconnect. To improve area efficiency, modern FPGAs are heterogeneous and

include hard memories, multipliers, and processor cores as well. The interconnect

structure is slightly irregular in length to accommodate these blocks. However, for

simplicity this irregularity will be ignored.

Figure 2.1 shows a schematic drawing of an island-style FPGA. The blocks labelled

CLB are Configurable Logic Blocks, which contain a number of programmable logic

elements. The C blocks are connection blocks which contain multiplexors to connect

CLB inputs and outputs to the adjacent horizontal and vertical routing tracks. The

S blocks are switch blocks which contain a multiplexor and a driver. The switch and

connection blocks are designed to maximize routing flexibility with minimum area

overhead. More detail about their design is in [5].

Wire length is often measured in tiles, where one tile is the width of a CLB

and its associated interconnect. A wire of length 1 can connect one CLB to its

Manhattan neighbor. Wires of length 2, like the red/bold wires shown near the top

5

Chapter 2. Background and Related Work

of Figure 2.1, span two blocks. FPGA designers typically provide wires of a few

different lengths, such as length 4 for general purpose connections and length 16 for

cross-chip connections. All wires in this thesis are assumed to be length 4, as they

are the most abundant in modern FPGAs (about 80%).

Figure 2.2 shows a detailed view of how a length 2 wire spans two tiles. The

segment begins at the output of a multiplexor and driver at the leftmost switch

block. After each tile, a multiplexors allows for early turns. The wire terminates at

the input to another multiplexor. In this thesis, the tile length is fixed at 0.125mm,

which allows for 200 tiles per row in a 25mm device, roughly in line with modern

large FPGAs. The 4-tile wires used in this thesis are thus 0.5mm long in total.

2.1.1 Datapath FPGAs

FPGAs are increasingly used to implement datapath designs, in which logic and

interconnect both tend to be largely word-oriented. Studies on the merits of providing

datapath-oriented interconnect in the form of parallel buses with shared multiplexors

show a modest 10% area savings from sharing multiplexor configuration memories [7,

8] when 50% of the routing resources are datapath-oriented, with a bus width of 4.

However, that work did not consider the use of serial buses, and tended to rely on

older, smaller benchmark circuits; modern circuits which focus on data computation

tend to be larger and use wider words, which may favour a wider bus width.

2.2 Pipelined interconnect

The most straight-forward way to increase interconnect throughput is to break the

wire into a number of smaller segments through register insertion. The through-

put is equal to the clock speed; if the segments are small, the clock speed can be

increased. Pipelining can also be accomplished with wave pipelining, in which the

6

Chapter 2. Background and Related Work

Figure 2.1: Architectural drawing of an island-style FPGA, from [6]

7

Chapter 2. Background and Related Work

Switch Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Switch Block

m
ux

MUX

Switch Block

m
ux

MUX

FPGA Interconnect

mux

M
U

X

Earl
y

Turn
Early Turn

Interconnect
Switch Driver

Programmable
Wire

Figure 2.2: FPGA switch block detail, from [6]

temporary storage capability of buffered wire segments allows multiple bits to occupy

a buffered wire simultaneously. Surfing, a relatively new technique, adds feedback to

wave pipelining to make it more reliable.

2.2.1 Register pipelining

Register pipelining is a standard technique in digital design and is used extensively.

Some studies have looked at register pipelining in FPGAs by adding latch banks to

the switch blocks [9]. A similar design was proposed in [10].

Register pipelining is not the focus of this thesis for two main reasons. First,

register pipelining requires a global clock, which may not be practical at high speeds.

Second, the registers have considerable area overhead and timing overhead, and some

power overhead, relative to surfing and wave pipelining, which are discussed below.

2.2.2 Wave pipelining

It is possible to pipeline logic or interconnect without using additional registers. Logic

gates turn out to act as natural storage elements; so long as the time separation

between events is sufficiently large to prevent interference, a string of logic gates can

8

Chapter 2. Background and Related Work

carry multiple bits in-flight simultaneously. This technique, known as wave pipelining,

was first proposed in 1969 and originally applied to logic circuits [11]. See [12] for a

survey of this technique.

In Networks-on-Chip

Networks-on-chip are ASICs composed of many logic cores inside a network of global

interconnect. These devices require long, high-throughput links between cores. A

number of recent papers in this field have noted that NoC interconnect is well-suited

to wave pipelining; long wires are always broken into multiple shorter segments with

repeaters, so the wire is logically a long chain of inverters [13–15]. Some simulated

results predict very high throughput, up to 67 Gbps in [14], but the results are not

directly applicable to this thesis since FPGA interconnect design faces different con-

straints. In particular, the NoC literature usually focuses on fixed, non-programmable

links between blocks.

In FPGAs

High-throughput FPGAs have been explored to improve FPGA performance relative

to ASICs. A number of papers recognized that wave pipelining can be applied to

FPGA logic to achieve significant performance improvements and area savings [16–

20].

Recently, wave pipelining has been applied to FPGA interconnect [4, 21, 22].1 As

in this thesis, source-synchronous signalling was used with a clock transmitted along-

side the data. A theoretical throughput of 1.4Gbps was derived for a 6.45mm link,

or about 13 stages using the terminology of this thesis, though practical experiments

achieved only 0.25 Gbps per wire. The study did not consider noise or reliability.

In comparison, this thesis demonstrates through simulations a wave-pipelined link of

1These three publications all discuss the same project.

9

Chapter 2. Background and Related Work

similar length achieving a throughput of 3Gbps.

One key improvement on prior work is that this thesis assumes the interconnect

circuitry in an FPGA can be customized to better support high-throughput com-

munication, and then determines the maximum achievable throughput given that

assumption. For example, driver sizes are chosen with throughput as a primary

consideration. In [4], drivers sizes are chosen to model an existing FPGA and are

therefore not optimized for throughput.2

2.2.3 Surfing

Reliability is a major issue in wave pipelining; timing uncertainty grows monotonically

with the length of the link and tends to limit the maximum operating speed [23].

This is addressed in some detail in Chapter 4 of this thesis. Surfing interconnect is

a pipelining technique which is designed to attenuate timing uncertainty to allow for

more aggressive timing in noisy environments. Surfing requires a timing strobe that

is transmitted alongside the data. Simple circuitry at each stage acts as a delay-

locked-loop to remove jitter on the timing strobe and as a “soft” latch to remove

skew between the data and the clock [24, 25]. Details of the circuit’s operation are

provided in Section 3.3.6.

The relative simplicity and small size of the surfing circuitry allows for more

reliable operation with minimal additional overhead. The robustness of surfing has

also been demonstrated in a prototype chip [26]. Surfing was originally designed for

long timing chains in ASICs; its application to FPGAs in this thesis is novel.

2T. Mak, private communication, 2008.

10

Chapter 2. Background and Related Work

2.3 Serial signalling schemes

If a high-speed global clock operating at the speed of the interconnect is not available,

as would be the case in FPGAs, then some mechanism for transmitting and recovering

the data must be devised that does not require a global clock. This problem has been

dealt with extensively in the literature on globally asynchronous, locally synchronous

(GALS) systems, which was surveyed in [27].

2.3.1 Asynchronous

In an asynchronous system, request-acknowledge handshakes accompany each trans-

mission, so an unbounded amount of timing uncertainty can be tolerated. A tu-

torial survey of asynchronous design techniques is provided in [28]. To implement

asynchronous signalling in a serial channel, two additional control wires are usually

required to carry request and acknowledge signals. There are a number of schemes

which reduce this to one wire by driving the wire from both ends [29–31], but they

require bidirectional wires which are typically not found in FPGAs.

In FPGAs

A fully asynchronous FPGA was designed in [32] and achieved very high clock speeds

in the 600MHz range in a CMOS 0.18µm process. Similar work has become the basis

for a recent startup company, Achronix, which claims signalling rates of 1.5Ghz [33].

Other work has suggested applying a GALS approach to FPGAs, applying asyn-

chronous wrappers to synchronous logic blocks [34]. These two approaches tend to

represent an overhaul of existing FPGA architectures and their supporting CAD tools

which is more extreme than the modifications proposed in this thesis.

11

Chapter 2. Background and Related Work

2.3.2 Source-synchronous

In source-synchronous communication, a timing signal that is synchronous to the

data is transmitted alongside the data. The receiver extracts the timing signal and

uses it to clock the data. Source-synchronous communication is also known as clock

forwarding and is a standard technique in digital communications.

The major advantage of source synchronous communication is very high-performance

links. Unlike asynchronous communication, no handshake is required. Timing uncer-

tainty must be small enough such that the clock and data can be reliably recovered

at the receiver. The technique is relatively robust with respect to process variation

and noise; with proper design, the clock and data will experience the same variation

along the link, allowing the data to be sampled reliably. In ASICs, a number of wave-

pipelined schemes rely on source-synchronous clocking [14, 35]. High-throughput

source-synchronous pipelining was explored in [36]. The technique was also applied

to FPGAs in the recent wave pipelining study previously mentioned [4].

2.3.3 Receiver-clocked systems

Transmitting a timing reference along with the clock incurs significant overhead. If a

timing reference is instead regenerated at the receiver, the data can be sent alone on

one wire without any additional control signals. There are two types of schemes that

implement clocking at a receiver. The first uses a pausible clock which is triggered by

incoming data, while the second uses fixed delay elements in a shift register to shift

in bits as they arrive.

In pausible-clocked systems, both the transmitter and receiver have locally gen-

erated clocks, usually implemented with gated ring oscillators [37]. Due to process

variation, the receiver clocks may operate at slightly different speeds than transmitter

clocks, even if the speed should nominally be the same; some synchronization mech-

anism is therefore required. A network-on-chip design using ring oscillators at the

12

Chapter 2. Background and Related Work

transmitter and receiver was able to achieve a 1Gbps throughput in a 0.18µm CMOS

process [38].

In the second scheme, the data is transmitted as a serial burst, and the receiver

captures bits at fixed intervals following reception of a pilot bit. The receiver is then

essentially a shift-register which relies on fixed delay elements to determine when

each incoming bit should be sampled [39, 40]. The design is structurally different

from pausible clock designs but relies on a similar principle: delay circuits at the

receiver are designed to match the period of incoming data.

All schemes that rely on a timing source generated independently at the receiver

are vulnerable to process variation; transistors at the receiver which control the sam-

pling period could operate at a different speed than the transistors at the transmitter

which control the data period. The use of current-starved delay elements can protect

against delay variation due to supply voltage fluctuations [39], but process variation

remains a critical limiting factor [40] which is likely to get worse in future processes.

Therefore, receiver-clocked systems are not considered for this work.

2.3.4 Data encoding

Depending on which of the above signalling techniques is chosen, there may be the op-

portunity to encode the data in a more energy-efficient way than simply transmitting

it straight over the wire. There is an advantage to regular clock and data transmission

in that it allows one clock wire to control a bundle of data wires. However, multiple

wires allow for alternate encoding techniques that can simplify transmission or reduce

the number of transitions required.

Two-wire pulsing

The presence of data is normally signalled by an edge on a timing line, but it could

also be signalled by a pulse. A simple scheme introduced in [41] sends a zero by

13

Chapter 2. Background and Related Work

pulsing one wire, or sends a one by pulsing the other wire. It also uses arbiter-

like logic to avoid skew between wires. Pulse-mode asynchronous signalling was also

discussed in [42]. Pulses as atomic units allow for simple reliable transmission, since

pulse repeaters naturally restore pulse widths and enforce event spacing. However,

pulses use twice as much power and require twice the latency compared to edges and

are less likely to be competitive, especially since the large multiplexors in FPGAs

force pulses to be much wider than they would be in an ASIC.

LEDR encoding

In level-encoded 2-phase dual rail (LEDR) encoding, a clock edge is transmitted only

if the data hasn’t changed, such that exactly one edge is transmitted per bit [43].

The encoder and decoder are each a single XOR gate. This encoding saves power:

without LEDR, the clock wire alone transmits one edge per bit. LEDR can be applied

to wave-pipelining, but not surfing, because surfing relies on an unencoded clock signal

to control its jitter attenuation circuitry.

SILENT encoding

The SILENT scheme [44] is designed to reduce the switching activity of serial data

buses. Serialization destroys temporal correlation between successive words; when

the same word value is transmitted twice, the bits of a parallel bus do not toggle,

and so consume no dynamic power. In SILENT encoding, each data bit in a word is

XOR’d with its value from the previous word before being transmitted. During quiet

periods when the words do not change, the encoded data is all zeros.

The scheme realizes a significant power savings if the average pre-serialization

activity is less than 25% or greater than 75%, with highest savings for extremely low

or extremely high activities; for activities between 25% and 75% there is a slight power

overhead. In an FPGA, it is difficult to know if SILENT should be applied because

14

Chapter 2. Background and Related Work

the activity varies according to the user design. The area overhead of the encoder

and decoder, which require an XOR gate and a latch for each bit, is significant. The

SILENT scheme will thus not be employed in this thesis.

2.4 Timing uncertainty

Timing uncertainty is a major problem for wave pipelining and surfing links and will

be considered in detail in Chapter 4. This sections defines the terminology that will be

used and provides some background on sources of timing uncertainty and techniques

for dealing with it.

Timing uncertainty is distinct from systematic variability in that the latter can

be modelled and corrected for, but the former is unknown, random, or too costly to

model [45]. There are many different forms of timing uncertainty, but they can be

broadly classified into two terms: static uncertainty, and dynamic uncertainty. Static

uncertainty refers to variations in mean timing due to slowly varying or one-time

effects, while dynamic uncertainty refers to short term or cycle-to-cycle variations in

timing [46].

2.4.1 Skew and jitter

Timing uncertainty in this thesis will generally be classified as either skew or jitter.

Skew is defined as uncertainty in the relative timing between two different signals,

while jitter is defined as unwanted variation within a periodic signal.

In this thesis, skew will refer specifically to the time difference between a data

signal and its corresponding clock edge. The timing diagram in Figure 2.3 shows

an example. Skew can be broken into two components: static or mean skew, and

dynamic or cycle-to-cycle skew. Static skew usually has a random component due

to process variation, and may have a systematic component which is chosen by the

15

Chapter 2. Background and Related Work

Skew

Min Mean Max

Probability density

Min skew

clock

data

Max skew

Arrival time variation

Figure 2.3: Skew definition

designer; for example, the surfing circuit in this thesis has a systematic skew of about

100ps. The mean skew shown in the figure represents the static skew. The random

component is assumed to be zero in this thesis, since the data and timing wires are

side by side. Dynamic timing uncertainty means there is cycle-to-cycle uncertainty

in skew, which is modelled by a probability distribution with a certain mean and

standard deviation. Reliability estimation in Chapter 4 will be specifically concerned

with such random variations in skew.

While skew is concerned with the difference between two wires, jitter is concerned

with consecutive events on the same wire, particularly with periodic signals such as

clocks. In such a signal, the period should be stable, which means the time interval

between consecutive edges should be constant. Random variation causes uncertainty

in the arrival time of each edge. This translates to uncertainty in the separation of

consecutive edges. The timing diagram in Figure 2.4 shows the variation in edge

separation due to changes in the arrival time. The term “jitter” will normally be

used to describe variations away from the mean edge separation; the terms “period”

or “bit rate” are used to describe the mean.

16

Chapter 2. Background and Related Work

Min edge separation

Max edge separation

clock

Arrival time variation

jitter

Min Mean Max

Probability density

Edge separation

Figure 2.4: Jitter definition

2.4.2 Sources of timing uncertainty

The main sources of static timing variation are process, voltage, and temperature,

often abbreviated as “PVT variation” or simply “PVT”. The main sources of dynamic

timing variation are high-frequency supply noise, crosstalk, and residual charge [47].

The impact of dynamic timing uncertainty on the reliable operation of wave-pipelined

and surfing links is the major focus of Chapter 4.

2.4.3 Process corners

One way that designers cope with uncertainty is to bound the space of possible

operating points and test the design at all of the worst case points. The worst

points are often referred to as “process corners” or simply “corners”. The space is

multidimensional with one axis for each source of variation being considered. For

example, a common test case is mismatch between NMOS speed and PMOS speed.

Figure 2.5 shows how the slowest and fastest possible NMOS and PMOS speeds bound

the space of possible fabricated chips. The typical point, TT, is in the middle. The

designer would normally simulate a design at each of the four corners in the space and

the TT point. Corner information is typically encapsulated in the transistor models

provided by the foundry.

Simulations in this thesis are usually performed at either the TT corner, indicating

17

Chapter 2. Background and Related Work

Slow Typical Fast

Fast

Typical

Slow SS

NMOS speed

TT

FS

FF
SF

PMOS speed Space of possible fabricated chips

Figure 2.5: Illustration of process corners (adapted from [45])

typical behavior, or the SS corner, indicating the slowest possible transistors. At the

TT corner, the temperature is set to 70oC, while at the SS corner, the temperature

is set to 125oC.

Process corners are useful because they allow designers to test their designs under

worst-case operating conditions. However, they can describe only the mean behavior

of a chip; they provide no information about intra-die variation, and they cannot be

used to guarantee robustness against noise. Moreover, they can produce designs that

are too pessimistic to be competitive [45].

2.4.4 Statistical static timing analysis

A recent alternative approach to modelling variation is to treat process uncertainty

as a random variable, usually with a normal distribution. In statistical static timing

analysis (SSTA), random process and noise effects are translated into random timing

uncertainty. The general thrust of the literature is towards solving optimization

problems involving large numbers of correlated random variables which affect the

timing of all of the paths in the circuit. See [48] for a survey.

The impact of random process effects in wave-pipelined domino logic was analyzed

using statistical methods in [49]. Variation was found to accumulate and limit the

18

Chapter 2. Background and Related Work

maximum frequency as pipeline depth was increased. Similar results are reported in

Chapter 4.

2.4.5 Statistical jitter modelling

Short-term timing uncertainty is a well-known problem in off-chip serial signalling;

typically, it involves the characterization of the jitter response of a clock and data

recovery circuit (CDR). Jitter modelling in off-chip communication has typically used

either peak-to-peak or RMS models. However, it has been argued that probabilistic

models using cumulative distribution functions to measure error rates are required

for high speed (> 1Gbps) links [50]. Gaussian distributions are usually used to model

random jitter [51]. Statistical jitter models do not appear to have been applied to

on-chip interconnects before; this thesis will demonstrate that they are required for

wave pipelined links.

2.4.6 Normal distributions

A good deal of the work in this thesis will assume that random effects are normally

distributed. This assumption can be justified by the central limit theorem, which

states that the sum of a sufficiently large number of random variables with finite

mean and variance tends to be normally distributed. For example, since noise effects

tend to be caused by the aggregation of many small random effects, the overall noise

will tend to be normal. This is not a perfect assumption; its limitations will be

highlighted later when it is applied.

Random variables are characterized by their mean µ, and standard deviation, σ

(or the variance, σ2). A normally distributed random variable X with mean µ and

standard deviation σ is notated as X ∼ N(µ, σ2). Improbable events are often de-

scribed in terms of the number of standard deviations away from the mean which

corresponds to the event’s probability. For example, about 95% of all events occur

19

Chapter 2. Background and Related Work

within two standard deviations of the mean, so a 2σ event occurs with about 5% prob-

ability. Table 2.1 lists the probabilities of such events up to ten standard deviations

from the mean. In the table, P (|X ∼ N(0, 1)| > n) represents the probability that

a random variable X which is normally distributed with mean µ = 0 and standard

deviation σ = 1 takes a value greater than ±n. Since the standard deviation of X is

1, n is equal to the number of standard deviations away from the mean.

Table 2.1: Probabilities for standard normal distribution
n P (|X ∼ N(0, 1)| > n)
1 0.32
2 0.046
3 2.7×10−3

4 6.3×10−5

5 5.7×10−7

6 1.9×10−9

7 2.6×10−12

8 1.2×10−15

9 2.3×10−19

10 1.5×10−23

2.5 Summary

This work applies wave pipelining and surfing to datapath FPGA architectures using

source-synchronous signalling. It is not the first study of source-synchronous wave-

pipelined interconnect in FPGAs, but it is the first to consider surfing for the same

application, and the first to consider reliability. The reliability analysis models jitter

and skew using statistical methods which do not appear to have been previously

applied to on-chip links.

20

Chapter 3

Design and Implementation

This chapter describes an FPGA with high-bandwidth, bit-serial interconnect at the

system and circuit levels. In the circuit-level description, circuit and timing diagrams

are presented. The wave-pipelined and surfing interconnect circuits that will be ana-

lyzed later in this thesis are introduced here. Finally, a high-level area estimation is

performed to predict the advantages of switching from parallel to serial interconnect.

3.1 System-level design

To efficiently support serial interconnect, the traditional FPGA architecture must

be altered. Serializer (SER) and deserializer (DES) blocks must be added to each

logic, memory, and multiplier block that supports serial communication. Additional

switches to connect the SER and DES blocks to the regular block inputs and outputs

are required as well. Finally, the wires must be optimized at the circuit level to

maximize speed and reliability.

Figure 3.1 shows a high-level architectural drawing of an FPGA with the existing

parts in bold. The figure includes dedicated clock lines and a clock generator which is

necessary to implement a source-synchronous signalling scheme; this particular choice

of signalling is addressed in Section 3.2

Figure 3.2 shows a high-level circuit schematic serial interconnect. Note how the

user clock controls a serial clock generator at the data source; this serial clock is

sent alongside the data and is used at the receiver to clock the deserializer. Circuit

diagrams for the serializer and deserializer circuits are provided in Appendix A. The

21

Chapter 3. Design and Implementation

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

CLB /
Memory /
Multiplier

CLB /
Memory /
Multiplier

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

���������������������� ����������������������
����������������������

����������������������
����������������������

����������������������

����������������������
����������������������

SER

SER

Programmable

Interconnect

Clk gen

User clock

Block inputs

DES

DES

Output

switches

Input

switches

Single wires

Block outputs

Serial buses

data clk

data clk

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3.1: Schematic of input and output connections, with existing parts in bold

detailed design of the interconnect segments is described in Section 3.3.

3.2 Choice of serial signalling scheme

The serial data needs to operate at a rate much faster than the regular user clock;

an FPGA with serial interconnect will therefore require a way of transmitting and

recovering serial data that does not rely on the user clock. Possible techniques for

doing so were reviewed in Section 2.3; they include using a high-speed global clock,

asynchronous signalling, and source-synchronous signalling. Source-synchronous sig-

nalling is chosen because it is likely to require less power than a global clock, and

because it is easier to integrate into a typical FPGA than asynchronous signalling.

This rationale is elaborated below.

22

Chapter 3. Design and Implementation

and routing
Local logic

SER

Serial clock
generator

and routing
Local logic

DES

User clock (global)

D Q

D Q

D Q

D Q

Destination registers

Serial clock

Serial data

Pipelined high−throughput programmable interconnect

Programmable
delay

Source registers

D Q

D Q

D Q

D Q

Figure 3.2: High-level schematic showing interaction with user clock

3.2.1 Global clock

The most straightforward way of controlling the SER and DES blocks is with a high-

speed global clock that is distributed throughout the chip. This scheme needs just

one wire to send data using either wave pipelining or register pipelining. Data validity

can be established with a pilot bit.

To reach the 6Gbps target rates in this thesis, a low-skew double data rate clock

in the 3GHz range is required. Designing clock networks at this speed is challenging,

but has been done microprocessors. For example, the IBM Power6 can be clocked as

high as 5Ghz, and uses less than 100 W for power-sensitive applications [52]. At 22%

of the total power consumption, clock switching is a primary component [53].

Clock power is often controlled by disabling or gating the clock when it is not

needed, but this is unlikely to save significant power in this situation. The global

clock is needed to control serializers, deserializers, and interconnect pipeline latches.

23

Chapter 3. Design and Implementation

Serial interconnect circuits that are not needed could be statically disabled using

SRAM configuration bits. However, since clock gating is likely to be implemented at

the tile level, any tile which contains active interconnect pipeline latches would not

be able to disable the global clock. It would thus be difficult to realize appreciable

power savings with clock gating.

Source-synchronous is more attractive than global clocks from a power perspective;

in the former case, the dynamic power is directly proportional to the number of serial

bits transmitted, rather than a large fixed cost as in the latter case.

3.2.2 Asynchronous

Asynchronous schemes are attractive because they can tolerate an unbounded amount

of timing uncertainty by using request/acknowledge handshakes instead of relying on

signals to arrive within a certain time window. However, in FPGAs, links must be

programmable, which requires that the req/ack handshake signals travel over a pro-

grammable path. Regular FPGA interconnect is not intended to route asynchronous

handshakes. In a two-wire handshake, the acknowledgement must be reverse-routed

back to the source, which adds some delay and power overhead. Supporting fanout

is a bit more complex: after a request at the splitting point, the sender needs to wait

for all receivers to acknowledge before sending the next token.

One-wire or bidirectional-wire handshake schemes also exist [30] and have been

recently adapted for serial signalling in a network-on-chip [54]. In such schemes, the

request resets one end of a shared wire and the acknowledge sets the other end of

the wire in response. Implementing this on an FPGA requires bidirectional transmis-

sion through the interconnect switches. This would negate the strong advantages of

directional, single-driver wiring [55].

In general, source-synchronous signalling seems to be more easily adaptable to

typical FPGA programmable interconnect than asynchronous signalling.

24

Chapter 3. Design and Implementation

3.2.3 Source-synchronous signalling

In a source-synchronous link, the timing reference is generated at the data source and

is transmitted along with the data. A high-level timing diagram showing an 8-bit

source-synchronous serial transfer is shown in Figure 3.3, in which the clock is sent

on a separate wire, and data is sent on both edges of the clock.

Serial data

Serial clock

User clock

Figure 3.3: High-level timing diagram

Off-chip serial links often use source-synchronous signalling, but rather than use an

extra wire for the clock as in the figure, the timing information is typically embedded

into the data signal using specialized encodings. The receiver then recovers the clock

from the data using a clock-data recovery (CDR) circuit. This technique is not of

interest here for three main reasons:

1. It relies on analog signalling techniques which are not compatible with typical

FPGA multiplexors.

2. The transmitter and receiver are relatively complex to design and have high

overhead in order to handle the various signal integrity issues in off-chip links,

but on-chip links are not nearly as challenged by signal integrity.

3. CDR’s typically use phase-locked-loops, which work well for streams, but not

bursts, because they take a relatively long time to lock (for example, 60ns

in [56]).

Sending the clock on a second wire is a much simpler technique. There is extra

area overhead for the wire and power overhead for the extra timing transitions, but

25

Chapter 3. Design and Implementation

this is largely unavoidable. An advantage of clock forwarding over using a global clock

is that with clock forwarding, the power overhead is proportional to the number of bits

transferred which allows the designer to trade off the amount of serial communication

against power consumption.

3.3 High-throughput pipelined circuit design

This section describes the design of the multiplexor and drivers which are included

in each interconnect stage, with throughput as a primary design goal.

Figure 3.4 shows the schematic of each interconnect stage. The first driver is

assumed to be twice minimum size, while the last driver is variable and will be

determined in this section. The middle driver size is chosen so that each driver

has equivalent effort [45]. The 0.5mm wire spans four tiles and includes mux taps

after each 0.125mm tile as shown in Figure 3.5. In simulations, each 0.125mm wire

is modelled with the 4-segment π-model shown in Figure 3.6, which is sufficiently

accurate for this application [45].

0.5mm 4−tile wire

2x W

in out

16:1 mux
2W

Figure 3.4: Basic interconnect stage schematic

3.3.1 Rise time as a measure of throughput

In a throughput-centric design, the maximum bandwidth of the link is the inverse of

the minimum pulse width that can be transmitted. An analytical throughput model

is developed in [57] for a wave-pipelined link. Although the model is designed for

inverter-repeated links only (to remain accurate, it would have to be modified to

26

Chapter 3. Design and Implementation

0.5mm wire

0.125mm 0.125mm 0.125mm 0.125mm

16:1 muxes

Nominal
output

Driving buffer

Possible outputs

Possible outputs

Figure 3.5: Detail of 4-tile wire

C/8 C/8C/4 C/4 C/4

R/4 R/4 R/4 R/4

in out

Figure 3.6: RC wire model used in simulations

include the effect of the multiplexors in an FPGA), a detailed analytical model is not

necessary for first-order estimates. In the same study, rise time was shown to be a

reasonably good approximation of throughput.

To illustrate how rise time approximates throughput, consider the three pulses

shown in Figure 3.7; assume these are waveforms at the output of a gate in the signal

path which has a constant edge rate. A pulse is composed of a rising edge followed

immediately by a falling edge (or vice versa); since each edge represents a data symbol,

the pulse is formed by two consecutive symbols. The wide pulse saturates at the rail

for some length of time; it could be made narrower with no ill effects. The minimum-

width pulse just barely reaches the supply rail; it is the narrowest pulse that can

be transmitted through this gate without intersymbol interference. The attenuated

pulse does not reach the supply rail because the edges are too close together in time.

This pulse will likely be further attenuated by subsequent gates in the signal path

27

Chapter 3. Design and Implementation

trise

50%

90%

10%

Voltage

Time
pw

(a) Wide

pw

trise

50%

90%

10%

Time

Voltage

(b) Minimum width

50%

90%

10%

Voltage

Time

pw

(c) Attenuated

Figure 3.7: Illustration of wide, minimum-width, and attenuated pulses

and eventually dropped.

The rise time, measured from 10% to 90% of the swing, is trise and the pulse width,

measured from 50% of the rising edge to 50% of the falling edge, is pw. Considering

the minimum-width pulse and looking at only the rising edge, notice that the time

from when the signal crosses the 50% threshold to the time when it reaches the rail

is equal to pw/2. Because we assume the edge is perfectly linear, then the time from

when the signal starts at 0% to when it reaches the 50% threshold is also pw/2. In

other words, the 0% to 100% rise time is equivalent to the minimum pulse width.

If rise time is measured from 10% to 90%, as in trise, then pw = trise/0.8. Realistic

pulses are not perfectly linear, especially as the approach the rails, but this first order

approximation is useful in the design process undertaken in subsequent sections.

From this observation, it follows that fast edges are required to achieve a high

bandwidth link. Hence, all gates must be properly sized relative to the loads they

drive. An underpowered gate will produce slow edges which will limit the achievable

bit rate. Of course, larger gates require more area and power, so size must be kept

as low as possible while still meeting throughput targets.

28

Chapter 3. Design and Implementation

3.3.2 Driving buffer strength

Since the final driver must drive a 0.5mm wire with mux loads as shown in Figure 3.5,

a series of simulations were run to determine how large this driver should be, relative

to a minimum-sized inverter. Area, delay, energy, and rise time were measured; area-

energy-delay product and area-energy-delay-rise time product were calculated from

the measurements. The methodology is briefly described below.

• Area: sum of the area of a multiplexor and three inverters, sized as shown in

Figure 3.4. Area is measured in minimum-transistor widths according to the

methodology described in Appendix B.

• Delay: average latency through a stage, including a 16:1 multiplexor, three

tapered inverters, and a wire segment.

• Energy: measured by integrating the charge drawn from the supply, multiplying

by the supply voltage, and dividing by the number of edges.

• Rise time: Measured at wire output (at the input of the next multiplexor3) from

10%VDD to 90%VDD.

Simulations were conducted at the TT corner at room temperature. Results are

shown graphically in Figure 3.8.

As expected, area and energy grow with buffer size. Delay is optimal at about 35X,

and rise time is optimal for very large buffers. Area-energy-delay product is a cost

function that might be used for a typical FPGA wire design which does not explicitly

require fast edges. The optimal buffer size in this case is about 15X. However, a

15X buffer is undersized relative to the wire load and produces a slow rise time. The

area-energy-delay-rise time product suggests that 30X is the optimal size, but the

3The measurement is taken here rather than at the multiplexor output so as to make the mea-
surement dependant only on the inverter sizing, not the multiplexor design.

29

Chapter 3. Design and Implementation

curve is relatively flat in the 25X to 40X region indicating that any size within this

region is close to the optimal. To save area and energy, the final driver size will be

fixed at 25X for this thesis.

3.3.3 Multiplexor design

Each interconnect segment includes a 16:1 multiplexor. The architecture is a 2-level

hybrid design described in [58, 59] and shown in Figure 3.9. While FPGAs sometimes

use NMOS-only multiplexors [58], in this case full CMOS transmission gates are

required to improve edge rates and signal swing. Adding the PMOS transistor incurs

a significant area penalty as twenty PMOS transistors are required in total. The

width of these transistors must be kept as small as possible to save area.

The output rise time of the multiplexor was measured from 65nm HSPICE simu-

lations using transmission gates of specific sizes. Figure 3.10 shows the results. The

x-axis shows the transistor sizes as multiples of a minimum-width NMOS transis-

tor; for example, a 1x2-sized transmission gate contains minimum-width NMOS and

twice-minimum width PMOS transistors. Output rise time is plotted; the data points

represent measurements at the TT corner with a 1.0V supply, while the error bars

show measurements at the SS corner with an 0.8V supply and the FF corner with a

1.2V supply. Both rising and falling edges are shown.

There is not much advantage to increasing the width of the transistors. Rise time

decreases slightly with wider transistors, but the magnitude of the decrease is minimal

and it is clearly not worth the extra area. This result occurs because the decrease in

resistance due to wider transmission gates is accompanied by an increase in diffusion

capacitance; the added penalty offsets the gains.

Not surprisingly, having an undersized PMOS, such as the 1x1 case, causes slow

rising edges. In the SS corner, a rising edge has a rise time of 130ps while a falling

edge has a rise time of 70ps. In the 1x2 case, where the PMOS is properly sized to be

30

Chapter 3. Design and Implementation

10 20 30 40 50
120

130

140

150

160

170

180

190

200
Area of stage (mux+all drivers)

Final driver size (min−inv widths)

A
re

a
(M

in
 tr

an
si

st
or

 w
id

th
s)

(a) Area

10 20 30 40 50
110

115

120

125

130

135

140

145

150
Delay

Final driver size (min−inv widths)

A
vg

 s
ta

ge
 la

te
nc

y
(p

s)

(b) Delay

10 20 30 40 50
7

7.5

8

8.5

9

9.5

10
x 10

−14 Energy

Final driver size (min−inv widths)

A
vg

 e
ne

rg
y

(jo
ul

es
 p

er
 b

it
pe

r
st

ag
e)

(c) Energy

10 20 30 40 50
60

80

100

120

140

160

180
Rise time

Final driver size (min−inv widths)

R
is

e
tim

e
(p

s)

(d) Rise time

10 20 30 40 50
1

1.2

1.4

1.6

1.8

2
x 10

−21 Area−energy−delay

Final driver size (min−inv widths)

A
re

a−
en

er
gy

−
de

la
y

pr
od

uc
t

(e) Area-Energy-Delay product

10 20 30 40 50
1

1.5

2

2.5
x 10

−19 Area−energy−delay−risetime

Final driver size (min−inv widths)

A
re

a−
en

er
gy

−
de

la
y−

ris
et

im
e

pr
od

uc
t

(f) Area-Energy-Delay-Rise time product

Figure 3.8: Driving buffer size analysis

31

Chapter 3. Design and Implementation

out

in2 in3 in4in1

r1T

r2T

r2F

r3T

r3F

c4T c4Fc3T c3Fc2Fc2Tc1T c1F

r1F

in5 in6 in7 in8

in9 in10 in11 in12

in13 in14 in15 in16

r4T

r4F

Figure 3.9: Sixteen-input multiplexor schematic

1x1 1x2 2x2 2x4 3x6
20

40

60

80

100

120

140

Transmission gate size (NMOSxPMOS)

R
is

e
tim

e(
ps

)

Rise time at multiplexor output

Rising edge
Falling edge

Figure 3.10: Rise time of muxes; error bars show process variation

twice as wide as the NMOS, the rising edge takes 110ps while the falling edge takes

90ps. The latter of the two is preferable since it leads to more consistent behavior,

which is especially important for propagating timing edges. Thus, the muxes in this

design will use 1x2-sized transmission gates.

The simulations indicate a rise time of about 110ps in the worst case; since this

is the 10% to 90% rise time, the actual minimum pulse width that the mux can

32

Chapter 3. Design and Implementation

propagate is about 110ps/0.8≈140ps. This first-order estimate is relatively close to

the 11 FO4-delay limit for ISI [3] of 165ps in this process.

3.3.4 Wire length sensitivity

It has been assumed that each interconnect stage includes a 0.5mm wire split into

four segments, with multiplexors between each segment. It is useful to determine if

the results in this thesis are sensitive to changes in wire length in case the results are

applied to an architecture with different tile dimensions.

Assume the driving buffer has a resistance of Rg and a diffusion capacitance of

Cd; assume the wire has a resistance of Rw and a capacitance of Cw; and assume any

additional load is Cl. From [60], the delay of a wire is as follows:

Delay ∝ Rg(Cd + Cw + Cl) + Rw(
1

2
Cw + Cl) (3.1)

To improve the bandwidth, we must decrease the delay. Increasing the size of

the driver, and thus decreasing Rg, will decrease the first term in equation 3.1, but

not the second; the latter term is fixed for a given wire. If the wire is sufficiently

short, such that Rw and Cw are small, then increasing the driver size will improve

the bandwidth. If the wire is too long, increasing the driver will have little effect.

Figure 3.11 shows the rise time at the end of wires of various lengths, under slow,

typical, and fast conditions. At the nominal wire length of 0.5mm, the final driver is

25X minimum-sized. The size of the driver is scaled linearly with the wire, such that

a 1mm wire has a 50X driver, and so on.

The graph suggests that wires of length 1mm or more in this particular technology

are too long to maintain fast edge rates. Such wires could be simply split into segments

0.5mm long with a 25X driver at each segment. Wires of 0.5mm or less are not wire-

limited; since the driver is scaled linearly with the wire, they all achieve similar

33

Chapter 3. Design and Implementation

0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

400

Wire length (mm)

R
is

e
tim

e
(p

s)

Rise time of buffered wires

SS/0.8V
TT/1.0V
FF/1.2V

Figure 3.11: Rise time of varying length wires

bandwidth. Wires in this range could thus achieve higher bandwidth by increasing

the driver size.

It should also be considered that the worst-case multiplexor rise times are about

110ps. There is no benefit to improving wire rise times below this since the overall

system bandwidth is constrained by the multiplexor. In fact, since larger drivers carry

area and energy penalties, the drivers should be sized as small as possible so long as

the wire edge rate is faster than the mux edge rate. The chosen design point of 25X

is reasonably close to that point.

To support high-rate serial transfers, both wave pipelining and surfing require

some further modifications to the interconnect circuits. The wave-pipelined circuit

needs two regular wires placed side by side with transistor sizes optimized for fast

edge rates; the surfing circuit is somewhat more complex. One stage for each scheme

is described below in more detail. Later in this thesis, multi-stage links will be

discussed; these consist of a series of identical interconnect stages like the ones in this

section cascaded together. The performance of the overall link is determined by the

performance of one such stage, so proper design is very important.

34

Chapter 3. Design and Implementation

3.3.5 Wave-pipelining stage

The wave-pipelined link requires that the corresponding data and timing signal be

routed side-by-side to eliminate skew. If we assume the wires are reserved for serial

interconnect only, then the multiplexors for the data and timing wires may share

one set of configuration bits since they follow the same route. Figure 3.12 shows the

circuit diagram for a wave-pipelined interconnect stage with one data wire. Additional

data wires may be added as needed. Transistors must be carefully sized to maximize

throughput.

2x 25x7x

2x 25x7x

Data in

Clk in
0.5mm 4−tile wire

0.5mm 4−tile wire
Data out

Clk out

16:1 muxes

Figure 3.12: Wave pipeline interconnect stage

Notice that the circuits are open-loop; jitter and skew can accumulate through

many cascaded stages. Surfing interconnect, as described in the next section, may be

used to attenuate both jitter and skew.

3.3.6 Surfing stage

The circuit structure of surfing [23, 24], shown in Figure 3.13, is similar to wave

pipelining, with two key additions:

1. the clock line has a variable strength buffer which is controlled by a delayed

version of the clock, and

2. the data line has a variable strength buffer which is controlled by the clock.

35

Chapter 3. Design and Implementation

The variable-strength buffers are composed of a weak inverter in parallel with a

strong tri-state inverter. The tri-state inverter is off until its control signal arrives.

With proper design, the data or clock edge should arrive at the variable-strength

buffer slightly ahead of the control signal, so that its transition is weak for some

amount of time, then strong as the tri-state inverter turns on. In this case, if the edge

arrives too early, a longer period of time passes before the tri-state inverter turns on,

which means the edge has been slowed down. Likewise, if the edge arrives late, the

tri-state inverter will turn on earlier (or may already be on), so the output transition

is stronger and the late edge has been sped up. This means that edges are attracted

to their control signals. Figure 3.14 illustrates timing with surfing.

By configuring the clock line to be controlled with an echo of itself, and by setting

the delay equal to the nominal clock half-cycle period, the surfing buffer implements

a simple delay-locked loop [25]. Likewise, by controlling the data line with the clock,

the surfing buffer acts similar to a pulsed latch. The clock edges are converted to

pulses using a simple edge-to-pulse converter circuit.4 The two surfing buffers can thus

remove jitter on the timing line and skew between the data and timing lines. Circuit-

level details of the delay element and edge-to-pulse circuit are given in Appendix A.

3.4 System-level area estimation

To estimate the possible area savings of a serially-interconnected FPGA, two new

architectural parameters are required: M , the serial bus width, and Ps, the percentage

of original wiring resources which are now replaced with serial buses. For example,

in an FPGA with Ps = 0.25, M = 8, and a channel width W=64, there will be 48

regular wires and 2 serial buses carrying 8 bits of data each; a total of 16 wires or

4Data edges tend to lag a small amount behind timing edges due to the latency of the edge-to-
pulse converter. The timing path must be slower than the data path in strong mode, but faster than
the data path in weak mode. This allows the data signal to keep up with the timing signal. Hence,
a few extra inverters are added to the timing path.

36

Chapter 3. Design and Implementation

5x1x

5x1x

Clk out
25x

Data out
25x

Data in

Clk in

2x

2x2x 2x

delay
surf_en

edge to pulse

surf_out

d1 d2
0.5mm 4−tile wire

0.5mm 4−tile wire
surf_in

enen

16:1 mux

16:1 mux

Figure 3.13: Surfing interconnect stage

strength
strongweak strong weak weakData buffer

d1

d2

Data out

Clk out

Surf_en

Surf_in

Surf_out

strong
strength

Timing buffer weak strongweak strongweak

en

en

Figure 3.14: Surfing timing diagram

37

Chapter 3. Design and Implementation

Base transistor cost Transistors per bit Total for M=8
Serializer 138 54 570
Deserializer 160 54 592
Single wire 152 – –
Serial bus 272 131/8 403

Table 3.1: Approximate area cost of serializers, deserializers, and serial buses

25% of the channel were replaced by serial resources.

Approximate area costs for serializers, deserializers, and interconnect is shown in

Table 3.1. This data is based on the circuits described earlier and in Appendix A,

and on area details shown in Appendix B. Wire area includes multiplexors, buffers,

and other logic. Here, each serial bus contains one timing wire and one data wire.

The following assumptions will be made when designing an FPGA with serial

interconnect:

• The target FPGA is island-style with 512 channel wires5, all of length 4, and

input connectivity of fc = 0.2. Each block has 64 inputs6 and 32 outputs. One

quarter of the channel wires are available to be driven from each block.

• One serial bus of width M can replace M single wires with no impact on

routability.

• Each block must contain enough M -bit deserializers such that 100% of block

inputs can be supplied from serial buses. Likewise, each block must contain

enough M -bit serializers such that 100% of block outputs can be sent over

serial buses.

These assumptions can be used to estimate area for a range of different architec-

tures. While the precise architectural results will depend on proper benchmarking

5This represents the sum of both horizontal and vertical channels.
6The block was assumed to be a DSP/multiplier, which needs more SER and DES blocks than a

typical CLB.

38

Chapter 3. Design and Implementation

and evaluation, we can gain insight into sensitivity of results here without bench-

marking. Total interconnect area in a block can be measured by tabulating input

connection mux area, wire mux and buffer area, and SER/DES overhead area.

The target FPGA initially has a total interconnect area, including all input muxes,

output muxes, and output buffers, of about 31616 minimum-transistor-widths per

block. Roughly half of this comes from the input muxes: each of the 64 inputs is

driven by a 77-input mux. The other half comes from the 16:1 muxes and buffers

attached to each output wire. By converting a certain percentage of the 512 wires to

serial buses, the input mux widths are reduced, and many of the output muxes and

buffers can be removed. The three graphs in Figure 3.15 shows how the interconnect

area varies with Ps, the percentage of wires that are converted to serial buses, and

M , the serial bus width.

These graphs demonstrate that large area savings of 10 to 60% might be achieved

by converting a large percentage of FPGA interconnect to serial buses. Wider serial

buses lead to more savings, as does a higher percentage of serial wires. The SER/DES

overhead is roughly constant, because enough circuitry is present to furnish exactly

100% of block inputs and outputs regardless of the bus width and percentage of serial

wires. The number of SER/DES units is purposely overestimated here.

The area numbers are good enough to suggest that serial interconnect in FP-

GAs is worth investigating. Demonstrating a net benefit conclusively would require

a more detailed system-level design and a full architectural exploration including

benchmarking, as well as a detailed circuit-level design and analysis to prove feasibil-

ity and reliability, and to provide latency, throughput, area and power numbers. The

remainder of this thesis focuses on the latter question.

39

Chapter 3. Design and Implementation

(a) M = 8, percent serial varied

(b) M = 16, percent serial varied

(c) Ps = 0.5, bus width varied

Figure 3.15: System-level interconnect area estimation 40

Chapter 3. Design and Implementation

3.5 Summary

This chapter proposes adding serializer and deserializer circuits to logic, memory, and

multiplier blocks to support high-bandwidth serial communication. A system-level

area estimation shows that the interconnect area can be reduced by 10% to 60% by

converting some percentage of the wiring resources in an FPGA to serial buses. This

result is motivational only and should be considered to be a preliminary step before

a full architectural investigation, which is outside the scope of this thesis.

Source-synchronous serial signalling is shown to be a promising technique where

a serial clock generated at the data source and transmitted alongside the data on

an adjacent wire. Source synchronous offers several advantages over the alternatives,

especially simplicity, easy integration with existing FPGA structures, and relatively

low area and power overheads.

Wave-pipelining and surfing are the two leading circuit designs under considera-

tion. The wave-pipelining circuit is essentially two ordinary wires side-by-side, one

for data and one for the serial clock, with larger transistors to allow for faster edge

rates. However, the circuit is open loop which means jitter and skew may accumulate

over the length of a long link. In contrast, the surfing circuit includes a delay element

in a feedback loop which acts as a delay-locked loop to attenuate jitter and skew. The

next chapter assesses the performance of long wave-pipelined and surfing links in the

presence of noise, measures their jitter and skew propagation behavior, and estimates

their reliability.

41

Chapter 4

Robustness Analysis

One of the main concerns in wave-pipelined and surfing designs is robust, reliable

transmission. We must guarantee that bits traverse the channel without fault and

can be sampled correctly at the receiver.

To do so, this chapter develops noise models and a method to estimate the degree

of timing uncertainty. Because the noise sources are random, timing uncertainty

is treated probabilistically. Circuit simulations are used to predict the minimum

pulse width, or, equivalently, the maximum throughput, of both wave pipelining and

surfing. The timing uncertainty measurements and circuit simulations together are

used to estimate the probability of error as a function of the operating speed.

4.1 Reliable transmission

There are two ways in which a serial link can fail. First, if consecutive edges are too

close together in time, they can interfere and reduce the signal swing, violating noise

margins and leading to incorrect data being transmitted. Second, the data and clock

signals could arrive at the receiver with too much skew, such that incorrect data is

sampled.7 Each of these failure modes will be discussed below.

7Voltage noise at the receiver could also cause incorrect sampling, but this effect is assumed to
be minimal.

42

Chapter 4. Robustness Analysis

4.1.1 Edge interference

Edge interference is most readily visualized by considering two consecutive edges as

the leading and trailing edges of a pulse. Nominally, the pulse width, measured at

the 50% point of the supply voltage, is equal to the nominal bit period, since each

edge represents one bit. The rise time of each edge is a function of the relative sizing

of each driver with respect to its load (see Section 3.3). Assume a positive pulse,

going from logic low to high to low again, is transmitted down a link. If the bit

period is sufficiently long such that the edges do not interfere, then the pulse will be

transmitted successfully. If, however, the bit period is too small, the trailing edge of

the pulse may arrive before the leading edge has fully completed its transition, which

means the pulse may not reach the supply rail. If the trailing edge arrives too close

to the leading edge, the pulse may not rise above the downstream gate’s threshold

voltage, which means the downstream gate will block the pulse from propagating.

Figure 4.1 shows the behavior of a five-stage circuit in which a single pulse is

applied at the input. Each stage is the wave pipelined circuit shown in Figure 3.12

with one extra inverter inserted to preserve the polarity. The waveforms are from

HSPICE simulations at the TT corner. Three different pulse widths are applied:

150ps, 120ps, and 90ps. The first pulse width, 150ps, is wide enough such that the

voltage reaches the supply rail; this pulse is propagated with no noticeable attenuation

through all five stages. The second pulse width, 120ps, is close to the boundary; at

first glance, the pulses appear to be propagated without attenuation, but in fact the

fifth pulse is narrower than the first, indicating that the edges are interfering slightly.

The third pulse width, 90ps, causes severe interference; the pulse is dropped after

three stages.

Notice that the 90ps pulse did not fail right away, but it produced a slightly smaller

output pulse that, when applied to the second stage, produced an even smaller pulse.

This behavior hints at a relationship between input pulse width and output pulse

43

Chapter 4. Robustness Analysis

Figure 4.1: Waveforms showing pulse propagation through five stages

width in which there is a sharp cutoff. More information about this relationship

would be helpful in determining the smallest pulse that a multi-stage link can safely

propagate.

Pulse width transfer curves

The relationship between input pulse width and output pulse width can be measured

using the circuit in Figure 4.2. One-half of a wave-pipelined circuit is shown. An ideal

44

Chapter 4. Robustness Analysis

pulse of a specific width with a 50ps rise time is generated at the input; after travelling

through the first stage, the pulse will have a realistic shape. The pulse width at the

input and output of the device under test is measured and used to create the pulse

transfer characteristic. Pulse widths are measured from the midpoint of the supply

voltage as shown previously in Figure 3.7. For a nominal supply voltage of 1.0V,

pulse width is measured from 0.5V to 0.5V. If the supply voltage is set to 0.9V, then

pulse width is measured from 0.45V to 0.45V. Note that the pulse width at the input

of the device under test will be different from the pulse width of the ideal stimulus;

the former is the important measurement.

Input shaping stage Device under test Output load

pulse width
input

pulse width
output

stimulus
ideal

...

...

...

...

...

...

Figure 4.2: Pulse width measurement circuit

Figure 4.3 is an illustration of the general shape of the resulting curves for wave

pipelining and surfing. (Curves of this type have appeared in published literature [41],

but they do not yet appear to have been applied to wave pipelining or surfing.) A

dashed line is plotted along the diagonal where input pulse width is equal to output

pulse width. For sufficiently large pulse widths, the output pulse width should be

equal to the input pulse width, meaning the transfer curve is aligned with the diagonal.

On the graph, the point at which the transfer curve first touches the diagonal is

labelled as an “operating point”, because a pulse with that width will be transmitted

unchanged. By contrast, pulses will become narrower in regions where the curve lies

below the diagonal, and will become wider in regions where the curve lies above the

diagonal.

45

Chapter 4. Robustness Analysis

These curves tell us several things about the behavior of a multi-stage link. First,

and most obviously, they show a clear cutoff point, where the curve suddenly drops

to zero. More importantly, however, they also show changes to a pulse’s width as

the pulse travels down the link. For wave pipelining, if an input pulse is narrower

than the operating point, then it will be attenuated, such that the next stage sees a

narrower pulse. Since the curve is monotonic, the stage after that will see an even

narrower pulse, and so on until the pulse is dropped. For surfing, there is a large

region in which the curve sits above the diagonal, meaning pulses are restored; if the

trailing edge of a pulse arrives too early, it will produce a wider output pulse at its

output, and so on until the pulse width returns to the operating point. If there is

a perturbation from the operating point, for example due to transient supply noise,

then the two schemes will react differently: in wave pipelining, the pulse will become

smaller, but in surfing, the pulse will be restored to its nominal width. At a glance,

the curve shows how stable the link is with respect to variations in input arrival times,

and shows the regions in which timing uncertainty will be attenuated.

in1in2in3 Input pulse width

Output pulse width

out1=in2

out2=in3

(dropped)

in=out
operating
point

(a) Wave-pipelining

Output pulse width

Input pulse widthin1 in2 in3

out1=in2
out2=in3

in=out
operating
point

(b) Surfing

Figure 4.3: Pulse transfer behaviour

46

Chapter 4. Robustness Analysis

Simulation Results

Figure 4.4 shows pulse transfer curves constructed from HSPICE simulation results.

These curves are generated for both wave-pipelining and surfing at the SS and TT

corners with DC supply voltages ranging from 0.8V to 1.2V, with no transient supply

noise. The delay line in the feedback loop in the surfing circuit is set to a nominal

delay of 250ps. Two variations of surfing are simulated: one with an ideal delay

element (labelled “ideal”), and one with a practical delay element which is vulnerable

to noise and variation (labelled “practical”).

The curves show a cutoff pulse width varying from 80ps to 160ps, depending on

process and supply voltage; notice, however, that the wave pipelining circuit begins

to attenuate pulses as wide as about 250ps. Surfing shows a flat region between

about 100ps and 250ps in which pulse width is restored. The operating point in the

practical surfing circuit turns out to be sensitive to process and voltage, which could

affect noise tolerance since different stages in the link could be operating at different

points. The nominal margin between the operating and cutoff points is reduced if a

fast stage is followed by a slow stage. The operating speed should thus be chosen to

match the slowest expected operating point.

4.1.2 Incorrect sampling

The other failure mode is more straightforward, since it occurs in synchronous systems

as well. The data must satisfy setup and hold constraints at the receiver. In wave

pipelining, the data and clock signals do not interact until they reach the receiver, at

which point the clock is used to sample the data. A proper design will delay the data

edge so that it arrives at the midpoint between clock edges; it will thus be assumed

that a wave pipelined link can tolerate up to half of a bit period of skew. Note that

there is no mechanism for removing skew except at the receiver; it will therefore

accumulate along the link.

47

Chapter 4. Robustness Analysis

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Wave pipelining pulse width transfer characteristic,SS

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(a) Wave pipelining, SS

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Wave pipelining pulse width transfer characteristic,TT

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(b) Wave pipelining, TT

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Surfing (ideal) pulse width transfer characteristic,SS

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(c) Surfing (ideal), SS

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Surfing (ideal) pulse width transfer characteristic,TT

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(d) Surfing (ideal), TT

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Surfing (practical) pulse width transfer characteristic,SS

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(e) Surfing (practical), SS

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Surfing (practical) pulse width transfer characteristic,TT

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(f) Surfing (practical), TT

Figure 4.4: Pulse width transfer characteristic simulations

48

Chapter 4. Robustness Analysis

...

...

...

...

output
skew

...

...

...

...

...

...

...

...

Delay

input
skew

matched
edges

timing

data

Output loadDevice under testInput shaping stage

elements

Figure 4.5: Skew transfer measurement circuit

Surfing is slightly more complex in that each stage contains a surfing buffer on the

data line which behaves like a pulsed latch. Timing constraints for the surfing buffer

are derived in [26] but they may also be visualized by constructing a skew transfer

characteristic, using techniques similar to those used in developing the pulse width

transfer characteristic.

Skew transfer characteristic

The skew transfer characteristic is found using the circuit in Figure 4.5, which is very

similar to the pulse width measurement circuit in the previous section. In this case,

ideal delay elements are inserted into the data and clock lines. The delays are varied

to introduce a controllable amount of skew at the input to the device under test. The

output skew is then measured.

The wave pipelining skew transfer characteristic is not interesting; it is simply a

diagonal along the input=output line.

The surfing characteristic is shown in Figure 4.6. There is no discernible difference

between practical and ideal curves this time. Recall that each timing edge produces

a data pulse using the edge-to-pulse converter; the data pulse controls the soft latch

49

Chapter 4. Robustness Analysis

0 50 100 150 200
0

50

100

150

200

Input timing/data edge separation(ps)

O
ut

pu
t t

im
in

g/
da

ta
 e

dg
e

se
pa

ra
tio

n
(p

s)

Surfing (ideal) skew transfer characteristic,SS

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(a) Surfing (ideal), SS

0 50 100 150 200
0

50

100

150

200

Input timing/data edge separation(ps)

O
ut

pu
t t

im
in

g/
da

ta
 e

dg
e

se
pa

ra
tio

n
(p

s)

Surfing (ideal) skew transfer characteristic,TT

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(b) Surfing (ideal), TT

0 50 100 150 200
0

50

100

150

200

Input timing/data edge separation(ps)

O
ut

pu
t t

im
in

g/
da

ta
 e

dg
e

se
pa

ra
tio

n
(p

s)

Surfing (practical) skew transfer characteristic,SS

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(c) Surfing (practical), SS

0 50 100 150 200
0

50

100

150

200

Input timing/data edge separation(ps)

O
ut

pu
t t

im
in

g/
da

ta
 e

dg
e

se
pa

ra
tio

n
(p

s)

Surfing (practical) skew transfer characteristic,TT

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(d) Surfing (practical), TT

Figure 4.6: Skew transfer characteristic simulations

on the data line. The operating point is determined by the latency through the edge-

to-pulse converter, which is nominally about 80ps but can vary considerably. The

operating point is not labelled on the figure; it is the left-most point at which the

curve intersects the diagonal, where the slope of the curve is less than 45 degrees.

Again, we see the curves exhibiting a flat, stable region in which changes in the

input have relatively little effect on the output. Edges that arrive early (to the left

of the diagonal) are snapped back to the operating point almost immediately. Edges

that arrive late (to the right of the diagonal) show some interesting behavior which

is due to the fact that data pulse has a finite width. Normally, a late edge is sped

50

Chapter 4. Robustness Analysis

up, because the strong tri-state inverter is on for the entire transition; indeed we see

evidence of this occurring in the region where the skew transfer curves are below the

diagonal. However, if the edge arrives too late, then the data pulse will complete and

the tri-state will turn back off, causing the delay to shoot back up. The skew tolerance

of the inverter is thus limited by the pulse width of the edge-to-pulse converter.

In this particular circuit, the edge-to-pulse converter is designed to produce a

pulse about 80ps wide. In order to ensure that late transitions are sped up, not

slowed down, we must require that the output skew is reduced, which means the

curve must sit below the diagonal. For early transitions, the curve may sit above the

diagonal, but nominally the circuit will operate at the point where the curve intersects

the diagonal. We can thus estimate the amount of skew tolerance by measuring the

amount of time between the two diagonal intercepts; it appears to vary from about

30ps to 50ps, which means the circuit can tolerate skew of at least one third of the

data pulse.

If the nominal bit period is significantly larger than twice the nominal data pulse

width, then skew tolerance could be increased by widening the data pulse. This would

be desirable for bit periods greater than 200ps. The maximum width of the data pulse

should be half the nominal bit period for maximum skew tolerance. In that case, each

stage would then be able to tolerate skew of up to one-sixth of the bit period (one

third of the data pulse).

4.1.3 Summary of criteria for reliable transmission

Two failure modes have been identified: pulse collapse due to edges interfering, and

incorrect sampling due to skew. To prevent pulse collapse, pulses must always be

greater than about 160ps wide at the far end of the link; to achieve this width, some

margin must be built into the operating bit rate in order to prevent accumulated

timing uncertainty from altering a nominally safe pulse into an unsafe pulse. To

51

Chapter 4. Robustness Analysis

prevent incorrect sampling in a wave-pipelined link, the total skew across the link,

measured at the receiver, must be at most one half of the bit period. In a surfing

link, the skew measured at each stage must be at most one sixth of the bit period.

The reliability of the link can be assessed using these guidelines as timing deadlines.

4.2 Quantifying timing uncertainty

A distinction needs to be made between fast events that impact arrival times from cy-

cle to cycle, static events that set mean arrival times, and those in between. In [47],

sources of uncertainty are classified by their relative time constants: electromigra-

tion and the hot electron effect cause delays to drift over several years; temperature

cause delays to shift in microseconds; and supply noise/cross-coupling/residual charge

have delay impacts in the 10 to 100ps range, with estimated 3σ delay impacts of

±17%/10%/5%, respectively.

Of the effects listed in [47], only the last three occur in the sub-nanosecond range

and will thus have an impact on cycle-to-cycle arrival times. Other effects may be

considered to have a constant impact on arrival time. The uncertainty due to these

constant effects must be accounted for by adding appropriate timing margin, but it

does not threaten the safe transfer and recovery of data as long as data and timing

wires are affected in the same way.8

Faster noise sources are therefore the focus of this analysis. With fast noise, con-

secutive edges on a wire that are nominally a safe distance apart could be pushed too

close together, exacerbating ISI. If the noise affects data and timing wires differently,

causing skew, the data may be pushed outside of the safe sampling window indicated

by the timing signal. Crosstalk and supply noise are the main sources of fast noise,

so they will be addressed in detail in this section.

8Note that mismatch due to random variation will still be briefly addressed in Section 4.4.

52

Chapter 4. Robustness Analysis

4.2.1 Process and temperature

Process, voltage, and temperature (P, V, and T) are the most significant factors

affecting mean delay. Supply voltage can have both slowly varying and quickly varying

components and is addressed separately in Section 4.2.3. Process and temperature

are mainly accounted for by simulating under the slowest conditions (SS corner at

125oC). However, within-die variation should be accounted for as well.

The full possible range of transistor variation due to process is about ±30% [61].

Estimates of within-die variation vary but often fix it at about half the full range [62],

up to ±15% from the average, such that a variation from SS to TT is possible within

one die (or from TT to FF, or somewhere in between).

Speed mismatch between data and timing paths causes systematic skew that can

make wave pipelining unreliable. As long as the transistors and wires are close to-

gether, they should experience negligible process or temperature skew [61]. However,

a pessimistic random skew with zero mean and standard deviation σ = 2% of the

stage latency will be applied in Section 4.4 to ensure that the results are not overly

sensitive to random process effects.

4.2.2 Crosstalk

Crosstalk is a fast noise source contributing to skew and ISI. In fact, the bit-serial

interconnect will itself be a large source of crosstalk noise due to the fast edges

employed and close proximity of the wires. Here, serial interconnect is simulated with

and without shielding to determine the impact of crosstalk and whether shielding is

necessary or not.

Changing voltages on neighboring wires has the effect of temporarily increasing

or decreasing the coupling capacitance between wires. For example, if two adjacent

wires both switch in the same direction simultaneously, then the effective capacitance

is cut in half (approximately, depending on geometry) via the Miller effect, because

53

Chapter 4. Robustness Analysis

the voltage at both ends of the capacitor is changing at the same time [45]. If the wires

switch in opposite directions, the capacitance can double. The change in capacitance

produces a change in delay.

This model is useful for producing worst-case bounds on crosstalk-induced delay

variation. Worst-case bounds are appropriate for synchronous systems with fixed

timing constraints and deterministic signals with known timing. In an FPGA, the

transition times on neighbouring wires is not known ahead of time; indeed, one signal

may encounter crosstalk from many different signals on various neighbouring seg-

ments as it traverses the FPGA. Moreover, each bit in a serial stream may encounter

crosstalk. Applying worst-case bounds at every possible crosstalk point is far too

pessimistic and leads to unrealistically conservative designs. Worst-case bounds are

further discussed in Appendix C.

Simulation setup

The severity of crosstalk depends on the precise relative timing of edges on adjacent

wires, but this timing is not known in advance. However, the impact of crosstalk may

be reasonably estimated with Monte Carlo simulations by applying random data

on adjacent wires at 50ps intervals. This pessimistic rate helps ensure safe design

margins.

Figure 4.7 shows a crosstalk measurement circuit. The data and clock wires

from a wave-pipelined interconnect stage are shown, along with aggressors above

and below. Additional input shaping and load stages are added to ensure realistic

conditions. Wires in the input shaping stage have no coupling. All signal wires

including aggressors are twice minimum width. In the unshielded case, all wires are

spaced apart by twice the minimum spacing, while in the shielded case, minimum-

width shields are inserted between each pair of signal wires at the minimum spacing.

All wires are assumed to be in one of the middle metal layers. Coupling capacitances

54

Chapter 4. Robustness Analysis

Data
source

Input shaping stage Load stage

Random aggressor

Random aggressor

Data in

Clk in

Data out

Clk out

(a) No shielding

Data
source

Input shaping stage Load stage

Data in

Random aggressor

Random aggressor

Clk in

Data out

Clk out

(b) Full shielding

Figure 4.7: Crosstalk simulation setup

are determined from an HSPICE field solver using process data; second-order coupling

capacitances (i.e. from one signal wire through a shield to the next signal wire) are

included and found to account for about 3% of total capacitance. The data wire

carries a 16-bit pattern while the clock wire has an edge corresponding to each bit.

The latency through one wave-pipelined stage from the clock input to clock output

is measured for each of the sixteen bits, producing sixteen measurement points. This

is repeated with the same word pattern and different random aggressor data until

about 12,000 measurements are collected.

Results

The resulting delay histograms are shown in Figure 4.8. The curves do not show

a normal distribution because of deterministic coupling between the wires. Also,

a slight mismatch between rising and falling edges leads to double-peaked behavior.

Still, we can observe about σ = 12ps of timing uncertainty per stage in the unshielded

55

Chapter 4. Robustness Analysis

100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

Stage latency (ps)

P
ro

ba
bi

lit
y

de
ns

ity
µ=151ps

σ=12ps

Delay variation due to crosstalk, unshielded

(a) No shielding

100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

Stage latency (ps)

P
ro

ba
bi

lit
y

de
ns

ity

µ=162ps

σ=1.74ps

Delay variation due to crosstalk, shielded

(b) Full shielding

Figure 4.8: Delay variation due to crosstalk

case, which is severe, and about σ = 1.7ps in the shielded case, which is manageable.

The magnitude of the effect on delay strongly suggests that serial links should be

shielded. Timing uncertainty for the shielded case turns out to be much smaller than

supply-induced timing uncertainty, so for simplicity the remainder of the analysis in

this thesis will assume perfect shielding (i.e, no crosstalk).

4.2.3 Supply noise model

In general, supply noise can be divided into slowly varying or DC components and

quickly varying components. There are many ways to model supply noise. A typical

industry rule of thumb of a uniform ±10% [45] provides reasonable DC bounds, but

this gives no information about the frequency content of the noise. High-frequency

voltage spikes will be present as well. Both effects need to be considered.

One recent study suggests that decoupling capacitors can remove this high fre-

quency noise, so the supply should be considered a constant DC voltage [63]. Others

include slow sinusoids in the 100-500MHz range [46] to model resonance in the LC

circuit formed by the power grid and the lead inductance. Another study of ASICs

56

Chapter 4. Robustness Analysis

measured power supply noise and found a mixture of deterministic noise caused by

the clock signal and its harmonics, random cyclostationary noise caused by switching

logic, and random high frequency white noise [64].

In ASIC designs, power supply noise can be accurately estimated because the

circuit design and behavior is known. This is not possible in an FPGA since the

circuit’s behavior will change depending on the design the FPGA is implementing.

Instead, a generic supply noise model is required. Compared to ASICs, FPGAs have

slower user clocks, larger interconnect capacitance driven by strong buffers, and more

disperse logic. There do not appear to be any studies of the net effect of such power

supply noise in FPGAs.

Since a DC-only supply noise model is clearly inadequate, supply noise will be

modelled in this thesis as the sum of a nominally fixed DC component and a fast

transient component; each component will be varied independently. The transient

noise is assumed to be a memoryless random process which is normally distributed

and changes value every 100ps.9 The mean or DC level, µ, is nominally 1.0V, but

since low supply voltages limit performance more than high supply voltages, this

analysis focuses on DC voltage levels below the nominal. The standard deviation σ

is left as a central parameter. Figure 4.9 shows example power supply waveforms at

µ = 0.95V DC and σ = 15mV, 30mV, and 45mV; these supply voltage waveforms

will be applied in circuit simulations. All elements within one interconnect stage see

the same supply voltage, but each stage has an independently varying supply.10

There is clearly room for improvement in this model; real power supply noise

is not memoryless, for example, and it is certainly not normally distributed; at the

very least it must be bounded. However, constructing a more sophisticated model is a

difficult task without more detailed information about how FPGA power supply noise

9This rate is chosen because it has a strong impact on cycle-to-cycle delay at the serial intercon-
nect speeds in this thesis.

10Multiplexor select lines are directly connected to the noisy supply as well; in an actual device
they would see this noise filtered by the SRAM configuration bits.

57

Chapter 4. Robustness Analysis

Figure 4.9: VDD noise waveforms

actually behaves. The model presented here will be useful because it makes it easy

to isolate the delay impacts of DC and transient noise. In general, DC noise affects

mean delay while transient noise affects cycle-to-cycle delay (this is demonstrated in

the next section); since cycle-to-cycle timing uncertainty is the main threat to reliable

transmission, the model should be pessimistic in this regard. Note that σ = 45mV

leads to 3σ variations of ±0.135V , or ±13.5%, which is considerably more pessimistic

than typical bounds of ±10%.

4.2.4 Supply noise analysis

Transient noise has a strong impact on cycle-to-cycle delay because the operating

speed of a transistor, which is a function of its supply voltage, can change in between

cycles. Slowly varying noise should have almost no effect on cycle-to-cycle delay. This

section tests these assumptions.

Simulation setup

Similar to the crosstalk simulations described earlier in this chapter, a multi-stage

link is constructed and the stage latency is measured over several thousand trials.

The measurement circuit is shown in Figure 4.10. Each stage has an independent

58

Chapter 4. Robustness Analysis

Wave pipelined stage Wave pipelined stage Wave pipelined stage

(µ, σ)2 (µ, σ)2(µ, σ)2Vdd1 ~ N

source
Data

Vdd2 ~ N Vdd3 ~ N

din
clkin clk1

d1 d2
clk2 clkout

dout

Figure 4.10: Experimental setup measuring delay impact of VDD noise

supply voltage, but all supply voltages have the same distribution, with mean or DC

value µ and standard deviation σ.

To measure the impact of transient noise, the DC value is fixed at 0.95V, and

transient noise ranging from σ = 0mV to σ = 60mV is applied. To measure the

impact of DC noise, a small fixed amount of transient noise (σ = 15mV) is applied,

and DC voltage is varied from 1.00V to 0.80V.

For each configuration of µ and σ being tested, 100 trials are run. In each trial,

a set of random supply voltages are generated for each stage. The delay through the

middle stage, from clk1 to clk2, is measured sixteen times, once per bit. The number

of measurements, 1,600, should be enough to give a reasonable estimate of the mean

and standard deviation of the jitter.

Results

Figure 4.11 shows the DC noise histograms, while Figure 4.12 shows the transient

noise histograms. The histograms are all normalized to their respective means, so

that the variation in latency (i.e., the jitter) is measured as a percentage of the mean.

The trend lines clearly show that jitter increases steadily with applied transient noise,

but is relatively insensitive to changes in DC value. Slow changes in the DC voltage

level will thus have relatively little impact on cycle-to-cycle jitter.

It is worth noting that the jitter histograms appear to be normally distributed.

To some degree, this is likely an artifact of the normally distributed voltage supply

59

Chapter 4. Robustness Analysis

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity
µ=151ps

σ=2.1%

(a) µ = 1.00V

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity

µ=166ps

σ=2.4%

(b) µ = 0.95V

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity

µ=184ps

σ=2.6%

(c) µ = 0.90V

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity

µ=207ps

σ=2.9%

(d) µ = 0.85V

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity
µ=238ps

σ=3.1%

(e) µ = 0.80V

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

Mean Vdd drop (V)

Ji
tte

r
σ

(%
 o

f l
at

en
cy

)

(f) Trend

Figure 4.11: Delay variation due to variations in DC level (σ = 15mV).

noise model. Actual voltage noise cannot have long unbounded tails as a normal

distribution would.

4.3 Jitter and skew propagation

Previously, it was claimed that surfing interconnect can attenuate jitter and skew

while wave pipelining allows jitter and skew to accumulate. If jitter can be modelled as

a normally distributed random variable with standard deviation σ, and jitter between

stages is independent, then the jitter at stage N in a wave-pipelined link is
√

N · σ.

In a surfing link, the jitter should be constant at all stages, so long as the amount of

noise applied does not exceed the local margin. A similar analysis applies to skew as

well.

60

Chapter 4. Robustness Analysis

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity
µ=166ps

σ=1.6%

(a) σ = 5mV

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity

µ=166ps

σ=2.4%

(b) σ = 15mV

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity

µ=166ps

σ=4%

(c) σ = 30mV

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity

µ=166ps

σ=5.8%

(d) σ = 45mV

0.8 1 1.2
0

5

10

15

20

25

Stage latency (normalized)

P
ro

ba
bi

lit
y

de
ns

ity
µ=166ps

σ=7.8%

(e) σ = 60mV

0 20 40 60
0

2

4

6

8

10

Supply σ (mV)

Ji
tte

r
σ

(%
 o

f l
at

en
cy

)

(f) Trend

Figure 4.12: Delay variation due to transient supply noise (µ = 0.95V.)

Simulation setup

The simulation setup, shown in Figure 4.13, is similar to the setup in Figure 4.10,

except a longer link with 9 stages is simulated. The goal of this simulation is to

measure the skew and jitter at the output of each of the first 8 stages to see if it

shrinks, grows, or remains constant as the link length is increased. As before, skew is

measured from the midpoint of a data transition to the midpoint of its corresponding

clock transition. The nominal time separation between two consecutive clock edges

is measured to capture the jitter behavior.

One hundred trails are run; in each trial, sixteen jitter measurements and nine

data skew measurements (the data pattern had only nine edges) are performed at each

of the eight stages. The supply has a mean value of 0.95V and a varying transient

component; larger transient noise should produce larger jitter and skew.

61

Chapter 4. Robustness Analysis

(µ, σ)2(µ, σ)2(µ, σ)2Vdd1 ~ N (µ, σ)2

Wave pipelined
or surfing stage

Wave pipelined
or surfing stage

Wave pipelined
or surfing stage

Wave pipelined
or surfing stage

d8
clk8clk7

d7...d2
clk2

source
Data

Vdd2 ~ N

din
clkin clk1

d1
clkout
dout

Vdd9 ~ NVdd8 ~ N

Figure 4.13: Experimental setup measuring skew and jitter propagation

Results

The jitter and skew measurements produce histograms with a normal distribution at

a certain mean and standard deviation (not shown). Mean skew and jitter appears to

be constant, but the standard deviation varies both with the amount of noise applied

and with the length of the link. Figure 4.14 shows the standard deviation of jitter and

skew for wave pipelining and surfing. Simulation data is marked on the graph with

a thick line. At very small levels of noise, the curves are jagged because disparities

between rising and falling edges are the dominant source of skew and jitter. The

simulation data is also fit to curves of the form y = A
√

x + B and extrapolated out

to 50 stages using a dashed line.

In wave pipelining, the jitter and skew both accumulate in long links as expected

and clearly follow a square root curve with respect to the number of stages11. In

surfing, both jitter and skew are small and roughly constant for small amounts of

noise. The largest amount of supply noise simulated, σ = 60mV , is too high for the

surfing stage; the large spike in skew indicates that data bits were dropped. Moreover,

there is a slight accumulation of jitter evident for this noise level, another sign that

the surfing mechanism is not working properly. The surfing stage simulated in this

trial uses a delay loop of about 250ps; a higher amount of noise can be tolerated

simply by increasing this delay.

11Correlation coefficients are all > 0.99 except for wave pipelined jitter at σ = 0mV (0.84), wave
pipelined skew at σ = 0mV (0.83) and σ = 15mV (0.97), and surfing skew at σ = 0mV (0.90) and
σ = 15mV (0.97).

62

Chapter 4. Robustness Analysis

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
on

se
cu

tiv
e

ed
ge

 s
ep

ar
at

io
n

σ
(p

s)

Wave pipelined extrapolated jitter

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(a) Wave pipelining jitter

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
on

se
cu

tiv
e

ed
ge

 s
ep

ar
at

io
n

σ
(p

s)

Surfing (ideal) extrapolated jitter

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(b) Surfing (ideal) jitter

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
lo

ck
−

da
ta

 s
ep

ar
at

io
n

σ
(p

s)

Wave pipelined extrapolated skew

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(c) Wave pipelining skew

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
lo

ck
−

da
ta

 s
ep

ar
at

io
n

σ
(p

s)

Surfing extrapolated skew

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(d) Surfing(ideal) skew

Figure 4.14: Jitter and skew propagation (simulation in bold)

4.4 Reliability estimate

The previous results in this chapter can be used to make some estimate of the link’s

reliability. By modelling jitter and skew as normal random variables with the standard

deviations taken from the data plotted in Figure 4.14, the probability of error can be

estimated.

63

Chapter 4. Robustness Analysis

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Arrival time (ps)

P
ro

ba
bi

lit
y

D
en

si
ty

Wave pipelined bit arrival distributions, σ
j
=25ps

Stage 1

Stage 10

Stage 30 Stage 50

Bit 1
Bit 2

Figure 4.15: Illustration of arrival time probabilities for consecutive edges

Methodology

If the arrival times of two successive bits are normally distributed, there is a finite

probability that the later bit will arrive close enough to the earlier bit to cause inter-

symbol interference. If jitter grows with the number of stages, then this probability

will increase. Figure 4.15 illustrates an example where two bits are sent consecutively

down a fifty-stage link. Initially, the probability density curves are very sharply

peaked, indicating that there is very little uncertainty in arrival time and correspond-

ingly a low probability of ISI. As the bits travel through the link, their arrival times

spread out due to accumulating jitter, and the probability of interference increases.

By the fiftieth stage, there is significant overlap in the curves, indicating a high prob-

ability of failure.

Of course, an overlapping state is not physically possible; the second bit cannot

arrive earlier than the first. Two edges that arrive very close together should instead

be thought of as a pulse with a very narrow width; such a pulse would be attenuated.

64

Chapter 4. Robustness Analysis

To guarantee that jitter does not cause such a failure, we need to determine that the

probability of two edges arriving below the cutoff pulse width (i.e. 160ps, determined

earlier in this chapter) is sufficiently small.

A similar argument follows for the skew. To allow for correct sampling at the

receiver, the data and clock may be misaligned by at most one-half of the data period

in wave pipelining and at most one-sixth of the data period in surfing. The probability

of this occurring also depends on the uncertainty in arrival times, which is captured

by the standard deviations measured in the previous experiment.

If the probability distributions of consecutive edge separation and skew are known,

then the probability of error can be found using the cumulative distribution functions.

Let P1 be the probability that the consecutive edge separation is greater than 160ps,

and let P2 be the probability that the skew is less than one-half of the nominal bit

period for wave pipelining, or less than one-sixth of the nominal bit period for surfing.

For successful transmission, both conditions must be true; therefore the probability

of error is PE = 1− P1 · P2.

The mean consecutive edge separation is equal to the nominal bit period. If the

bit period is 500ps, for example, then there is 340ps of margin until the cutoff point.

The probability of error due to jitter is equivalent to the probability of the variation

in edge separation being greater than 340ps. In surfing, there is a slight complication

because the operating point varies depending on the DC supply voltage; here we will

assume a worst case 30% variation. If the nominal rate is 500ps, then the worst-case

operating point is 350ps, meaning there is only 190ps of margin until the cutoff point

of 160ps.

For skew, wave pipelining can tolerate one-half of the nominal bit period. Hence, if

the bit period is 500ps, the probability of error due to skew is equal to the probability

that the skew is greater than 250ps. For surfing, the mean skew is one-sixth of the

nominal bit period; in this case the maximum tolerable skew would be 83ps.

65

Chapter 4. Robustness Analysis

Using this methodology, the probability of error can be estimated as a function of

the nominal bit period. This will be shown in the results at the end of this section.

First, however, skew and jitter distributions need to be quantified.

Skew and jitter distributions

For this analysis, a supply noise level of σ =30mV is chosen and the standard devi-

ations for skew and jitter are taken from the data plotted in Figure 4.14. For wave

pipelining, this results in jitter of σi = 10.6ps ·
√

i for stage i, while for surfing it is

constant at σ = 10.8ps regardless of the stage number. Similarly, skew has a standard

deviation of σi = 5.8ps ·
√

i for wave pipelining, and σ = 4.6ps for surfing.

The skew distribution assumes the latency through the data and clock wires are

identical. In reality, there is mismatch due to random process variation. An additional

skew term of µ = 0, σ = 2% of the stage latency is applied to account for this.

The overall skew standard deviation is the geometric mean of the process skew and

the random skew from supply noise. For wave pipelining, the skew at stage i is

σi =
√

(5.8ps ∗
√

i)2 + (l ∗ 0.02 ∗
√

i)2, where l is the average latency of one stage.

For surfing, it is again constant, at σ = 4.6ps+0.02 ∗ l.

Since the true distributions of skew and jitter are unknown, they are assumed

to be normally distributed. Normal distributions, however, are unbounded. This

presents a problem as it means that physically impossible events (e.g., a negative

supply voltage, negative arrival times) will occur with finite probability. Rather

than arbitrarily bounding the Gaussian and perhaps providing a result that is overly

optimistic, the probability of these rare events can be de-emphasized by halving the

skew and jitter standard deviations. There is no real physical justification for this

step; rather, it is undertaken to show what happens to reliability when the underlying

noise model is changed. This provides insight of sensitivity to the underlying noise

model.

66

Chapter 4. Robustness Analysis

Results

Probability of error estimates are shown in Figure 4.16. The x axis shows throughput

in Gbps, which can easily be transformed into an edge separation period by taking

the reciprocal. The y axis shows the probability of error, PE.

The curves assuming normally distributed noise are plotted with solid lines and

labelled “norm” (meaning “normal”). The modified normal curves which have half

the standard deviations of their corresponding normal curves are plotted with dashed

lines and labelled “mod-norm”.

The graphs show a clear tradeoff between throughput and reliability; to decrease

error rate, the circuits must operate at a slower rate. Notice, however, that surfing is

much more reliable than wave pipelining in several respects: it is insensitive to changes

in link length, less sensitive to changes in the underlying noise model, and has a much

smaller range in throughput with respect to changes in error rate assumptions.

There is no hard standard as to what constitutes a sufficiently robust probability

of error. Some work assumes a safe bit error rate to be 10−12 [50]. However, since

there are about 3 ·107 seconds in a year, and up to 3×109 events per second if the link

operates at 3Gbps, then a continuous link has about 1017 events per year. If there

are 104 such links inside an FPGA, then there are a total of 1021 events per year. To

achieve hundred-year reliable lifetimes, a probability of error of 10−23 or less may be

required.

Probabilities of error in this range (10−23) occur ten standard deviations away

from the mean in a normal curve (see Table 2.1). The noise model cannot capture

such improbable events; it is highly likely that the jitter and skew are bounded such

that the probability of error is zero for sufficiently large deviations from the mean. Al-

ternatively, failure-inducing events like a 10σ transient voltage spike may be possible,

but they are likely to be deterministic (for example, if all possible circuits switch at

the worst possible time) and thus not well-modelled with a normal distribution. Nev-

67

Chapter 4. Robustness Analysis

1 2 3 4 5 6
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Throughput (Gbps)

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 e
rr

or

Wave−pipe’d (norm)
Wave−pipe’d (mod−norm)
Surfing (norm)
Surfing (mod−norm)

(a) 10-stage link

1 2 3 4 5 6
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Throughput (Gbps)

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 e
rr

or

Wave−pipe’d (norm)
Wave−pipe’d (mod−norm)
Surfing (norm)
Surfing (mod−norm)

(b) 50-stage link

Figure 4.16: Probability of error estimates. Because of uncertainty regarding the
noise models, these results should be considered for illustration only.

68

Chapter 4. Robustness Analysis

ertheless, the trends shown in Figure 4.16 provide novel insight into the robustness

of wave pipelining and surfing with respect to transient supply noise.

4.5 Summary

Sources of timing uncertainty can be classified based on their time-scale. Slow effects

such as DC supply variation and temperature affect mean arrival times, but fast effects

such as crosstalk and high-frequency supply noise are critical for wave-pipelined and

surfing links because they cause cycle-to-cycle variation in skew and jitter which can

lead to intersymbol edge interference and incorrect sampling.

In unshielded links, crosstalk may add about ±30ps of jitter per stage; applying

minimum-width shields reduces the jitter to ±6ps per stage. Shielded wires are

important to minimize the impact of crosstalk.

Supply noise is modelled as a slow DC component and a fast transient component

with a variable standard deviation. Random simulations demonstrate that DC noise

affects mean latency but has very little impact on cycle-to-cycle jitter as a percentage

of latency; high-frequency supply noise has a very strong effect on cycle-to-cycle jitter.

Simulations of wave-pipelined and surfing circuits show that pulses narrower than

about 160ps may be dropped. In the range from 160ps to 250ps, pulses in the wave

pipelined circuit are attenuated in width; in the surfing circuit, their width is restored.

Simulations of an eight-stage link demonstrate that wave pipelined circuits allow

jitter and skew to accumulate with the number of stages in a link. In comparison,

surfing circuits are able to maintain a constant level of jitter and skew regardless of

link length, as long as the transient noise is not too large.

Fitting these simulation measurements to square-root curves allows for an estimate

of the amount of jitter and skew for a link of arbitrary length. If the jitter and skew are

assumed to be normally distributed, then bit error rate can be estimated for a given

69

Chapter 4. Robustness Analysis

operating speed. For a fifty-stage link with a probability of error of 10−20, surfing

can operate at about 2.5 to 3.2 Gbps, while wave pipelining can operate around 1 to

2 Gbps. If the link is only ten stages long, surfing operates at the same speed, but

wave pipelining can operate at a faster rate, around 2.1 to 3.2 Gbps.

70

Chapter 5

Simulation and Evaluation

The longest link simulated in the previous chapter is eight stages long. In this section,

links of up to fifty stages are simulated to verify correct operation. The main analysis

is a measurement of the maximum throughput of wave pipelining and surfing relative

to link length and supply noise. Latency, area, and power are also evaluated. Unless

otherwise stated, simulations are conducted at the SS process corner at a temperature

of 125oC to provide pessimistic operating conditions.

5.1 Throughput

The purpose of this section is to show the relationship between throughput and the

number of stages in the link under a variety of possible noise conditions. Surfing

is expected to have a constant throughput-vs-length curve, while wave pipelining’s

throughput is expected to degrade as the link length is increased.

5.1.1 Methodology

The simulation setup is identical to Figure 4.13, except that the number of stages in

the link is increased. As before, each stage has an independent power supply. The

source generates a sixteen-bit data pattern on the data line and generates a clock

signal with one edge per data bit. The data pattern is [0 1 0 1 0 0 0 1 0 0 1 1

1 0 1 1], which is chosen because it includes positive and negative pulses, runs of

three zeros and ones, and rapid switching at the beginning.

71

Chapter 5. Simulation and Evaluation

Table 5.1: Supply voltages used
Mean µ (V) Std dev σ (mV) 3σ range

0.95 15 0.91 – 1.00
0.90 15 0.86 – 0.95
0.85 15 0.81 – 0.90

0.95 15 0.91 – 1.00
0.95 30 0.86 – 1.04
0.95 45 0.82 – 1.09

For simplicity, the simulations do not include SER/DES blocks; data validity is

ascertained with waveform measurements. To simulate a DES receiver, the waveforms

are inspected as follows: the clock signal is delayed at the output by one half of the

bit period. The voltage on the data line is measured at the midpoint of the clock

edge. If the measured voltage is greater than half the supply, a 1 is recorded; if the

voltage is less than half the supply, a 0 is recorded. A transmission is defined as

successful if the recorded 16-bit pattern matches the input pattern.

Determining the maximum throughput is essentially a brute force exercise: the

circuit is simulated at progressively faster speeds until the transmission is unsuccess-

ful. For small links, the bit period is changed at a resolution of 10ps; for circuits

of thirty stages or more, the step size is 50ps to reduce simulation time. The max-

imum throughput obtained from such a sweep constitutes one trial. Ideally, many

trials would be simulated to provide many different possible combinations of random

supply noise. In practice, one trial can take more than a day of CPU time, espe-

cially if the link is thirty stages or longer. Typically it was only possible to perform

about two or three trials for each circuit. Successive trials almost never produced a

different result, so even if more simulation time was available, it would be unlikely to

significantly affect the results.

Six different supply voltage noise scenarios are tested; they are listed in Table 5.1.

The intent is to separately vary both transient noise and DC supply noise to determine

the impact of each on performance.

72

Chapter 5. Simulation and Evaluation

5.1.2 Results

Figure 5.1 shows the results for wave pipelining and surfing. The curves are coarse

because of the large step size and limited simulation time.

According to the simulation results, wave pipelining achieves throughputs exceed-

ing 5Gbps for short links (ten stages or less), but throughput degrades with link

length due to accumulation of skew and jitter; for a 50-stage link, the throughput

ranges from 2 to 4 Gbps. Surfing is slower, around 3Gbps, but does not degrade with

link length and is insensitive to high-frequency supply noise. Notice, however, that

surfing is vulnerable to changes in DC supply noise; this is because changes in the

DC supply affect the delay through the feedback loop, which in turn alters surfing’s

operating point.

Waveforms showing the clock and data signals recovered at the end of a fifty-stage

link are shown in Figure 5.2. Figure 5.3 has snapshots of the clock at various points

through the link. Note how pulses are evenly spaced in surfing, but some unevenness

is evident in wave pipelining.

These results demonstrate successful operation, but they show higher throughputs

than the reliability analysis in the previous chapter. This makes sense because of the

small number of trials. In general, the results can be taken to be a demonstration of

correct operation which is robust for a limited number of noise scenarios. If millions

of trials could be performed, then the curves in Figure 5.1 should shift lower. To get

an accurate assessment of reliability, a large number of simulations and an accurate

noise model are required. Without a good noise model, it may be more realistic to

fabricate a test chip with controllable on-chip noise sources.

5.1.3 Comparison

In Figure 5.4, throughput results from the medium noise level of µ = 0.95V, σ =

30mV are compared. The throughput of a 16-bit parallel bus, wave pipelining, and

73

Chapter 5. Simulation and Evaluation

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Wave pipelined speed vs transient noise

Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV

(a) Wave pipelining – Transient noise

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Wave pipelined speed vs DC noise

Vdd µ=0.95
Vdd µ=0.90V
Vdd µ=0.85V

(b) Wave pipelining – DC noise

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Surfing (practical) speed vs transient noise

Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV

(c) Surfing (practical) –Transient noise

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Surfing (practical) speed vs DC noise

Vdd µ=0.95
Vdd µ=0.90V
Vdd µ=0.85V

(d) Surfing (practical) – DC noise

Figure 5.1: Throughput simulation results

surfing is plotted. For the parallel bus, throughput is taken to be the inverse of

latency multiplied by the number of wires. Note that the surfing and wave pipelining

throughput assumes only one serial data wire and one clock wire; the throughput

could be doubled by adding a second data wire.

Both practical and ideal cases are plotted in all cases to show how much through-

put is lost due to noise. For wave pipelining and surfing, the ideal throughput is

calculated by simulating the circuits with no noise, while the practical results are the

simulation results mentioned above (µ = 0.95V, σ = 30mV). The absence of noise

means margins can be reduced and throughput is higher. For the parallel bus, the

74

Chapter 5. Simulation and Evaluation

Figure 5.2: Waveforms showing data at the end of a 50-stage link

throughput is the reciprocal of the link latency multiplied by the number of wires in

the bus. The ideal throughput is derived from the latency under typical conditions

(TT), while the practical throughput is taken from simulations at the SS corner. Ad-

ditional required margin due to noise and bus skew is ignored, so the parallel bus

throughput is slightly optimistic.

Because surfing is less sensitive to noise than wave pipelining, this graph conclu-

sively demonstrates that surfing offers superior throughput compared to wave pipelin-

ing for links longer than about 40 stages. In the 20 to 40 stage range, there is no

clear winner, but if more trials are performed, wave pipelining would degrade more.

Surfing is thus highly likely to outperform wave pipelining in this range as well.

Wave pipelining appears to offer very high throughput for very short links. This

is evident in both the ideal and practical curves. In the ideal case, the throughput

approaches just under 6Gbps for very long links, but is higher for shorter links. This

curve is not flat at 6Gbps because the intersymbol interference that limits throughput

75

Chapter 5. Simulation and Evaluation

Figure 5.3: Waveforms showing stage-by-stage propagation

causes small amounts of attenuation that accumulate after many stages. For short

links, faster speeds are achievable. The same is true in the practical case. Therefore,

it may be possible to construct a long wave-pipelined link out of several short ones in

such a way that skew and jitter do not accumulate. This idea will be explored further

later in Section 5.3. Next, link latency will be addressed.

5.2 Latency

Serial communication suffers from a latency penalty compared to parallel communi-

cation, simply because serial bits arrive sequentially while parallel bits arrive all at

once. If the latency of the link is high and the bit period is small, then the penalty of

76

Chapter 5. Simulation and Evaluation

0 10 20 30 40 50
0

2

4

6

8

10

12

Number of stages

M
ax

 r
el

ia
bl

e
th

ro
ug

hp
ut

 (
G

bp
s)

Comparison of schemes

Wave pipelining (ideal)
Wave pipelining (practical)
Surfing (ideal)
Surfing(practical)
16−bit bus (ideal)
16−bit bus (practical)

Figure 5.4: Throughput comparison for all schemes

serialization should be reasonably small. The purpose of the analysis in this section

is to quantify this latency penalty relative to a parallel link, and also to compare the

latency of wave pipelining against surfing.

Methodology

The latency of each interconnect stage is measured from simulation. The delay

through one wave pipelined stage is about 123ps, while the delay through one surfing

stage is about 156ps; the difference is due to the extra logic in the surfing stage. Using

the bit periods which correspond to the throughput measurements in Section 5.1.2

for a supply voltage with µ = 0.95V and σ = 30mV, the latency of a link of arbi-

trary length can be estimated. Surfing has a constant throughput of 3.2Gbps which

corresponds to a period of 310ps; wave pipelining’s throughput varies from about 7.7

77

Chapter 5. Simulation and Evaluation

0 10 20 30 40 50

1

2

3

4

5
6
7
8
9

10

Number of stages

Li
nk

 la
te

nc
y

(n
or

m
al

iz
ed

)

Normalized transit time

Bit 1

Bit 8

Bit 16

Bit 32

Wave pipelining
Surfing
Regular wire

Figure 5.5: Latency normalized to a regular wire, VDD µ = 0.95V, σ = 30mV

Gbps (130ps) down to 2.8 Gbps (360ps) depending on the length of the link.

The arrival time of bit i at stage j is simply i · T + j · l, where T is the bit period

and l is the latency of one stage. For example, in surfing interconnect operating with

a bit period of T = 310ps with a stage latency of l = 156ps, the arrival time of

the first four bits at stage 10 is 1.87ns, 2.18ns, 2.49ns, and 2.80ns. In contrast, a

wave-pipelined link with T = 200ps and l = 123ps has arrival times of 1.43ns, 1.63ns,

1.83ns, and 2.03ns. For longer links, wave pipelining must operate at a slower bit

period, but surfing can maintain the same speed.

Results

The arrival time of a bit on a regular FPGA wire is equal to the arrival time of the

first bit in a wave-pipelined link. To show the latency penalty of the serial schemes,

the estimated arrival time of bits 1, 8, 16, and 32 is calculated relative to the arrival

time of the first bit. The results are shown in Figure 5.5; note the log scale on the

vertical axis.

78

Chapter 5. Simulation and Evaluation

Relative to the first bit, the eighth bit in a serial word has 1.5X to 2X higher

latency with surfing. The sixteenth bit has a 1.8X to 4X latency penalty. Longer

words have even longer penalties and are probably not practical; instead, two or

more data wires should be used. Both serial schemes have higher latency compared

to a parallel bus, but wave pipelining tends to be a bit faster than surfing, since its

nominal latency is lower. Surfing is able to make up a bit of the difference for very

long links and long words because wave pipelining is forced to operate at a slower bit

rate, incurring a higher serialization penalty.

5.3 High-throughput wave pipelining

The results in this chapter indicate that wave pipelining is likely able to run at

relatively high throughputs for short links (i.e., 10 stages or less). This naturally

suggests that higher throughput would be achievable if a long wave pipelined link

could be composed of many short links without further accumulation of skew and

jitter. To achieve this, a circuit is required which can remove accumulated jitter

and skew by realigning the data and timing edges. This could be accomplished by

deserializing and then serializing again through spare SER and DES blocks in a CLB,

but the latency penalty would be high.

Instead, an asynchronous FIFO [28] can be used. In this FIFO, each bit in the

serial stream is recovered and retransmitted with the appropriate spacing between

edges. This also removes unwanted jitter and skew. Internally, the FIFO needs enough

storage to ensure that data is not lost if there is a mismatch between the incoming

data rate and the outgoing data rate; ten bits is probably more than enough.

Figure 5.6 shows the impact on latency when an asynchronous FIFO is inserted

every ten stages. The curves assume the latency through the FIFO is 400ps, which

is quite long for an asynchronous FIFO. A staircase pattern is evident due to the

79

Chapter 5. Simulation and Evaluation

0 10 20 30 40 50

1

2

3

4

5
6
7
8
9

10

Number of stages

Li
nk

 la
te

nc
y

(n
or

m
al

iz
ed

)

Normalized transit time

Bit 1

Bit 8
Bit 16

Bit 32

Wave pipelining
Wave pipelining + FIFOs

Figure 5.6: Latency with 400ps FIFOs at 5Gbps

extra latency, but overall latency improves on long links because of the higher bit

rates. Designing such a FIFO should be straightforward; its implementation is left

for future work.

5.4 Area

In Chapter 3 , a system-level area estimate demonstrated 10% to 60% area savings if

parallel interconnect is replaced with serial interconnect. Here, the area required for

wave pipelining, surfing, and regular interconnect is compared. These results exclude

CLB overhead and savings in switch patterns, so they do not provide a complete

picture of total area. However, the area for sending and 8-bit and 16-bit word are

shown in Table 5.2.

Area is measured in minimum width transistor areas according to the methodology

in [65], which is described in detail in Appendix B. Appendix B also contains more

detailed tabulations of CLB and serial interconnect area.

For wave pipelining and surfing, 16-bit words are assumed to use two serial data

80

Chapter 5. Simulation and Evaluation

Table 5.2: Area tabulation
transistors Transistor area

(min. transistor widths)
Wave pipelining

One data wire 140 262
Two data wires 186 369
Surfing

One data wire 207 402
Two data wires 259 532
Regular wire

8 bit bus 592 1216
16 bit bus 1184 2432

wires carrying 8 bits each. Note that configuration bits, and in the case of surfing,

delay elements and edge-to-pulse converters, are shared between data wires, so the

additional data wires requires only the addition of a multiplexor and set of buffers.

A few interesting conclusions are evident from this information:

• Surfing requires about 50% more area than wave pipelining.

• Compared to an 8-bit parallel bus, a wave-pipelined serial bus uses about 20%

of the area, while a surfing serial bus uses about 33% of the area.

Also, referring to the tabulations in Appendix B, we can conclude:

• The area cost of a serializer and deserializer is roughly equivalent to the area of

a single 8-bit parallel bus interconnect stage.

• LEDR encoding can be added to a serializer and deserializer for about a 4%

area penalty.

5.5 Energy

Serial communication is likely to incur a significant power penalty, for two reasons:

1. Activity increases when a parallel word is serialized, because temporal correla-

tion between successive words is destroyed.

81

Chapter 5. Simulation and Evaluation

2. A 100%-activity clock signal is sent alongside the data.

In other words, the number of transitions required to send a serial word is sig-

nificantly higher than it is for a parallel word. LEDR encoding can be applied to

wave-pipelined scheme to reduce the total activity of the clock plus data wire to

100%. Surfing cannot use LEDR encoding.

Methodology

Energy is measured in HSPICE by integrating the current drawn from each stage’s

power supply. Separate power supplies are applied to both the data and clock lines

so that the usage of each can be estimated independently. In wave pipelining they

are equal, but in surfing there is additional logic in the clock line which will cause

increased power consumption. The total measured energy is divided by the number

of transitions to approximate the energy per transition. This is a first-order analysis;

as such, only dynamic power is considered, not leakage.

Results

Measurements of the dynamic energy per transition are shown in Table 5.3, separated

into clock and data lines. Assuming the parallel wires have a nominal activity of

12.5%, Table 5.4 estimates the energy required for an 8-bit and a 16-bit transfer.

Serial data wires are all assumed to have an activity of 50%. For wave pipelining,

LEDR encoding may be applied so that the combined clock and data activity is 100%.

The 16-bit transfers in wave pipelining and surfing are assumed to use one clock wire

and two data wires. LEDR encoding is only applied to the first data wire in such

cases.

The power penalty is large, ranging from 6X to 8X for wave pipelining with LEDR,

from 8X to 12X for unencoded wave pipelining, and from 9.4X to 14.7X for surfing.

The 100% activity clock is the main reason for the large penalty.

82

Chapter 5. Simulation and Evaluation

Table 5.3: Energy per transition measurements (fJ)
Clock line Data line

Parallel bus - 62
Wave pipelining 62 62
Surfing 82 64

Table 5.4: Energy estimates for 8b and 16b transfers
Energy per 8-bit transfer Energy per 16-bit transfer
Energy(fJ) Normalized Energy(fJ) Normalized

Parallel bus 62 1.0 124 1.0
Wave 744 12.0 992 8.0
Wave/LEDR 496 8.0 744 6.0
Surfing 912 14.7 1168 9.4

5.6 Summary

Simulations of links up to fifty stages confirm that surfing’s maximum throughput

is insensitive with respect to link length, but wave pipelining’s throughput degrades

as the link length increases. Surfing achieves a throughout of just over 3Gbps; wave

pipelining achieves about 5Gbps for ten-stage links and just under 3Gbps for fifty-

stage links. Because the noise sources are random, and only a limited number of

trials can be simulated, extremely rare pessimistic events are excluded. Hence, robust

behavior at these rates is not guaranteed, but the simulations do show insight into

the relative performance of each link and suggest that surfing is more likely to be

robust regardless of the underlying noise model.

Wave pipelining tends to have better latency than surfing. Relative to the first

bit, the eighth bit in a serial word has 1.5X to 2X higher latency with surfing. The

sixteenth bit has 1.8X to 4X higher latency. Longer words have even longer penalties

and are probably not practical; instead, two or more data wires should be used.

Because wave pipelining works much better for shorter links, very high through-

put might be achieved if a long link is broken into several short ones. This could be

accomplished by inserting specialized FIFOs into the link every ten stages to resyn-

83

Chapter 5. Simulation and Evaluation

chronize clock and data, removing accumulated jitter and skew. The overall latency

penalty of such a scheme in shown in Figure 5.6 to be minimal. Full investigation of

this technique is left for future work.

The area of a surfing interconnect stage is about 50% higher than the area of a

wave-pipelined interconnect stage. Compared to an 8-bit parallel bus, a surfing link

achieves a 67% savings, while a wave pipelined link achieves an 80% savings. The

area cost of a single 8-bit serializer and deserializer circuit is about the same as the

area of an 8 bit parallel bus interconnect stage; since each tile contains many such

interconnect stages, the overhead to add serializers and deserializers to a tile is thus

relatively small.

Relative to a parallel bus with 12.5% activity, wave pipelining incurs an 8X to

12X power penalty, while surfing incurs a 9.4X to 13.7X power penalty. The extra

power in surfing is due to the extra logic it requires. The wave pipelining penalty can

be reduced to 6X to 8X if LEDR encoding is employed.

The analysis in this chapter shows that reliable bus communication is possible.

Accurate noise models and long simulation times are a problem for predicting relia-

bility and performance of these links. Power overhead is also significant, suggesting

future work should focus on this as well.

84

Chapter 6

Summary and Conclusion

6.1 Summary

To take advantage of the relatively high bandwidth of FPGA wires and relatively low

clock speed of FPGA designs, high-throughput pipelined interconnect was examined.

An example of a serially interconnected FPGA was proposed; high-level area estima-

tion shows a potential reduction in interconnect area of 10% to 60%, depending on

certain architectural parameters such as serial word length and the amount of serial

wiring resources relative to regular wires.

Because the serial interconnect is required to operate at a speed much higher

than the slow user clock, alternatives to traditional synchronous or register-pipelined

interconnect were explored. The use of a shared high-speed global interconnect clock

was considered but ruled out due to power concerns. Asynchronous signalling was

discarded because of its incompatibility with FPGA interconnect structures as well

as power and latency concerns. Wave pipelining and surfing remain as two promising

techniques which allow for interconnect pipelining without a global clock. In these

schemes, a source-synchronous clock generated at the source with a ring oscillator

is sent on a second wire alongside the data so that the data can be sampled at the

receiver.

The minimum separation between successive bits was measured to be approxi-

mately 160ps for FPGA interconnect in a 65nm technology, which corresponds to

a throughput of 6.3Gbps. This represents the cutoff point beyond which pulses are

85

Chapter 6. Summary and Conclusion

dropped; it is not a reliable operating point. The throughput is limited by the wide

multiplexors in the datapath. This is a significant concern for high-throughput inter-

connect in FPGAs which does not occur in ASICs.

The impact of crosstalk was measured and found to be significant; delay uncer-

tainty due to crosstalk has a standard deviation of about σ =12ps per stage if the

wires are not shielded. Adding shields almost completely removes crosstalk; an im-

pact of up to σ = 1.7ps delay uncertainty per stage was observed. The results strongly

suggest that high-bandwidth interconnect should be shielded.

Wave pipelining and surfing (and similar schemes) are vulnerable to high-frequency

supply noise which causes cycle-to-cycle skew and jitter. A reliability model was de-

veloped to allow for the independent investigation of the impacts of DC noise and

high-frequency noise on delay. DC noise is found to have little impact on skew and

jitter, while high frequency noise is found to have a strong impact.

Using the reliability model, wave-pipelined interconnect was shown to accumulate

both skew and jitter stage-by-stage following a
√

n curve with respect to the number

of stages, n. Surfing interconnect was demonstrated to attenuate both jitter and skew,

making it independent of the number of stages. Using normally-distributed models of

jitter and skew, the probability of error of wave pipelining and surfing was estimated

as a function of throughput. Surfing is able to achieve a reliable throughput (bit error

rate ≈ 10−20) of between 2.5 to 3.2 Gbps. Wave pipelining’s reliable throughput is

between 1 to 2 Gbps for a fifty stage link and between 2.1 and 3.2 Gbps for a ten stage

link. Surfing’s throughput is relatively stable with respect to the desired probability

of error. Wave pipelining can operate at much higher throughputs if the reliability

requirements are relaxed, but must operate at correspondingly slower throughputs if

the requirements are more stringent. In general, surfing is be less sensitive to link

length, level of reliability, and the underlying noise model.

HSPICE simulations of a fifty-stage link confirm the findings obtained from the

86

Chapter 6. Summary and Conclusion

reliability models. HSPICE results suggest higher throughputs than the reliability

model predicts are possible, but this may be limited by the number of simulation

runs that can be practically performed. Surfing’s throughput is demonstrated to be

superior for long links exceeding forty stages, but if reliability is taken into account

surfing is likely superior even for twenty-stage links. Both surfing and wave pipelining

offer large throughput improvements over a regular wire; for a thirty-stage link, one

serial data wire can match the throughput of a sixteen-bit parallel bus while using

one-sixth to one-ninth of the area.

Serialization of words creates a latency penalty because the bits arrive sequentially

instead of all at once. Relative to the first bit, the eighth bit in a serial word has 1.5X

to 2X higher latency with surfing. The sixteenth bit has 1.8X to 4X higher latency.

The penalty is higher for short links because the amount of time it takes for the bits

to arrive sequentially is larger relative to the link latency. Wave pipelining has lower

latency than surfing under most circumstances because surfing has extra logic which

causes a 33ps penalty per stage. These latency results do not include latency hiding

that is sometimes possible by starting early transmission of the first bit before the

last bit is ready. Also, the latency of very large bulk data transfers is dominated by

the link bandwidth, not the wire latency.

The area of a surfing interconnect stage is about 50% higher than the area of a

wave-pipelined interconnect stage. Compared to an 8-bit parallel bus, a surfing link

achieves an 67% savings, while a wave pipelined link achieves an 80% savings. The

area cost of a single 8-bit serializer and deserializer circuit is about the same as the

area of an 8 bit parallel bus interconnect stage. LEDR encoding adds a 4% area

penalty to the SER/DES circuit.

Relative to a parallel bus with 12.5% activity, wave pipelining incurs an 8X to

12X power penalty, while surfing incurs a 9.4X to 13.7X power penalty. The extra

power in surfing is due to the extra logic it requires. The wave pipelining penalty

87

Chapter 6. Summary and Conclusion

can be reduced to 6X to 8X if LEDR encoding is employed. Note that parallel wires

with random bits, such as encrypted data, will have a much higher activity of 50%.

This causes a four-fold increase in the parallel bus power, but no change in the serial

power.

6.2 Interpretation of results

Given the initial target of 6Gbps, the 2 to 3Gbps throughputs achieved in this work

are reasonable and represent a tenfold increase over the typical wire utilization in an

existing FPGA. System-level estimates of area savings are modest in most cases, while

latency penalties are moderate and power penalties are severe, which suggests that

converting existing FPGA interconnect from parallel to serial may not be appropriate

for general applications. However, the design is ideal for specialized applications which

require very high throughput and low area.

There is utility in the methods employed in this thesis, especially given recent

academic interest in high-throughput signalling in FPGAs and in networks-on-chip.

The analysis herein demonstrates that reliability and noise concerns are a major

limiting factor for wave-pipelined designs. Usually, this is not satisfactorily addressed

in wave-pipelining research. Noise effects need to be included in analytical models of

wave-pipelining, since these have a strong impact on performance.

Moreover, designers who wish to implement high-throughput signalling in a pro-

grammable network should be cautioned to carefully consider multiplexor design, as

this was shown to be a limiting factor in throughput. In addition, the required use

of multiplexors in the signal path eliminates as options most of the high-performance

analog signalling techniques recently devised for on-chip serial links.

88

Chapter 6. Summary and Conclusion

6.3 Future work

Several areas for future work were identified throughout this thesis. They are listed

below.

6.3.1 Low-power design

The large power overhead is going to limit the practical use of source-synchronous

serial interconnect. Accordingly, power-reduction techniques, or alternative designs

that use less power, are the first priority for future research. It may be possible to

reduce the interconnect power through more exotic signalling techniques, such as low-

swing signalling, if such techniques can be made compatible with FPGA multiplexors.

6.3.2 Architectural exploration

Several new architectural parameters were proposed and the area impact was esti-

mated for a few possible configurations of bit-serial interconnect. The proposed new

architecture raised several questions, including the routability impact of replacing

regular wires with serial wires, the number of serializers and deserializers needed per

block, the optimal serial word length, and the connectivity between serializers or de-

serializers and block inputs or outputs. These questions should be answered with a

proper architectural exploration including a benchmarking component. Doing so re-

quires the development of serial-capable datapath-oriented CAD tools and benchmark

circuits.

Serial interconnect may also enable the use of bit-serial FPGA logic structures

which may be more tolerant of latency, and offer large area gains.

89

Chapter 6. Summary and Conclusion

6.3.3 Noise and reliability modelling

The noise model used in this thesis is non-physical because it is unbounded. It

would be extremely useful to have more information about what supply noise looks

like in a real FPGA, especially in an FPGA with high-speed serial interconnect.

Such information would enable better models of jitter and skew, and therefore better

estimates of reliability and more aggressive performance targets.

6.3.4 Silicon implementation

The work in this thesis has been entirely based on HSPICE simulations in a 65nm

CMOS process. Every effort was taken to make the simulations as thorough and as

pessimistic as possible, but the results need to be validated with a silicon implemen-

tation. The implementation should include programmable delays so that the serial

bit rate can be adjusted, and should also include realistic noise sources which can

be controlled by the user. Laboratory measurements of bit error rates and power

supply noise could then be undertaken to conclusively demonstrate reliability, and

also improve noise models.

6.3.5 Wave-pipelined FIFO implementation

Throughput and latency results in Chapter 5 suggest that a long wave-pipelined link

could operate at high throughput if asynchronous FIFOs are inserted every ten stages

to remove accumulated skew and jitter. The design of such FIFOs should be relatively

straightforward; it remains to determine the details of their design, and to verify the

predicted gains.

90

References

[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” Proc.

ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, pp. 21–30, 2006.

[2] M. Saldana, L. Shannon, J. Yue, S. Bian, J. Craig, and P. Chow, “Routabil-

ity prediction of network topologies in FPGAs,” IEEE Transactions on VLSI

Systems: Special Section on System Level Interconnect Prediction, vol. 15, pp.

948–951, 2007.

[3] R. Ho, “TUTORIAL: Dealing with issues in VLSI interconnect scaling,” pre-

sented at IEEE Int. Solid-State Circuits Conf., 2007.

[4] T. Mak, P. Sedcole, P. Y. K. Cheung and W. Luk, “Wave-pipelined signalling

for on-FPGA communication”, Proc. IEEE International Conference on Field

Programmable Technology, 2008.

[5] G. Lemieux and D. Lewis, Design of Interconnection Networks for Programmable

Logic, Springer, 2004.

[6] E. Lee, “Interconnect driver design for long wires in field-programmable gate

arrays,” MASc thesis, Dept. of Electrical and Computer Engineering, University

of British Columbia, Vancouver, BC, Canada, 2006.

[7] A. Ye, J. Rose, and D. Lewis, “Architecture of datapath-oriented coarse-grain

logic and routing for FPGAs,” Proc. IEEE Custom Integrated Circuits Conf.,

pp. 61–64, 2003.

91

References

[8] A. Ye, “Field-programmable gate array architectures and algorithms optimized

for implementing datapath circuits,” Ph.D. dissertation, Dept. of Electrical and

Computer Engineering, University of Toronto, Toronto, ON, Canada, 2004.

[9] A. Singh, A. Mukherjee, and M/ Marek-Sadowska, “Interconnect pipelining in

a throughput-intensive FPGA architecture,” Proc. ACM/SIGDA Int. Symp. on

Field Programmable Gate Arrays, pp. 153–160, 2001.

[10] D.P. Singh and S.D. Brown, “The case for registered routing switches in field pro-

grammable gate arrays,” Proc. ACM/SIGDA Int. Symp. on Field Programmable

Gate Arrays, pp. 161–169, 2001.

[11] L. Cotten, “Maximum rate pipelined systems,” Proc. AFIPS Spring Joint Com-

put. Conf., 1969.

[12] W.P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining: a tutorial

and research survey,” IEEE Trans. on VLSI Systems, vol. 6, pp. 464–474, 1998.

[13] L. Zhang, Y. Hu, and C. Chen, “Wave-pipelined on-chip global interconnect,”

Proc. Asia and South Pacific Design Automation Conference, vol. 1, pp. 127–132,

2005.

[14] R.R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, and A. Kolodny, “High rate

wave-pipelined asynchronous on-chip bit-serial data link,” IEEE Int. Symp. on

Asynchronous Circuits and Systems, pp. 3–14, 2007.

[15] A.J. Joshi, G.G. Lopez, and J.A. Davis, “Design and optimization of on-chip

interconnects using wave-pipelined multiplexed routing,” IEEE Trans. on VLSI

Systems, vol. 15, pp. 990–1002, 2007.

92

References

[16] G. Lakshminarayanan and B. Venkataramani, “Optimization techniques for

FPGA-based wave-pipelined DSP blocks,” IEEE Trans. on VLSI Systems, vol.

13, pp. 783–793, 2005.

[17] B. Von Herzen, “Signal processing at 250 MHz using high-performance FPGA’s,”

Proc. ACM Int. Symp. on Field Programmable Gate Arrays, pp. 62–68, 1997.

[18] W. Chow and J. Rose, “EVE: A CAD Tool for Manual Placement and Pipelining

Assistance of FPGA Circuits,” Proc. ACM Int. Symp. on Field Programmable

Gate Arrays, pp. 85–94, 2002.

[19] A. Singh, L. Macchiarulo, A. Mukherjee, and M. Marek-Sadowska, “A novel

high throughput reconfigurable FPGA architecture,” Proc. ACM/SIGDA Int.

Symp. on Field Programmable Gate Arrays, pp. 22–29, 2000.

[20] E.I. Boemo, S. Lopez-Buedo, and J.M. Meneses, “The wave pipeline effect on

LUT-based FPGA architectures,” Proc. ACM Int. Symp. on Field Programmable

Gate Arrays, pp. 45–50, 1996.

[21] T. Mak, C. D’Alessandro, P. Sedcole, P.Y.K. Cheung, A. Yakovlev, and W. Luk,

“Implementation of wave-pipelined interconnects in FPGAs,” ACM/IEEE Int.

Symp. on Networks-on-Chip, pp. 213–214, 2008.

[22] T. Mak, C. D’Alessandro, P. Sedcole, P.Y.K. Cheung, A. Yakovlev, and W. Luk,

“Global interconnects in FPGAs: modeling and performance analysis,” Interna-

tional Workshop on System-Level Interconnect Prediction, pp. 51–58, 2008.

[23] B.D. Winters and M.R. Greenstreet, “A negative-overhead, self-timed pipeline,”

Proc. Int. Symp. on Asynchronous Circuits and Systems, pp. 37–46, 2002.

[24] M.R. Greenstreet and J. Ren, “Surfing interconnect,” Proc. Int. Symp. on

Asynchronous Circuits and Systems, 2006.

93

References

[25] S. Yang, M. R. Greenstreet, and J. Ren, “A jitter attenuating timing chain,”

Proc. Int. Symp. on Asynchronous Circuits and Systems, pp. 25–38, 2007.

[26] S. Yang, B.D. Winters, and M.R. Greenstreet, “Surfing pipelines: Theory and

implementation,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1405–1414,

2007.

[27] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxonomy of GALS

design styles,” IEEE Design and Test, vol. 24, pp. 418–428, 2007.

[28] J. Sparsø, Asynchronous circuit design – a tutorial, Boston: Kluwer Academic

Publishers, pp. 1–152, 2001.

[29] S. Hollis and S.W. Moore, “An area-efficient, pulse-based interconnect,” Proc.

IEEE Int. Symp. on Circuits and Systems, 2006.

[30] I. Sutherland and S. Fairbanks, “GasP: a minimal FIFO control,” Int. Symp.

on Asynchronous Circuits and Systems, pp. 46–53, 2001.

[31] P. Golani and P.A. Beerel, “High-performance noise-robust asynchronous cir-

cuits,” IEEE Symp. on Emerging VLSI Technologies and Architectures, 2006.

[32] J. Teifel and R. Manohar, “Highly pipelined asynchronous FPGAs,” Proc.

ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, pp. 133–142,

2004.

[33] Achronix, “Speedster Data Sheet”, September 2008. [Online]. Available:

http://www.achronix.com/serve doc.php?id=Speedster Datasheet DS001.pdf

[Accessed: Nov. 3, 2008].

[34] X. Jia and R. Vemuri, “The GAPLA: a globally asynchronous locally syn-

chronous FPGA architecture,” IEEE Symp. on Field-Programmable Custom

Computing Machines, pp. 291–292, 2005.

94

References

[35] V.V. Deodhar and J.A. Davis, “Optimization of throughput performance for

low-power VLSI interconnects,” IEEE Trans. on VLSI Systems, vol. 13, pp.

308–318, 2005.

[36] S. Sood, “A novel interleaved and distributed FIFO”, MASc thesis, Dept. of

Electrical and Computer Engineering, University of British Columbia, Vancou-

ver, BC, Canada, 2006.

[37] K. Y. Yun and R. P. Donohue, “Pausible clocking: a first step toward het-

erogeneous systems,” IEEE International Conference on Computer Design, pp.

118–23, 1996.

[38] S. Kimura, T. Hayakawa, T. Horiyama, M. Nakanishi, and K. Watanabe, “An

on-chip high speed serial communication method based on independent ring os-

cillators,” IEEE Int. Solid-State Circuits Conf., pp. 390–391, 2003.

[39] S.J. Lee, K. Kim, H. Kim, N. Cho, and H.J. Yoo, “Adaptive network-on-chip

with wave-front train serialization scheme,” Symp. on VLSI Circuits, pp. 104–

107, 2005.

[40] A. Kedia, “Design of a serialized link for on-chip global communication”, MASc

thesis, Dept. of Electrical and Computer Engineering, University of British

Columbia, Vancouver, BC, Canada, 2006.

[41] M. Miller, G. Hoover, and F. Brewer, “Pulse-mode link for robust, high speed

communications,” IEEE Int. Symp. on Circuits and Systems, pp. 3073–3077,

2008.

[42] J. Ebergen, S. Furber, and A. Saifhashemi, “Notes on pulse signaling,” IEEE

Int. Symp. on Asynchronous Circuits and Systems, pp. 15–24, 2007.

95

References

[43] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient self-timing with level-

encoded 2-phase dual-rail (LEDR),” Proc. University of California/Santa Cruz

Conf. on Advanced Research in VLSI, pp. 55–70, 1991.

[44] K. Lee, S.J. Lee, and H.J. Yoo, “SILENT: serialized low energy transmission cod-

ing for on-chip interconnection networks,” IEEE/ACM Int. Conf. on Computer

Aided Design, pp. 448–451, 2004.

[45] N. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Per-

spective, Boston: Addison Wesley, 2005.

[46] J. Jang, S. Xu, and W. Burleson, “Jitter in deep sub-micron interconnect,” Proc.

IEEE Symp. on VLSI, pp. 84–89, 2005.

[47] S. Nassif, K. Bernstein, D.J. Frank, A. Gattiker, W. Haensch, B.L. Ji, E. Nowak,

D. Pearson, and N.J. Rohrer, “High performance CMOS variability in the 65nm

regime and beyond,” IEEE Int. Electron Devices Meeting, pp. 569–571, 2007.

[48] C. S. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhury, N. Hakim, and

Y. I. Ismail, “Statistical static timing analysis: how simple can we get?”, Proc.

ACM/IEEE Design Automation Conf., pp. 652–657, 2005.

[49] W. Ling and Y. Savaria, “Analysis of wave-pipelined domino logic circuit and

clocking styles subject to parametric variations,” Int. Symp. on Quality of Elec-

tronic Design, pp. 688–693, 2005.

[50] M. Li and J. Wilstrup, “Paradigm shift for jitter and noise in design and test

> GB/s communication systems,” Proc. IEEE Int. Conf. on Computer Design,

pp. 467, 2003.

96

References

[51] N. Ou, T. Farahmand, A. Kuo, S. Tabatabaei, and A. Ivanov, “Jitter models

for the design and test of Gbps-speed serial interconnects,” in IEEE Design and

Test of Computers, vol. 21, pp. 302–313, 2004.

[52] B. Stolt, Y. Mittlefehldt, S. Dubey, G. Mittal, M. Lee, J. Friedrich, and E. Fluhr,

“ Design and Implementation of the POWER6 Microprocessor,” IEEE Journal

of Solid-State Circuits, vol. 43, pp. 21–27, 2008.

[53] B. Curran, E. Fluhr, J. Paredes, L. Sigal, J. Friedrich, Y.-H. Chan, and C.

Hwang, “Power-constrained high-frequency circuits for the IBM POWER6 mi-

croprocessor,” IBM Journal of Research and Development, vol. 51, pp. 715–731,

2007.

[54] S. Hollis and S.W. Moore, “RasP: An area-efficient, on-chip network,” Int. Conf.

on Computer Design, 2006, pp. 63–69, 2006.

[55] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and Single-Driver Wires in

FPGA Interconnect,” IEEE Int. Conf. on Field-Programmable Technology, pp.

41–48, 2004.

[56] C. Yingmei, W. Zhigong, and Z. Li, “A 5ghz 0.18-µm CMOS technology PLL

with a symmetry PFD,” Int. Conf. on Microwave and Millimeter Wave Tech-

nology, vol. 2, pp. 562–565, 2008.

[57] V. V. Deodhar, “Throughput-centric wave-pipelined interconnect circuits for

gigascale integration,” Ph.D. dissertation, School of Electrical and Computer

Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2005.

[58] D. Lewis et al., “The Stratix II logic and routing architecture,” Proc.

ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, pp. 14–20, 2005.

97

References

[59] E. Lee, G. Lemieux, and S. Mirabbasi, “Interconnect driver design for long wires

in field-programmable gate arrays,” IEEE Int. Conf. on Field Programmable

Technology, pp. 89–96, 2006.

[60] R. Ho, K. W Mai, and M. A Horowitz, “The future of wires,” Proceedings of the

IEEE, vol 89, pp. 490–504, 2001.

[61] R. R. Dobkin, A. Morgenshtein, A. Kolodny, and R. Ginosar, “Parallel vs. serial

on-chip communication,” Proc. Int. Workshop on System Level Interconnect

Prediction, pp. 43–50, 2008.

[62] P. Sedcole and P. Y. K. Cheung, “Within-die delay variability in 90nm FPGAs

and beyond,” IEEE Int. Conf. on Field Programmable Technology, pp. 97–104,

2006.

[63] S. Kirolos, Y. Massoud, and Y. Ismail, “Power-supply-variation-aware timing

analysis of synchronous systems,” IEEE Int. Symp. on Circuits and Systems,

pp. 2418–2421, 2008.

[64] E. Alon, V. Stojanovic, and M.A. Horowitz, “Circuits and techniques for high-

resolution measurement of on-chip power supply noise,” IEEE Journal on Solid-

State Circuits, vol. 40, pp. 820–828, 2005.

[65] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron

FPGAs, Springer, 1999.

98

Appendix A

Auxiliary Circuit Designs

This appendix provides circuit schematics for auxiliary components mentioned in the

thesis.

A.1 Serializer and Deserializer

The serializer and deserializer circuits are an important part of the system, but their

design is relatively straightforward. The circuits are simply shift registers, except

some slight modifications are made to reduce latency penalties. Serial data arriving

at the receiver may be shifted out to the parallel deserializer outputs as the bits arrive;

it is not necessary to wait for the entire word. Likewise, parallel serializer inputs will

be shifted out one at a time, which means the last bits sent in the word have a later

deadline.

Circuit schematics of serializer and deserializer circuits are provided in Figure A.1

and timing diagrams are provided in Figure A.2. Each is based on a simple shift

register design. A serial bus width of M = 4 is shown, but the designs can be

trivially altered to support other bus widths. Their operation is briefly described

below.

The clock generator is a simple pausible ring oscillator which is controlled by an

enable signal [27, 37]. Some time after a user clock event, the signal Go must be

asserted to indicate that the serial data is ready and the serial transfer should begin.

The ring oscillator generates M consecutive clock pulses. The lower bank of flip flops

are all initialized low except for the left-most; with each clock tick, the one starting

99

Appendix A. Auxiliary Circuit Designs

D Q

rl

D Q

rl

D Q D Q D Q D Q

rh rl rl rl

000010

reset

D0

D1

D2

D3

clk0 clk1 clk3clk2

delay

Ring oscillator

Pulse

Clk out

Data out

Go clk3

Clk_en

(a) Serializer with clock generator

D Q D Q D Q D Q

Edge to pulse

D Q D Q D Q D Q D Q

rh rl rl rl rl

reset

000010

D0 D1 D2

clk0 clk1 clk2 clk3

D3

Clk in

Data in

(b) Deserializer

Figure A.1: Serializer (with clock generator) and deserializer circuits

at the output of the left-most flip flop will shift down the bank.

Each of the parallel input bits is connected to the data line through an M -bit

multiplexor which is controlled by clk0, clk1, clk2, and clk3. With each clock

pulse, one input bit is cut off and the next one is attached. At the same time, a clock

edge is transmitted through the channel.

The purpose of this design as opposed to a simple parallel-load shift register is

to allow for the possibility that the earlier data bits might be ready before the later

bits. If this is the case, the transmission can begin early instead of waiting for the

100

Appendix A. Auxiliary Circuit Designs

clk0

clk1

clk2

clk3

Pulse

B0 B1 B2 B3

Clk out

Data out

D0

D1

D2

D3

B0

B1

B2

B3

Input data setup time deadlines

Go

Clk_en

(a) Serializer

Data in

Clk in

clk0

clk1

clk2

clk3

D0

D1

D2

D3

B0

B0 B1 B2 B3

B2

B3

B1

Pulse

(b) Deserializer

Figure A.2: Serializer and deserializer timing diagrams

last bit. This should remove some of the serializer latency penalty.

The deserializer operates in a very similar manner. Because both edges of the clock

accompany data tokens, an edge-to-pulse circuit is used to clock the shift register.

Nominally, data and clock edges arrive at the same time; the latency through the

edge-to-pulse converter and through the flip flops provides sampling margin. If more

margin is required, then the receiver can be easily adjusted so that clock edges arrive

at the midpoint of the data tokens. Similar to the serializer, the deserializer emits the

first bit as soon as it is ready, allowing downstream logic to begin early computation.

A.2 Edge-to-pulse converter

The edge-to-pulse converter circuit, shown in Figure A.3, is a self-resetting XOR gate.

The delay through the three inverters determines how long the pull-down network is

101

Appendix A. Auxiliary Circuit Designs

on; the delay through the self-reset loop determines the width of the output pulse. A

keeper is attached so that the internal node remains high during quiet periods when

no edges arrive.

outT

outF

in 4x

4x

4x

4x

4x

4x

4x2x

1x

1x1x1x1x

1x

1x 1x
0.5x

Self−reset loop Keeper

Figure A.3: Edge-to-pulse converter circuit

A.3 Delay element

The delay element used in the surfing circuit is shown in Figure A.4. It is a simple

inverter chain with 3fF load capacitances attached to increase the delays. The delay

can be altered by either changing the number of stages in the chain, or changing the

load capacitances.

Note that the delay element must support fast rise times or else it will limit

throughput. The capacitance therefore cannot be increased too much or else the rise

time will be too slow.

1x

3fF

1x

3fF

1x

3fF

1x

3fF

1x

3fF

1xin out

Figure A.4: Delay element

102

Appendix B

Area Calculation Details

B.1 Area measurement methodology

Area is measured in minimum width transistor areas according to the methodology

in [65] in which the equivalent area of a transistor t is found as follows, where m is a

minimum-width transistor:

Area(t) = 0.5 +
DriveStrength(t)

2 ·DriveStrength(m)
(B.1)

Since drive strength is a linear function of transistor width, we can express the

area of a transistor in terms of its width. Assume a minimum-width transistor has

width W = 1. If the width W of transistor t is expressed in units of minimum-

transistor-widths, then the area is simply:

Area(t) = 0.5 +
W

2
(B.2)

This model was developed by examining the layout rules of TSMC 0.35µm and

LSI Logic 0.4µm processes, but it is unlikely to have changed significantly with newer

processes and thus should still be suitable for first-order estimates.

B.2 System-level area calculations

In Section 3.4, a system-level area estimation showed potential interconnect area

savings of 10 to 60%, depending on the serial bus width, M , and the percentage of

103

Appendix B. Area Calculation Details

Table B.1: Summary of area savings (min-transistors)
Pre-serialization area

Input muxes 12416
Output muxes/buffers 19200
Total 31616

Post-serialization area
Input muxes 7168
Single wire output muxes/buffers 9600
Serial wire output muxes/buffers 3224
SERDES area 7784
Total 27776
Savings 12%

Table B.2: Pre-serialization area
Parameter description Expression Value

Total channel widtha Nc 512
Wire length in tilesb L 4
Input mux connectivity fc,in 0.15
Number of inputs per block Ni 64
Mux width per input Wmux = Nc ∗ fc,in 77
Mux transistors per input c Tin = 2 ∗ (Wmux)− 2 + 6 ∗ log2(Wmux) 194
Total input mux transistors Ain = Ni ∗ Tin 12416

Number of outputs per block No 32
Channel wires driven per blockd Nc/L 128
Transistor area per output mux/buffer Ao 150
Total output transistor areae Aout = No ∗ Ao 19200

Total interconnect area Atotal = Ain + Aout 31616

aIncludes horizontal and vertical. Roughly based on Altera Stratix III device.
bIgnore shorter and longer wires for simplicity.
cAssuming 2 ∗ w − 2 transistors for the mux and 6 transistors per SRAM cell [5].
dBecause wires are staggered to make layout tileable, 1/L of all wires will begin at a given point.

Assumes wires are only driven at their beginning; other wires pass straight through.
eSee Table B.4.

wires carrying serial data, Ps. For example, if a bus width of M = 8 was used, and

Ps = 0.25 (one quarter) of the wires were serial, then a 7% area savings resulted.

The savings for this particular example are summarized in Table B.1; Tables B.2 and

B.3 show how the area was tabulated. Assumptions are stated in the tables using

footnotes.

104

Appendix B. Area Calculation Details

Table B.3: Post-serialization area
Parameter description Expression Value

Bus width M 8
Percent serial wires (out of 1.0) Ps 0.5
Percent single wires 1− Ps 0.5
Single wires in channel Nc ∗ (1− Ps) 256
Serial wires in channel Nc ∗ Ps/M 32

Input mux connectivity fc,in 0.15
Revised mux width per input Wmux = Nc ∗ (1− Ps) ∗ fc,in 39
Revised mux transistors per input Tin = 2 ∗ (Wmux)− 2 + 6 ∗ log2(Wmux) 112
Revised total input mux transistors Ain = Ni ∗ Tin 7168

Single channel wires driven per block Nc ∗ (1− Ps)/L 64
Area per single output mux/buffer Ao,single 150
Total single output area Aout,single = Ao,single ∗Nnew ∗ (1− Ps)/L 9600

Serial channel wires driven per block Nnew ∗ (Ps)/L 8
Area per serial output mux/buffera Ao,serial = 272 + 131 ∗M/8 403
Total serial output area Aout,serial = Ao,serial ∗Nnew ∗ (Ps)/L 3224

Number of deserializersb Ndes = Ni/M 8
Transistors per deserializerc Tdes = 160 + 54 ∗M 592
Deserializer mux transistorsd Ndes ∗M ∗ 8 512
Total deserializer area Ades = Ndes ∗ Tdes + Ndes ∗M ∗ 8 5248
Number of serializerse No/M 4
Transistors per serializerf Tser = 138 + 54 ∗M 570
Serializer mux transistors Nser ∗M ∗ 8 256
Total serializer area Aser = Nser ∗ Tser + Nser ∗M ∗ 8 2536
Total SERDES area Aser + Ades 7784

aAssuming surfing interconnect, 272 per clock wire and associated circuitry + 131 per data wire,
assuming each data wire carries 8 bits. See also Table B.4.

bAssume enough deserializers are present to provide 100% of block outputs serially.
cFrom circuit in AppendixA; also tabulated in Table B.4.
dAssume a 2-1 mux (8 transistors) connects each deserializer input to two block outputs.
eEnough to furnish 100% of inputs from serial buses.
fIncludes clock generator.

105

Appendix B. Area Calculation Details

Table B.4: Area tabulation
Component # trans. Trans. area

CLB (per bit)
SER 34 + 26/bit 64 + 54/bit
DES 79 + 26/bit 160 + 54/bit

Clock gen. 26 74
Base total 139 + 52/bit 298 + 108/bit

LEDR enc/dec 24 42
SILENT enc/dec 24/bit 42/bit

CLB (8 bit bus)
Base total 555 1162

LEDR enc/dec 30 54
SILENT enc/dec 192 336
Total w/ LEDR 579 1204

Total w/ SILENT 747 1498
Wave pipelining

2×MuxBuffer 92 214
8×Config bits 48 48

Total 140 262
Surfing

Delay 12 25
Edge2Pulse 43 68

2×MuxBuffer 104 261
8×Config bits 48 48

Total 207 402
Regular wire

1×MuxBuffer 26 104
8×Config bits 48 48

Total 74 152

B.3 Block-level area tabulation

A detailed tabulation of the area of each component in CLBs and interconnect stages

is provided in Table B.4.

106

Appendix C

Bounded Worst-Case Timing

Uncertainty

In Chapter 4, the use of worst-case bounds on timing uncertainty was claimed to lead

to unrealistically conservative designs; this claim was used to justify the development

of probabilistic models of timing uncertainty. The implications of using worst-case

bounds are described briefly in this appendix.

Assume the time separation between consecutive edges is a random variable with

a mean µ equal to the nominal bit period, and consider two cases:

1. Normal: The edge separation varies about the mean with σ = 10ps

2. Bounded: The edge separation is constrained within ±3σ = 30ps (these are

likely optimistic bounds).

In the normal case, the edge separation at stage i has a standard deviation of σ
√

i

(this was demonstrated in Section 4.3). In the bounded case, the edge separation at

stage i is bounded within ±3σ · i. For the bounded case, we require that the nominal

period equals the worst-case timing uncertainty plus the minimum pulse width. For

the normal case, assume we require that the nominal period be a very pessimistic

ten standard deviations away from the cutoff, leading to a probability of error on the

order of 10−23. Figure C.1 shows the estimated minimum bit period of the normal and

bounded models. Simulation results from Section 5.1 are provided for comparison12.

12The simulation shows much better performance because it experienced a small amount of noise
compared to the 10σ prediction.

107

Appendix C. Bounded Worst-Case Timing Uncertainty

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

Link length (stages)

M
in

im
um

 b
it

pe
rio

d
(p

s)

Bounded
Normal (10σ)
Simulation

Figure C.1: Comparison of normal and bounded models

Both normal and bounded models are pessimistic with respect to the simulation,

but the normal model is much closer to the observed result. The normal model is

already quite pessimistic and could probably be relaxed. For the bounded model,

variations of ±30ps were actually observed in simulation, so it is difficult to justify

relaxing the bounds; however, the worst case scenario (30ps degradation occurring

at all stages) is very unlikely. A probabilistic model is a much more useful way of

analyzing multi-stage links.

108

