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&SINGLE-CLOCKED DIGITAL SYSTEMS are largely

a thing of the past. Although most digital circuits

remain synchronous, many designs feature multiple

clock domains, often running at different frequencies.

Using an asynchronous interconnect decouples the

timing issues for the separate blocks. Systems employ-

ing such schemes are called globally asynchronous,

locally synchronous (GALS). Figure 1 shows an

example. GALS designs offer increased ease of

functional-block reuse, simplified tim-

ing closure, and power advantages due

to heterogeneous clocking.

To minimize time to market, large

SoC designs must integrate many func-

tional blocks with minimal design

effort.1 These blocks are usually de-

signed using standard synchronous

methods and often have different clock-

ing requirements. A GALS approach can facilitate fast

block reuse by providing wrapper circuits to handle

interblock communication across clock domain

boundaries. SoCs may also achieve power savings by

clocking different blocks at their minimum speeds. For

example, Scott et al. describe the advantages of GALS

design for an embedded-processor peripheral bus.2

High-performance microprocessors face similar

pressures. As transistor counts and clock frequencies

increase, distributing a low-skew global clock be-

comes increasingly more difficult. Iyer

and Marculescu studied GALS-based

microprocessors and concluded that

they could gain power advantages by

allowing fine tuning of the supply

voltages and clock speeds for different

functional blocks and by eliminating the

need for a global, low-skew clock.3

Semeraro et al.;4 Zhu, Albonesi, and

Buyuktosunoglu;5 Chattopadhyay and

Zilic;6 and others have further studied

dynamic voltage and frequency scaling

using a GALS approach.

Crossing clock domains is the central

problem in GALS designs. If the data for

a flip-flop or latch comes from another

timing domain, it could potentially

violate the setup and hold requirements.

Such a timing violation could cause

a metastable output, in which the
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Editor’s note

The authors categorize GALS design styles into three distinct classes:

pausible clocks, asynchronous interfaces, and loosely synchronous inter-

faces. They present examples, and discuss advantages and relative pitfalls

for each design style. Engineers interested in GALS-style integration of

synchronous IP blocks and cross-domain communications may find the

concepts and taxonomy presented here very useful.

—Sandeep Shukla, Virginia Tech

Figure 1. High-level diagram of a globally asynchronous, locally

synchronous (GALS) system.
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voltage level may be indeterminate for

an unbounded length of time before

settling to a valid level.7 However, it’s

possible to minimize the probability of

metastability failures by using synchro-

nizer circuits, which can be as simple as

one or more flip-flops connected in

series. Figure 2 shows a common two-

flop synchronizer. Failure probability

drops exponentially with settling time

or, equivalently, with the number of flip-

flops in the chain. Thus, synchronizers

can provide mean times between failures (MTBFs) of

millions of years or more if properly designed.8

We classify GALS design styles according to the

methods they use to transfer data between timing

domains. In this article, we describe some design

examples and introduce our taxonomy of these

techniques.

Taxonomy and design examples
We identify three broad categories of GALS design

styles, as Figure 3 shows: pausible clock, asynchro-

nous, and loosely synchronous.

The pausible-clock design style relies on locally

generated clocks that can be stretched or paused

either to prevent metastability or to let a transmitter or

receiver stall because of a full or empty channel. A ring

oscillator typically generates the clocks. The Integrated

Systems Laboratory at ETHZ (Swiss Federal Institute of

Technology Zurich) has implemented several chips

featuring pausible clocks,9 including a cryptography

chip.10 Special wrapper circuits interface between

synchronous blocks, such that each wrapper includes

a pausible-clock generator.

The asynchronous design style involves the general

case in which no timing relationship between the

synchronous clocks is assumed. Such designs are

maximally flexible with respect to tim-

ing. For example, Fulcrum Microsys-

tems’ Nexus architecture includes an

asynchronous crossbar switch that han-

dles communication between blocks

operating at arbitrary clock frequen-

cies.11

The loosely synchronous design style

is for cases in which there is a well-

defined, dependable relationship be-

tween clocks. It’s possible to exploit the

stability of these clocks to achieve high

efficiency while simultaneously providing tolerance

for the large amounts of skew inherent in global

interconnects. Messerschmitt12 has proposed a taxono-

my of commonly occurring timing relationships:

& Mesochronous. The sender and receiver operate

at exactly the same frequency with an unknown

yet stable phase difference. Intel’s 80-core pro-

cessor employs a mesochronous design.13 It uses

synchronous tiles and a skew-tolerant network-

on-chip (NoC) interconnect scheme driven by

one stable global clock.

& Plesiochronous. The sender and receiver operate

at the same nominal frequency but may have

a slight frequency mismatch, such as a few parts

per million, which leads to drifting phase. Gigabit

Ethernet is a common example.

& Heterochronous. The sender and receiver operate

at nominally different clock frequencies.

An interesting subset of heterochronous relation-

ships is the case of rationally related clock frequencies

in which the receiver’s clock frequency is an exact

rational multiple of the sender’s, and both are derived

from the same source clock such that there is

a predictable periodic phase relationship. We refer
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Figure 2. A two-flop synchronizer, showing metastability: circuit (a) and

timing diagram (b).

Figure 3. Taxonomy of GALS design styles.
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to this relationship as ratiochronous, a term which we

believe was first used by Heath, Burleson, and Harris.14

For each of these three GALS design styles, we

describe a simplified example that provides one-way

communication between transmitter and receiver

blocks. The blocks operate synchronously using two

different clocks and are connected together using

a FIFO buffer that is robust and free of metastability.

(For other examples of this use of FIFO buffers, see the

works of Sparsø and Sutherland.15,16) This FIFO buffer

can have almost any capacity, including just one data

item, but this may affect throughput. To send a data

item, the transmitter asserts put and drives data_in. The

FIFO buffer accepts the data on the rising edge of put

and lowers ok_to_put. If this operation fills the FIFO

buffer, ok_to_put remains low until some data is

removed. On the receiver side, the FIFO buffer asserts

ok_to_take when data is available. To remove a data

item, the receiver latches data_out and asserts take.

The FIFO buffer lowers ok_to_take until new data is

available. If the FIFO buffer is empty, ok_to_take

remains low until new data is inserted.

Pausible clocks
The first use of the term GALS was by Chapiro in his

1984 doctoral dissertation.17 He proposed using

pausible clocks to enable separate clock domains to

communicate without metastability. With Chapiro’s

approach, each locally synchronous block generates

its own clock with a ring oscillator. Each ring

oscillator’s period is set according to the speed

requirements of the block it drives.

Two potential advantages of pausible clocking are

robustness and power. Pausing delays a clock’s

sampling edge until after the arrival of data from the

other domains, thus avoiding metastability altogether.

Also, pausing the clock of a block awaiting commu-

nication prevents that block from dissipating dynamic

power. Presumably, VDD can be lowered during

prolonged stalls to reduce static power as well. Hence,

this style may be useful in power-critical designs.

Example

Figure 4 shows an example of pausible clocks.

Each ring oscillator contains a NAND gate to control

clock pausing. The transmitter clock should be

allowed to run if it is currently high, if the FIFO buffer

can accept a new value (ok_to_put asserted), or if the

transmitter is not attempting to send (ready_to_put is

low). Likewise, the receiver clock should be allowed

to run if it is currently high, if the FIFO buffer has data

ready (ok_to_take asserted), or if the receiver is not

attempting to read new data (ready_to_take is low). In

this manner, a rising clock edge acknowledges that it is

OK to proceed.

The timing diagram in Figure 4 shows the transfer

of two consecutive data items. Assume the FIFO buffer

is initially empty and can hold only 1 datum. The

receiver is ready (ready_to_take asserted), but its clock

is paused because the FIFO buffer is empty. The

transmitter is ready, having driven tx_data and ready_

to_put at the end of the last cycle. While the transmitter

clock is low, latch LT is transparent, but the AND gate

keeps put low. When the FIFO buffer is ready

(ok_to_put asserted), a rising transmitter clock edge

is produced, which asserts put, fills the FIFO buffer with

the first datum, and lowers ok_to_put. At this point, the

transmitter clock pauses because it is immediately

ready with a second datum (ready_to_put asserted)

and the FIFO buffer is full. Meanwhile, the assertion of

ok_to_take restarts the receiver’s clock. The receiver

latches rx_data and then asserts take, signaling the

FIFO buffer that the data has been removed. Because

the FIFO buffer is no longer full, ok_to_put goes high,

which restarts the transmitter clock so that the second

datum can be transmitted.

Extensions

The simple case of a single transmitter and receiver

can be generalized to designs in which each block

communicates with multiple other blocks. Yun and

Donohue18 and Yun and Dooply19 developed such

a system using ring- and bus-based arbiters to select an

input to service, and using a mutual-exclusion (mutex)

element to gate the clock. They designed these circuits

to pause the clock until metastability resolves to

a stable, logical value (that is, high or low). Bormann

and Cheung developed similar designs that avoid the

use of arbiters and polling by explicitly scheduling

transfers.20

Clock tree latency must be considered in GALS

designs. If the latency to distribute a clock is larger

than a single clock cycle, invalid operations may

occur after the clock was supposed to have stopped.

Mekie, Chakraborty, and Sharma propose adding

artificial delays between the GALS interface and the

synchronous block to account for clock tree delays.21

Mullins and Moore present an excellent examination

of clock distribution and other challenges for pausible-

clock designs.22
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Design issues

Pausible clocking encapsulates crucial timing

constraints in the clock generator wrappers, simplify-

ing design reuse. By controlling the receiver’s clock,

these interfaces ensure that data arriving at the

receiver satisfies the receiver’s timing requirements,

thus completely avoiding metastability. Once this

interface wrapper IP has been verified, it can be

reused for many different local blocks without the

need for further timing analysis.

Gurkaynak et al. noted that designing ring oscilla-

tors for robustness and good performance was a major

difficulty in their GALS research.9 They concluded that

pausible clocking ‘‘remains a niche technology at

best.’’9 For example, the clock period can have high

jitter, varying significantly from cycle to cycle as it

restarts from a pause.23 This jitter can be amplified by

the clock distribution network, further cutting into the

timing margin.

A potential advantage of ring oscillator clocks is

that variations in the clock period should track

variations in logic-gate delays across a range of

operating conditions. Unfortunately, standard CAD

tools do not account for this behavior during analy-

sis, and they might force conservative, worst-case

designs.
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Figure 4. Pausible-clock GALS design style: circuit (a) and timing diagram (b).
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Asynchronous interfaces
The second GALS design style is the asynchronous

interface. This method uses circuits known as syn-

chronizers to transfer signals arriving from an outside

timing domain to the local timing domain. Although

simple asynchronous interfaces suffer from low

throughput, this limitation can be overcome with

careful designs.

Example

Figure 5 shows an asynchronous GALS design

example. The timing diagram shows the transfer of

two data values from the transmitter to the receiver,

assuming an initially empty FIFO buffer. In this circuit,

the FIFO buffer handshake signals, ok_to_put and

ok_to_take, may be asserted at any time relative to the

transmitter or receiver clocks, respectively. This design

uses two flip-flops to synchronize a signal with the

local clock and avoid metastability. To account for the

synchronizer’s delay, the put_wait signal prevents the

transmitter from sending until the FIFO buffer status

following the previous put has propagated through the

synchronizer. The take_wait signal serves the same

function for the receiver. This simplistic design can

transfer at most one datum for every three cycles of

transmitter clock wT or receiver clock wR, whichever is

slower.

Extensions

Seizovic increased the throughput of an asynchro-

nous interface by pipelining the synchronization

operations through a FIFO buffer along with the data.24

The probability of synchronization failure is deter-

mined by the total time the data is in the FIFO buffer,

allowing very low failure probabilities with high data

throughput rates. This design allows a throughput of

one data item for every cycle of clock wT or clock wR,

whichever is slower. Boden et al. used Seizovic’s

pipeline synchronizers in the design of the Myrinet

high-speed network hardware.25

More recently, Chelcea and Nowick proposed

a general family of low-latency synchronizing FIFO

buffers.26 The key idea of their design is to detect when

the FIFO buffer is nearly empty—that is, contains fewer

values than the number of flops in the synchronizer—

or nearly full. The signals for these conditions are

synchronized along with the usual empty and full

signals. As long as the synchronized version of nearly

empty is false, the receiver may take a value every

cycle. Otherwise, it can revert to using the empty signal

to remove the last items from the FIFO buffer at

a slower rate. A similar argument applies to the

transmitter. This lets the FIFO buffer transfer data at the

full rate of the transmitter or receiver, whichever is

slower. This design supports arbitrary combinations of

synchronous and asynchronous communicating

blocks as well as long interconnect delays, making it

well-suited for large SoC designs with many different

and perhaps time-varying clock frequencies.

Several recent designs attempt to smoothly in-

tegrate synchronous designs into an asynchronous

network with minimal design effort. For example, the

PivotPoint design uses delay-insensitive codes to

transmit values between local blocks and the Pivot-

Point crossbar.27 Similar approaches are described

elsewhere.28,29

Design issues

Asynchronous interfaces offer the most flexibility

and probably the easiest integration into existing CAD

flows. The main concern is the modeling and

validation of the synchronizer circuits and the impact

of their delay. As described by Kinniment, Heron, and

Russell,30 real synchronizers have more complicated

behavior than predicted by simple textbook models,

and circuit simulators such as Spice do not have the

numerical accuracy to verify acceptable reliabilities.

Recently developed simulation methods address this

problem.31,32 We expect that mainstream GALS designs

will use synchronizers that are encapsulated in IP

blocks such as those provided by Fulcrum Micro-

systems27 or Silistix,2 with the synchronizers in these

blocks validated by the vendors using techniques such

as those presented by Yang and Greenstreet.31,32

A rule of thumb for synchronizer design is that at

least 40 gate delays should be budgeted for meta-

stability to resolve to a stable, logical value.33 For a 0.13-

micron process with a 60-ps gate delay, synchroniza-

tion adds about 2.5 ns of delay when crossing timing

domains. Thus, we expect the asynchronous GALS

style to find widespread use in SoC designs that can

tolerate the extra latency of synchronization or that

have low clock frequencies (that is, few cycles of

synchronization latency). Higher-performance designs

will require the loosely synchronous styles described

next.

Loosely synchronous interfaces
The third GALS design style, loosely synchronous

interfaces, arises when some bounds on the frequen-
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cies of communicating blocks are known. In this style,

the designer exploits these bounds to ensure that

timing requirements are met. This style requires timing

analysis on the paths between the sender and receiver

and is less amenable to dynamic changes in the clock

frequency. However, this analysis makes handshaking

unnecessary during data transfer, so the resulting

circuits can achieve higher performance and have

more deterministic latencies than those of the other

methods.

Example

A loosely synchronous design exploits one of the

known timing relationships we described earlier. The

simplest case is a mesochronous relationship, in which

the frequencies are exactly matched and there is

a stable but unknown phase difference. This common-

ly occurs when the clocks are derived from the same

source but the latency of delivery to each block differs.

The mesochronous example shown in Figure 6 is

based on the Stari (Self-Timed at Receiver’s Input)
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Figure 5. Asynchronous GALS design style employing synchronizers: circuit (a) and timing diagram (b).
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scheme,34 in which clocks wT and wR are derived from

the same source. The receiver uses a self-timed FIFO

buffer to compensate for the phase difference. The key

to high-performance operation is to initialize the FIFO

buffer to be half full. During operation, the transmitter

puts one datum into the FIFO buffer every cycle, and

the receiver takes one datum. Neither needs to check

the FIFO buffer status signals (the FIFO buffer is

assumed to be fast enough), but the FIFO buffer will

remain within 61 data item of half full because the

frequencies are matched. If needed, higher-level flow

control information can be embedded in the data (for

example, by defining a valid bit) rather than stopping

the transmitter.

To get the FIFO buffer half full, special initialization

is needed. Initially, a global reset signal is asserted,

which may need to be synchronized. The TX_INIT

block awaits a fixed number of cycles until the reset is

guaranteed to have completed everywhere, and then

enables the transmitter by asserting tx_enable. The

transmitter begins sending data. After the first reset

data item arrives, empty goes low. Because the

transmitter and receiver can have arbitrary skew, this

change of empty is asynchronous with respect to the

receiver’s clock and must be synchronized. After the

synchronizer latency, the RX_INIT block receives the

signal, awaits any additional cycles necessary for the

FIFO buffer to reach the half-full state, and asserts

424
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rx_enable. On the next receiver cycle, the receiver

begins removing data items at the same rate that the

transmitter sends them, and no further synchronization

is required.

Extensions

If the timing variations between the sender and

receiver are relatively small, the mesochronous in-

terface can be highly optimized. Chakraborty and

Greenstreet provide a similar interface with a single-

stage, clocked FIFO buffer, which can tolerate nearly

two clock periods of phase uncertainty between the

sender and receiver.35 The FIFO buffer clock comes

from an event-driven circuit that watches the trans-

mitter and receiver clocks and generates a clock pulse

during a safe timing window.

In ratiochronous designs, the synchronous blocks

use clocks that are exact rational multiples of one

another. Mesochronous methods can be extended to

handle this case. For example, a design could include

blocks that operate at 300 MHz and 700 MHz, both

derived from multiples of a 100-MHz reference. In this

case, the phase relationship between the two clocks

varies in a predictable, periodic fashion. Chakraborty

and Greenstreet presented a design that uses binary-

rate multipliers for the faster of the transmitter or

receiver to generate an approximation of the other

clock,35 which is input to the event-driven clock

generator just mentioned.

An alternative approach is to allow normal trans-

mission except when the data would arrive nearly

coincident with the receiver’s clock. Mekie et al.

proposed preventing transmission on unsafe cycles by

examining and modifying the communication pro-

tocol, exploiting the periodic relationship of the clock

phases.36 If the transmitter never transmits in an unsafe

cycle, then a synchronizing interface is unnecessary.

However, this solution depends on controlling the

global skew between communicating blocks and

leads to very stringent timing constraints.

In plesiochronous designs, the transmitter and

receiver have clocks of closely matched frequencies.

The phase differences between these clocks may

slowly drift, leading to violations of the receiver’s

timing constraints. However, it is possible to detect

when an unsafe state is approaching and take

corrective action to move back to a safe state.

Moreover, because the phase drift is slow, such events

will be infrequent, and the speed of the corrective

action is not critical. No synchronization is needed in

a safe state, so there need not be a latency penalty

during normal data transfers. (Implementations are

presented elsewhere.35,37)

If the transmitter and receiver are operating at

unrelated but stable frequencies, then they can

estimate each other’s clock frequency. This estimate

provides a rational multiple, enabling the use of

ratiochronous methods. Then, plesiochronous tech-

niques can handle the residual frequency mismatch.

Chakraborty and Greenstreet present details and

implementations of these approaches.35

Design issues

The need for high clock frequencies and low

latency in high-performance designs will make them

candidates for loosely synchronous techniques. How-

ever, to determine the optimal size of the FIFO buffers,

timing analysis is necessary to bound how far the

relative phase difference between the sender and

receiver may drift. Although this type of timing analysis

is not yet common for on-chip timing, it is standard

when using interchip, source-synchronous communi-

cation (for example, synchronous DRAMs). This is an

area where we expect CAD support to emerge as

designers undertake chips with many timing domains.

GALS DESIGN STYLES BUILD on the extensive in-

frastructure of synchronous design while avoiding the

problems of distributing a global, low-skew clock. A

GALS methodology is a natural approach for SoC

design, allowing the integration of independently

designed blocks operating at different frequencies.

Furthermore, some GALS approaches work easily with

dynamic voltage scaling and other power reduction

techniques.

Although pausible clocks are appealing for their

elimination by construction of metastability failures,

they do not fit well with existing CAD flows and do not

scale well for designs with high-speed clocks. Pausible

clocks are therefore unlikely to find widespread

acceptance, although their ability to completely shut

down during idle periods may make them attractive

for low-power designs.

Fully asynchronous interfaces offer the greatest

flexibility. Although some new CAD tool capabilities

will be needed to support asynchronous intercon-

nects, commercial tools are already evolving in this

direction, with tools that check circuits spanning

multiple clock domains for structural and protocol

errors.38 We expect further CAD and IP vendor support
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to emerge as designers demand it for large SoC and

NoC designs.

An additional problem with GALS designs that rely

on arbiters or synchronizers is that they are inherently

nondeterministic, which complicates design valida-

tion and test. To address these problems, some

researchers have sought to make the timing of GALS

designs deterministic.14 Validation and test of GALS

designs remains an important area for further research.

Mesochronous and other loosely synchronous

techniques offer the highest performance by removing

synchronization delays from latency-critical paths.

However, these methods require timing analyses that

standard CAD flows do not support. Thus, we expect

that loosely synchronous styles will be used in

performance-critical applications that justify the extra

design effort. Furthermore, IP vendors can help ASIC

designers to exploit loosely synchronous circuits by

encapsulating them in predesigned interface blocks

and by providing dedicated validation tools built atop

standard timing-analysis software and other CAD tools.

GALS design faces a ‘‘chicken-and-egg’’ problem:

most designers are unwilling to migrate until the CAD

tools are available, and CAD companies are reluctant

to provide the tools until the technology is widely

used. However, the incentives for partitioning a design

into smaller timing domains make some kind of GALS

approach inevitable. Designs with fully asynchronous

interfaces seem to require the least change to the local

blocks while avoiding the need for new global timing-

analysis tools. Accordingly, this style is likely to be the

first to have adequate CAD support and thus become

dominant. Pausible-clocking and loosely synchronous

designs offer advantages for designers who need

extremely low power or the highest possible perfor-

mance. Historically, these designers have devised their

own special-purpose tools, so we expect that they will

likewise incorporate the GALS design styles that are

most suitable to their needs. &
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