
Towards Reliable 5Gbps Wave-pipelined and
3Gbps Surfing Interconnect in 65nm FPGAs

Paul Teehan
Dept. of ECE

University of British Columbia
paul.teehan@gmail.com

Guy G. F. Lemieux
Dept. of ECE

University of British Columbia
lemieux@ece.ubc.ca

Mark R. Greenstreet
Dept. of Computer Science

University of British Columbia
mrg@cs.ubc.ca

ABSTRACT
FPGA user clocks are slow enough that only a fraction of the in-
terconnect’s bandwidth is actually used. There may be an oppor-
tunity to use throughput-oriented interconnect to decrease routing
congestion and wire area using on-chip serial signaling, especially
for datapath designs which operate on words instead of bits. To
do so, these links must operate reliably at very high bit rates. We
compare wave pipelining and surfing source-synchronous schemes
in the presence of power supply and crosstalk noise. In particu-
lar, supply noise is a critical modeling challenge; better models are
needed for FPGA power grids. Our results show that wave pipelin-
ing can operate at rates as high as 5Gbps for short links, but it is
very sensitive to noise in longer links and must run much slower to
be reliable. In contrast, surfing achieves a stable operating bit rate
of 3Gbps and is relatively insensitive to noise.

Categories and Subject Descriptors: B.8.0 [Hardware]: Perfor-
mance and Reliability (General), C.5.4 [Computer Systems Orga-
nization]: Computer System Implementation (VLSI Systems)

General Terms: Design, Performance, Reliability.

Keywords: FPGA, network-on-chip, programmable, interconnect,
bit-serial, on-chip SERDES, reliable, surfing, wave pipelining.

1. INTRODUCTION
The traditional design objectives for FPGA interconnect are to

minimize latency (delay), area and power. FPGA interconnect
is not well suited for highly connected, bus-oriented designs that
require high bandwidth and throughput for two primary reasons.
First, wide buses require a large amount of routing resources; for
example, a completely connected chip-multiprocessor was found to
be routing constrained after 22 nodes [1]. Second, the bandwidth of
a link is the inverse of its latency, which degrades as the link length
increases. Thus, long links have very low bandwidth.

Throughput can be greatly improved by pipelining the intercon-
nect [2, 3]. The traditional use of FPGA interconnect propagates a
bit end-to-end before the next bit is sent, decreasing bandwidth with
length. In contrast, wave pipelining sends several bits in rapid suc-
cession down the combinational path in one clock cycle. This can
be implemented by adding serializer (SER) and deserializer (DES)
circuitry at data sources and sinks. The key is to keep communica-
tion reliable with relatively low area overhead. Figure 1 shows that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02 ...$5.00.

0 10 20 30 40 50
0.1

1

10

50

Number of stages

M
ax

 r
el

ia
bl

e
th

ro
ug

hp
ut

 (
G

bp
s)

1b wave−pipelined wire
1b wire

16b bus

Figure 1: Throughput advantage of wave-pipelined links

a 1-bit wave-pipelined link offers bandwidth comparable to a non-
pipelined 16-bit parallel bus when the signal travels farther than
25 interconnect stages.1 An interconnect stage is a unidirectional
routing wire that spans 4 CLB tiles (length 4). A link is a sequence
of stages, forming a routed net that connects source and sink logic
with no intermediate logic. All delay results in this paper are ob-
tained from HSPICE simulations in 65nm technology.

The bandwidth of a wave-pipelined link is set by the minimum
safe time between consecutive bits. If the bits are too close to-
gether, intersymbol interference (ISI) may cause incorrect data to
be sampled at the receiver. Noise tolerance is thus an important
design criteria in wave-pipelined links. A recent technique called
surfing [4, 5, 6], which actively compensates waveforms to remove
jitter and skew, offers greatly improved reliability and noise tol-
erance with modest latency, area, and power overheads. In this
paper, the throughput and latency of wave pipelining and surfing
for bit-serial FPGA interconnect are evaluated and compared in the
presence of crosstalk and power, voltage, and temperature (PVT)
variation. The contributions are as follows:

1. Two novel source-synchronous, bit-serial interconnect de-
signs for FPGAs, using wave pipelining and surfing, are pro-
posed in Sections 2 and 3;

2. The effects of crosstalk and PVT variation on delay variation
are presented for both designs in Section 4;

3. HSPICE-based analysis and reliability estimates based upon
statistical timing concepts are presented in Section 5;

4. Area details and HSPICE simulations for latency, throughput
and energy are provided in Section 6; and

5. A third design that adds asynchronous FIFOs to wave
pipelining is proposed in Section 7.

1The design assumptions to produce Figure 1 are described later.

We find that voltage supply noise is the biggest concern for both
designs. Wave pipelining provides superior latency and higher
bandwidth than surfing, but surfing is more robust against supply
noise, and is a promising scheme if stable bandwidth performance
is needed or voltage noise is largely unknown.

1.1 Related work
A number of recent papers have explored wave pipelining in

Networks-on-Chip, achieving simulated throughput as high as 67
Gbps in a 65nm process [7]. NoC research is not directly applica-
ble to FPGAs because the interconnect is not programmable.

Wave-pipelined interconnect for FPGAs was studied in [8,
9]. That work, which does not include a reliability assessment
or attempt to customize FPGA interconnect circuitry, predicts a
throughput of 1.4Gbps at a length of 75 tiles (about 18 stages us-
ing our terminology) in a 65nm process. In [9], the authors im-
plemented a wave-pipelined connection in a Xilinx FPGA, achiev-
ing roughly 0.25Gbps per wire. In this paper, reliability estimates
and Monte Carlo HSPICE simulations predict roughly 3Gbps in the
presence of noise with optimized mux and driver circuitry.

2. SYSTEM DESIGN

2.1 Motivation and requirements
High-bandwidth interconnect can be useful in two ways. First,

in throughput-oriented designs, it moves a large amount of data
across the chip in as little time as possible. For example, commu-
nication between large memory blocks, hard core processors, and
high-speed IOs (e.g., PCIe, QuickPath, HyperTransport, 10/100Gb
Ethernet) can benefit from high throughput. These hard blocks have
fixed locations and must communicate over a fairly long distance.

Second, high-bandwidth, bit-serial wires can save area in low-
cost devices like Cyclone and Spartan which have a restricted
amount of interconnect available. In particular, it is easy to generate
large designs using EDK and SOPCBuilder; these tools generate
complex systems interconnected by a word-oriented crossbar-like
fabric. Adding bit-serial interconnect to these devices can greatly
alleviate routing congestion and allow them to implement much
larger systems while still remaining low-cost.

Figure 2 presents estimates of total interconnect area as 512
length-4 channel wires are gradually replaced with 8-to-1 bit-serial
wires.2 Although area is needed for the bit-serial wiring and
SER/DES circuits, area is saved as traditional wiring is removed.
In particular, note the input connection block area shrinks signifi-
cantly because semi-random switch patterns can be replaced with
more orderly word-wide inputs [10]. Hence, low-cost devices can
have greater datapath interconnect capacity and use less area with
bit-serial interconnect.

From these two scenarios, we see that low-area and high-
bandwidth are the two main objectives for bit-serial interconnect.
Bit-serial links can either be exposed to the user as a new resource,
or hidden from the user to transparently implement datapath con-
nections. An FPGA environment also adds several further require-
ments:

• The links must be reconfigurable, meaning input multiplex-
ers and rebuffering are required at each stage.

• The length and topology of links vary by application, but
very long connections with fanout should be supported.

2The figure assumes a 15% sparse input connection pattern with
77:1 input muxes, surfing interconnect, and 8 DES and 4 SER cir-
cuits for every CLB location. In determining the number of SER
and DES circuits, we pessimistically assume CLBs have 64 inputs
and 32 outputs. For a detailed area breakdown, please see [27].

Figure 2: Interconnect area estimate

• Serial transfers should finish with a minimum latency, ideally
in less than one user clock cycle; a user clock operates on the
order of 100 to 200MHz.

• To save power, serial data should be sent in a burst when
ready, not continuously.

• Custom driver circuitry is possible, but should be mini-
mized; custom receiver circuitry (at each mux input) must
be avoided due to area overhead.

• Ideally, regular FPGA interconnect circuitry should be re-
used to carry bit-serial signals.

• Some power overhead is expected, but should be kept low.

2.2 Source-synchronous architecture
The architecture of our system, shown in Figure 3, adds dedi-

cated serializer (SER) and deserializer (DES) blocks to each CLB,
multiplier and memory block. The serializer inputs (deserializer
outputs) capture a word of data, allowing very sparse, organized
output (input) switch patterns. The precise word size, number of
SER and DES blocks, and switch patterns need to be studied in fu-
ture architecture experiments. In this paper, we assume 8 or 16 bit
words, but other word sizes are possible.

The user clock edge triggers the SER to capture a word of data
from the block outputs. It also starts a programmable clock gen-
erator based on a pausible ring oscillator [11, 12]. To save power,
this serial clock automatically stops after the word is sent. Both
edges of the clock are used to clock data. No pilot bit or stop bit is
needed. The scheme produces a waveform similar to Figure 4. We
assume one word is transmitted each user clock cycle.

The clock and data are both forwarded in source-synchronous
fashion along two parallel interconnect wires. For double the band-
width and lower latency, a second data wire can share the same
timing wire. The interconnect layout and/or CAD tools must keep
these signals together to reduce skew. If needed, the interconnect
can fan out the clock and data to multiple sinks. After traversing
the interconnect, the clock shifts the data into the deserializer. At
this point, it is ready to be processed in bit-parallel form as a set of
combinational signals. For simplicity, we assume all further com-
binational paths from this point will use bit-parallel wires. That is,
the serializer only takes data at the start of a user clock. In the fu-
ture, more flexible start triggers can be made using programmable
delays or data-ready signals.

In our circuit designs, the DES circuit emits the first bit as soon
as possible, allowing downstream logic to begin early computation.
Also, the SER circuit captures the last bit as late as possible to allow
early triggering of the data transmission.

����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

CLB /
Memory /
Multiplier

CLB /
Memory /
Multiplier

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

���������������������� ����������������������
����������������������

����������������������
����������������������

����������������������

����������������������
����������������������

SER

SER

Programmable

Interconnect

Clk gen

User clock

Block inputs

DES

DES

Output

switches

Input

switches

Single wires

Block outputs

Serial buses

data clk

data clk

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3: High-bandwidth, bit-serial interconnect buses

Serial data

Serial clock

User clock

Figure 4: High-level timing diagram

2.3 Alternative signaling schemes
This section explains why source-synchronous signaling was se-

lected in preference to several alternatives.

2.3.1 Global clock
We first considered the “safe” and obvious fully synchronous ap-

proach, which requires distributing a high-speed global clock to
control SER and DES blocks. In this case, data validity is needed,
e.g. by sending a pilot bit. This scheme sends data on just one wire
using either wave pipelining or register pipelining. Wave pipelining
needs additional circuitry at the receiver to phase-align the received
data to the global clock. Register pipelining adds registers to the in-
terconnect to keep data aligned to the clock.

With a global DDR clock, a low-skew 2.5GHz clock is needed to
reach the 5Gbps data rates in this paper. CLBs that do not use the
SER/DES blocks can locally gate the global clock to save power.
However, CLBs that use the SER/DES blocks, or that route data
from other CLBs using register pipelining, must be clocked contin-
uously. Hence, they do not have “quiet” periods like our source-
synchronous scheme — power scales with the number of sources,
sinks, and total wirelength, not with the amount of data delivered.

This scheme was abandoned because distributing a global clock
is expected to consume enormous power. Register pipelining adds
even more power overhead.

2.3.2 Asynchronous
Many asynchronous signaling schemes exist and would be suit-

able for a bit-serial link in an ASIC [13]. However, in FPGAs,
links must be programmable, which requires that the req/ack hand-
shake signals travel over a programmable path. To reach high band-
width, fine-grained handshaking is required between the intercon-

nect stages; the latency of a long connection would make end-to-
end handshaking much slower.

Adding support for asynchronous handshaking requires several
specialized modifications to FPGA interconnect. Asynchronous
handshake signals must operate glitch-free to avoid unintentional
state transitions. In a two-wire handshake, the ack must be reverse-
routed back to the source, doubling the area and power relative to a
single source-synchronous timing signal. Supporting fanout is a bit
more complex — after a req at the splitting point, the sender needs
to wait for all fanouts to ack before sending the next datum.

In one-wire (aka bidirectional-wire) handshake schemes [14],
req pulls one end low and ack pulls the other end high in response.
We cannot see how to support this without reverting to inferior bidi-
rectional interconnect [15] to support the backwards-routed ack.

2.3.3 Clock embedded in data
A typical off-chip serial link embeds timing information into the

data signal using specialized encodings; the receiver recovers the
clock from the data using a clock-data recovery (CDR) circuit. This
technique is not of interest here for three main reasons. First, it
relies on analog signaling techniques which are not compatible with
the mux-buffer topology in FPGAs. Second, the transmitter and
receiver are relatively complex, leading to high area overhead and
unwanted design complexity. Finally, CDRs typically use phase-
locked-loops, which work well for streams, but not bursts, because
they take a long time to lock (for example, 60ns in [16]).

2.3.4 Two-wire pulsing
Pulses can be used to send data down a link. A simple scheme

introduced in [17] sends a 0 by pulsing one wire, or sends a 1 by
pulsing the other wire. It also uses arbiter-like logic to avoid skew
between wires. Pulses as atomic units use twice as much power and
require twice the latency compared to edges and are less likely to
be competitive. Also, the FPGA interconnect multiplexers require
wider pulses than fixed ASIC interconnect, further slowing the bit
rate. This multiplexer impact is further discussed in Section 3.1.

3. PHYSICAL DESIGN
The programmable interconnect is assumed to consist of a vari-

able number of identical cascaded stages, each of which includes
a 16:1 multiplexer, a driving buffer, and a wire which spans four

0.5mm wire

0.125mm 0.125mm 0.125mm 0.125mm

16:1 muxes

Nominal
output

Driving buffer

Possible outputs

Possible outputs

Figure 5: Detail of 4-tile wire

2x 25x7x

2x 25x7x

Data in

Clk in
0.5mm 4−tile wire

0.5mm 4−tile wire
Data out

Clk out

16:1 muxes

Figure 6: Wave pipeline interconnect stage

tiles [18]. Figure 5 shows a circuit schematic of a four-tile wire. FP-
GAs often have longer wires, e.g. 20 tiles, but for simplicity these
are not considered. Further assumptions are: each tile is 0.125mm
wide, making each stage 0.5mm long; wires are routed on a mid-
dle layer with twice-minimum width and twice-minimum spacing;
multiplexer taps for turns appear every 0.125mm; and the data trav-
els the full length of the wire (all four tiles).

HSPICE simulations in a CMOS 65nm process suggest that the
latency from mux input to mux input, through a driving buffer and
past four CLB tiles, is on the order of 150ps. Circuit modifications
to better support wave pipelining and surfing are presented below.

3.1 Wave pipelining
Figure 6 shows the circuit diagram for a wave pipelined intercon-

nect stage with one data wire and one timing wire. To limit skew,
both signals must be routed side-by-side. To save area, the muxes
for the data and timing wires may share one set of configuration
bits because they follow the same route. More data wires can be
added to improve bandwidth and latency, and to amortize the area
and power overhead of the timing wire.

Each interconnect stage consists of an odd number of inversions
to average out any risetime/falltime mismatch over long links. To
achieve high throughput, drivers should be sized to produce sharp
edges because the width of the narrowest pulse that can be safely
propagated depends primarily on risetime [19]. The multiplexers
use full CMOS transmission gates rather than only NMOS tran-
sistors to improve risetime, which unfortunately conveys a signifi-
cant area penalty. The multiplexer design is the hybrid style used
in [18] which contains two series transmission gates in the signal
path. Throughput tends to be limited by the mux risetime.

Notice that the circuits are open-loop, allowing jitter and skew to
each accumulate through cascaded stages. Surfing interconnect, as
described in the next section, attenuates both jitter and skew.

3.2 Surfing
Surfing interconnect, shown in Figure 7, uses the same basic

structure as wave pipelining with a few key additions:

• The middle buffer in both data and clock lines is variable-
strength; a weak inverter is connected in parallel with a
strong tri-state inverter.

• The data line middle buffer is controlled by a pulse (approx.
80ps) generated after each clock edge by a special circuit.

• The clock line middle buffer is controlled by a delayed ver-
sion of the clock. The delay is half of the clock period; since
it is a DDR clock, this is equivalent to one full bit period.

Figure 8 illustrates timing with surfing. The extra circuitry serves
two functions. First, the variable-strength buffer on the data line
serves to keep data signals aligned with the corresponding clock
edges [5]. The mechanism is similar to a pulsed latch, except that
late data edges can be sped up relative to the clock. Second, the
variable-strength buffer and delay loop on the timing line serve
to preserve the spacing between incoming clock edges so that the
output period is stable [6]. The mechanism is similar to a delay-
locked-loop. There is no inversion on the delayed line — as surf_in
rises, the surf_en signal falls because it is an echo from half a clock
earlier, helping surf_out to rise faster and remain on-schedule.

The key concept behind these mechanisms is that an edge lead-
ing its control signal sees a weak buffer and is slowed down, while
an edge trailing its control signal sees a strong buffer and goes at
full speed. Edges tend to be pulled towards a stable point during the
control signal transition in which the buffer strength is midway be-
tween the weak and strong modes. Certain timing constraints must
be satisfied for the surfing mechanism to work; for example, the
latency through the clock stage must be slower than the data path
when the data buffer is strong, yet faster when the data buffer is
weak. Hence, two extra inverters are added to the clock path. Tim-
ing constraints are described in more detail in [6]. The robustness
of surfing has been demonstrated in a working prototype chip [20].

4. TIMING UNCERTAINTY
Sources of timing uncertainty can be broadly classified by their

relative time scales. Fixed effects, such as process variation, or ex-
tremely slow-varying effects, such as electromigration, affect static
timing. In contrast, fast transient effects, the most significant of
which are crosstalk and voltage variation [21], affect the timing
from cycle to cycle. In this section, we consider all of these effects
and their impact on the bit-serial design.

4.1 Tolerating uncertainty
With wave pipelining and surfing, static effects can be accounted

for at the system level by adding timing margin, i.e. operating at a
slower bit rate. As will be shown in Section 5.1, wave pipelining
has an unstable region where pulse width deteriorates from stage
to stage, so the bit rate must be selected slow enough to keep the
circuit above this critical operating point. In contrast, surfing can
restore narrow pulse widths and make them wider. However, this
cannot be sustained if the incoming rate exceeds the outgoing rate.
Hence, the surfing bit rate must also be slow enough to keep the
circuit operate above this critical operating point.

In contrast, dynamic effects threaten the safe transfer of data.
In particular, transient noise can push data and timing edges apart
and lead to incorrect sampling (excessive skew), or it can push two
consecutive edges on the same wire sufficiently close to cause inter-
symbol interference. Wave pipelining needs additional timing mar-
gin to tolerate this, hence must run slower as a connection length-
ens. However, surfing is more stable and needs significantly less
margin — it can better tolerate pulse width narrowing by restoring
short pulses into wider ones, and it limits skew by using the slower
clock path to modulate the data path speed.

4.2 Process and temperature variation
The minimum reliable pulse width is a function of transistor

speed, which can vary by up to ±30% [7] with respect to the typi-
cal speed. Estimates of within-die variation vary but often fix it at
about half the full range [22], up to ±15% from the average, such
that a variation from SS to TT is possible within one die (or from

5x1x

5x1x

Clk out
25x

Data out
25x

Data in

Clk in

2x

2x2x 2x

delay
surf_en

edge to pulse

surf_out

d1 d2
0.5mm 4−tile wire

0.5mm 4−tile wire
surf_in

enen

16:1 mux

16:1 mux

Figure 7: Surfing interconnect stage

strength
strongweak strong weak weakData buffer

d1

d2

Data out

Clk out

Surf_en

Surf_in

Surf_out

strong
strength

Timing buffer weak strongweak strongweak

en

en

Figure 8: Surfing timing diagram

TT to FF, or somewhere in between). Because the slower transis-
tor speeds tend to set the minimum pulse widths, all circuits in this
paper are tested in the SS corner, at high temperature (125oC). As
a result, we will choose an operating point (bit rate or pulse width)
with enough margin to function reliably under worst-case process
and temperature conditions.

Speed mismatch between data and timing paths can also cause
skew. This is particularly harmful to wave-pipelining because its
effect is cumulative. As long as the transistors and wires are close
together, systematic variation in process and temperature should
cause negligible skew effects [7]. Skew still suffers from random
uncorrelated variation — we model path delay mismatch as delay
variation with a standard deviation (σ) equal to 2% of stage latency.

4.3 Crosstalk
Crosstalk is a fast noise source contributing to skew and ISI. We

expect the fast edges and close proximity of bit-serial interconnect

100 150 200
0

0.1

0.2

0.3

Stage latency (ps)

P
ro

ba
bi

lit
y

de
ns

ity
σ=12ps

Delay variation due to crosstalk

(a) No shielding

100 150 200
0

0.1

0.2

0.3

Stage latency (ps)

P
ro

ba
bi

lit
y

de
ns

ity µ=162ps

σ=1.74ps

Delay variation due to crosstalk

(b) Full shielding

Figure 9: Delay variation due to crosstalk

to be the primary source of crosstalk noise. To simulate worst-case
conditions, aggressor data sources with random binary sequences
were added on both sides of a serial link. New data tokens were
chosen every 50ps, corresponding to a 20Gbps bit rate, which is
extremely pessimistic. We performed Monte Carlo simulations and
measured the delay of one wave-pipelined stage, both shielded and
unshielded. The shields are minimum width and minimum spac-
ing; the unshielded wires are twice-minimum spacing. In all cases,
the clock and data wires are twice-minimum width. Second-order
coupling capacitances (i.e. from one signal wire through a shield to
the next signal wire) accounted for about 3% of total capacitance.

The resulting delay histograms for one interconnect stage are
shown in Figure 9. The histograms do not follow an ideal normal
distribution because of deterministic coupling between the data and
timing wires. Also, a slight mismatch between rising and falling
edges leads to double-peaked behavior. A normal curve fit to the
data provides a crude first-order estimate of delay variation: stan-
dard deviation of the unshielded case is σ = 12ps and the shielded
case is σ = 1.74ps. In comparison, Section 5.3 shows about
σ = 11ps jitter delay variation from supply noise. Although the
impact of crosstalk is significant, we mitigate it by shielding.

4.4 Voltage variation (supply noise)
There are many ways to model supply noise. The typical industry

rule of thumb of a uniform ±10% [23] provides reasonable DC
bounds but gives no information about the frequency content of the
noise. The DC level will vary, but transient voltage spikes will be
present as well. Both effects need to be considered.

A number of papers have studied power supply noise in ASICs.
One study suggests that decoupling capacitors remove high fre-

0 20 40 60
0

2

4

6

8

10

Supply σ (mV)

Ji
tte

r
σ

(%
 o

f l
at

en
cy

)

(a) Transient noise
(µ=0.95V, σ variable)

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

Mean Vdd drop (V)

Ji
tte

r
σ

(%
 o

f l
at

en
cy

)

(b) DC noise
(µ variable, σ=15mV)

Figure 10: Delay variation due to supply noise.

quency noise, so the supply can be considered a constant DC volt-
age [24]. Other studies model the supply as a slow sinusoid in the
100-500MHz range [25] to model resonance in the grid with a±5%
peak-to-peak swing. Other work measured power supply noise and
found a mixture of deterministic noise caused by the clock signal
and its harmonics, random cyclostationary noise caused by switch-
ing logic, and random high frequency white noise [26].

Compared to ASICs, FPGAs have a slower user clock, larger in-
terconnect capacitance driven by strong buffers, and more disperse
logic. We do not know of any study modeling power supply noise
in FPGAs, so the net effect of this is unknown.

In this paper, we model supply noise as a memoryless random
process that is normally distributed and changes value every 100ps.
The mean DC level, µ, is nominally 1.0V, but analysis focuses on
mean DC voltage levels below the nominal because lower voltages
limit performance more than higher voltages. The standard devia-
tion, σ, is left as an unknown ranging from 0 to 60mV.

Transient high-frequency voltage spikes should affect cycle-to-
cycle latency and thus threaten safe bit transfer, while changes in
the DC level affect mean latency but should have little affect on
cycle-to-cycle latency. To confirm this assumption, Monte Carlo
simulations were performed with random supply noise waveforms
with varying DC levels and transient noise of varying magnitude.
Latency of one interconnect stage was plotted in histograms and
fit to normal curves (not shown; see [27]). The trends are shown
in Figure 10, which plots the standard deviation of the change in
cycle-to-cycle latency (or jitter) against the voltage noise. As ex-
pected, more transient noise leads to higher jitter, whereas more
DC noise has little effect on jitter.

5. ANALYSIS
This section first investigates the noise sensitivity using HSPICE,

then formulates a reliability estimate using statistical timing.

5.1 Minimum safe pulse widths
Prior work in wave pipelining defines the minimum pulse width

as the smallest pulse at the link input that produces a 90% swing
at the link output [19]. This pulse width is usually determined an-
alytically, but it may also be found from simulation by measuring
a stage’s response to pulses of varying width, and plotting output
pulse width against input pulse width. Because the output of one
stage is the input to the following stage, this pulse width transfer
curve can predict the behavior of a link.

Figure 11 illustrates pulse transfer curves for wave pipelining
and surfing, in which the width of a pulse at the output of a stage is
plotted against the corresponding input pulse width. If the curve is
below the diagonal, as is the case for wave pipelining, then a pulse
will become progressively narrower as it propagates stage-by-stage
through the link, until it either reaches the end of the link, or is
dropped. If the curve is above the diagonal, as is the case for surf-
ing, then a pulse will become progressively wider, until it settles

in1in2in3 Input pulse width

Output pulse width

out1=in2

out2=in3

(dropped)

in=out
operating
point

(a) Wave pipelined (unstable)

Output pulse width

Input pulse widthin1 in2 in3

out1=in2
out2=in3

in=out
operating
point

(b) Surfing (stable)

Figure 11: Illustration of pulse transfer behavior

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Wave pipelining pulse width transfer curve

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(a) Wave pipelined, SS

0 100 200 300 400 500
0

100

200

300

400

500

Input pulse width (ps)

O
ut

pu
t p

ul
se

 w
id

th
 (

ps
)

Surfing pulse width transfer curve

Vdd=0.8
Vdd=0.9
Vdd=1
Vdd=1.1
Vdd=1.2

(b) Surfing, SS

Figure 12: Pulse width transfer curves, from simulation

at the operating point. The latter is the desired behavior: random
noise and timing uncertainty as previously discussed will create jit-
ter, causing the input pulse width to vary from the nominal. These
variations will be amplified in a wave pipelined link, but surfing re-
stores narrow pulses to the desired width, preventing accumulation
of jitter. This behavior is demonstrated in Section 5.2.

Figure 12 shows pulse transfer curves measured from HSPICE
simulations at the SS process corner and a variety of DC supply
voltages. For wave pipelining, the minimum pulse width is about
200ps (5Gbps) for supply droop alone; adding margin to accom-
modate dynamic timing uncertainty leads to slower bit rates. For
surfing, operating points, which are set by the delay element in the
loop, range from about 250ps to 450ps (4Gbps to 2.2Gbps). In
surfing, the margin is also a function of the bit rate; margin can be
added by increasing the delay and operating at a slower rate.

5.2 Jitter and skew propagation
This section uses HSPICE simulations to demonstrate that wave

pipelining amplifies timing uncertainty while surfing attenuates it.
Two forms of timing uncertainty are examined: jitter, the change in
consecutive edges on the clock line, and skew, the time difference

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
on

se
cu

tiv
e

ed
ge

 s
ep

ar
at

io
n

σ
(p

s)
Wave pipelined extrapolated jitter

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(a) Wave pipelining jitter

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
on

se
cu

tiv
e

ed
ge

 s
ep

ar
at

io
n

σ
(p

s)

Surfing (ideal) extrapolated jitter

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(b) Surfing (ideal) jitter

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
lo

ck
−

da
ta

 s
ep

ar
at

io
n

σ
(p

s)

Wave pipelined extrapolated skew

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(c) Wave pipelining skew

0 10 20 30 40 50
0

50

100

150

200

Number of stages

C
lo

ck
−

da
ta

 s
ep

ar
at

io
n

σ
(p

s)
Surfing extrapolated skew

Vdd σ=0
Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV
Vdd σ=60mV

(d) Surfing (ideal) skew

Figure 13: Jitter and skew propagation (simulation in bold)

between data and clock edges. Jitter and skew can each be modeled
as normally distributed random variables with standard deviation
σ. In a wave-pipelined link, where we expect jitter and skew to
accumulate over a number of stages, the standard deviation at stage
N should be

√
N · σ. In a surfing link, the jitter and skew should

be constant across all stages.
Figure 13 shows the jitter propagation behavior of wave pipelin-

ing and surfing taken from Monte Carlo HSPICE simulations.
Links of up to eight stages were simulated with a supply of VDD =
0.95V with transient noise applied with varying standard devia-
tions as marked on the graph. To show jitter, the standard deviation
of the time separation of consecutive edges on the timing path is
plotted; to show skew, the standard deviation of the data-clock sep-
aration is shown. The standard deviations were fitted to square-root
curves and extrapolated out to 50 stages. The behavior is mostly as
expected; jitter and skew accumulates in wave pipelining but is at-
tenuated in surfing. Jitter tends to have larger magnitude than skew.
Note these surfing simulations use an ideal delay element, rather
than a delay circuit where voltage noise affects the delay.

Surfing could not tolerate the largest amount of supply noise sim-
ulated, σ = 60mV . The large spike in skew indicates that data bits
are dropped. This particular design uses a delay loop of 250ps;
more noise could be tolerated simply by increasing this delay.

5.3 Reliability estimate
The results in Sections 5.1 and 5.2 can be used to estimate link

reliability. By modeling jitter and skew as random variables with
the means and standard deviations taken from the data in Figure 13,
we can estimate the probability of error. For this analysis, a supply
noise level of σ = 30mV was chosen.

To prevent a pulse from collapsing, consecutive edges must be
wider than the worst-case cutoff pulse widths evident in Figure 12.
For wave pipelining, this simply means the nominal bit separation
minus accumulated random jitter must be greater than the cutoff.
For surfing, ideally the distance between the operating point and
cutoff determines the amount of jitter than can be tolerated; in prac-
tice, we will assume 70% of this margin can actually be realized.
For wave pipelining, the jitter at stage i was measured to be approx-
imately σ = 10.6ps ∗

√
i. For surfing, it is constant at σ = 10.8ps

1 2 3 4 5 6
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Throughput (Gbps)

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 e
rr

or

Wave−pipe’d (norm)
Wave−pipe’d (mod−norm)
Surfing (norm)
Surfing (mod−norm)

(a) 10-stage link

1 2 3 4 5 6
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Throughput (Gbps)

E
st

im
at

ed
 p

ro
ba

bi
lit

y
of

 e
rr

or

Wave−pipe’d (norm)
Wave−pipe’d (mod−norm)
Surfing (norm)
Surfing (mod−norm)

(b) 50-stage link

Figure 14: Probability of error estimates. Due to uncertainty
regarding the noise models, these results should be considered
for illustration only.

regardless of the stage number.
To prevent incorrect sampling, the total of skew and jitter must

be less than one half of a bit period. An additional skew term of
σ = 2% of the stage latency is applied to account for random
process skew. The overall skew standard deviation is determined
from the sum of the random process skew and the random sup-
ply noise skew. For wave pipelining, the overall skew at stage

i is σ =
q

(5.8ps ∗
√

i)2 + (l ∗ 0.02 ∗
√

i)2, where l is the av-
erage latency of the stage. For surfing, it is again constant, at
σ =

p
(4.6ps)2 + (l ∗ 0.02)2.

The probability of a successful transfer is the joint probability
that pulses are sufficiently wide and skew is sufficiently small. For
simplicity, we can assume these events are independent. To be prac-
tical, these error rates should be on the order of 10−20 to 10−25 so
the mean time to failure is much longer than the device lifetime.

Skew and jitter are sensitive to supply variation. Because we do
not know the nature of the supply variation, or the true distributions
of skew and jitter that would result, we assume they are normally
distributed. These are shown as solid lines in Figure 14.

Next, we wish to consider the change in reliability when the dis-
tribution assumption is changed. We note the Gaussian tails are
unbounded, so the random variables will assign a non-zero prob-
ability for large skew values that represent physically impossible
events. Rather than arbitrarily bounding the Gaussian, we chose to
attenuate these tails more quickly by raising the normal distribution
to the fourth power and renormalizing; mathematically, this is the
same as cutting the standard deviation in half. These are shown as
dashed lines in Figure 14 and labeled “mod-normal”.

The graphs show a clear tradeoff between throughput and relia-
bility: to decrease error rate, the circuits must operate at a slower

0 10 20 30 40 50

1

2

3

4

5
6
7
8
9

10

Number of stages

Li
nk

 la
te

nc
y

(n
or

m
al

iz
ed

)

Normalized transit time

Bit 1

Bit 8

Bit 16

Bit 32

Wave pipelining
Surfing
Regular wire

Figure 15: Latency normalized to a regular wire
(Vdd µ = 0.95V, σ = 30mV)

rate. Notice, however, that surfing is much more reliable than wave
pipelining in several respects: it is largely insensitive to changes in
link length, less sensitive to changes in the underlying noise model,
and has a much smaller range in throughput with respect to changes
in error rate assumptions.

6. SIMULATION
This section investigates latency, throughput, area, and energy

performance. Both wave-pipelined and surfing schemes were sim-
ulated in HSPICE using random supply noise and a sixteen-bit data
pattern.3 In this section, surfing uses a practical delay element,
which is a real transistor circuit subject to voltage noise.

6.1 Latency
Serial communication suffers from an obvious latency penalty

compared to parallel communication, simply because serial bits ar-
rive sequentially while parallel bits arrive all at once. Figure 15
examines this penalty, showing the arrival time of the first bit as
well as bits 8, 16, and 32 relative to a regular interconnect wire.
The regular interconnect wire follows the same circuit design as
the wave-pipelined interconnect (shielded, 25x final driver, CMOS
multiplexer), so it should be considered very fast. Latency penal-
ties for a 16-bit word vary from 3-4X for a ten-stage link down to
just under 2X for a fifty-stage link. Wave pipelining tends to have
lower latency than surfing, but both are significantly higher than a
parallel bus on regular interconnect wires.

6.2 Throughput
Throughput was measured by increasing the bit rate with a 10ps

step size (50ps for large circuits) until a transmission failure was
detected. A Monte Carlo approach was used, where a different
random supply noise waveform was applied for each sweep or trial.
One sweep takes a CPU day, so only three Monte Carlo trials could
be done for large circuits; the maximum bit rate reported is the
minimum of all trials. Successive trials almost never produced a
different result. Figure 16 shows the results. More trials and a finer
step size might smooth the curves, but runtime was prohibitive.
Also, due to limited trials, the throughput results in this section
may be more optimistic than the previous section.

Wave pipelining throughput exceeds 5Gbps for short links (ten
stages or less), but throughput degrades with link length due to
accumulated skew and jitter. For a 50-stage link, the throughput
3The data pattern [0 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1] was chosen because
it includes positive and negative pulses, high frequency switching,
and runs of three zeros and ones.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Wave pipelined speed vs transient noise

Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV

(a) Wave pipelining, transient
noise (µ=0.95V)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Wave pipelined speed vs DC noise

Vdd µ=0.95
Vdd µ=0.90V
Vdd µ=0.85V

(b) Wave pipelining, DC
noise (σ=15mV)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Surfing (practical) speed vs transient noise

Vdd σ=15mV
Vdd σ=30mV
Vdd σ=45mV

(c) Surfing, transient noise
(µ=0.95V)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Number of stages

M
ax

 s
pe

ed
 (

G
bp

s)

Surfing (practical) speed vs DC noise

Vdd µ=0.95
Vdd µ=0.90V
Vdd µ=0.85V

(d) Surfing, DC noise
(σ=15mV)

Figure 16: Throughput measurements from HSPICE

ranges from 2 to 4 Gbps. Surfing is slower, around 3Gbps, but does
not degrade with link length and is insensitive to high-frequency
supply noise. Notice, however, that surfing is vulnerable to changes
in DC supply noise.

Similar to Figure 1 earlier, Figure 17 shows throughput results
compared against a 16-bit parallel bus. Wave pipelining and surf-
ing curves at µ = 0.95V, σ = 30mV are plotted, as well as ideal
curves which assume a steady 1V supply with no noise. All three
practical curves have a crossover at roughly thirty stages. For very
long links, surfing offers superior bandwidth. For very short links,
a parallel bus does better. Note that wave pipelining also has high
throughput for short links. We will propose a scheme to take ad-
vantage of this in the future work section.

6.3 Area and power estimates
Area estimates are shown in Table 1. Transistor counts of each

relevant block are provided as well as area in minimum-transistor-
widths. The interconnect area includes routing muxes (full CMOS
muxes for wave pipelining and surfing, and NMOS-only muxes for
regular wires), configuration bits, buffers, and any additional logic.
The table shows only transistor area, not wire area. Wave pipelin-
ing and surfing wires are assumed to be twice-minimum width with
minimum-width/minimum-spacing shields. Assuming minimum
spacing is equal to minimum width, a shielded serial bus with one
data and one clock wire requires 2.5x the metal area of regular wire
with twice-minimum width/twice-minimum spacing.

System-level interconnect area was previously estimated in Fig-
ure 2; the result is sensitive to a number of architectural decisions
that have yet to be explored. For a complete description of area
estimate methodology and results, please see [27].

Energy estimates are shown in Table 2. For a parallel bus, 12.5%
data activity is assumed. Wave pipelining and surfing both suffer a
significant penalty because they include a timing strobe which has
100% activity, and because serialization increases data activity to
50% on average. Surfing has a further penalty due to the extra logic
it has to drive. The penalty, 12-15x, can be reduced to 8-9x by shar-
ing a timing strobe across two data lines. For wave pipelining, the
penalty can be further reduced to 6-8x using LEDR encoding [28],

Table 1: Area tabulation
transistors Transistor area

(min. transistor widths)
Wave pipelining

One data wire 140 262
Two data wires 186 369

Surfing
One data wire 207 402

Two data wires 259 532
Regular wire

8 bit bus 592 1216
16 bit bus 1184 2432

Table 2: Energy estimates
Per 8-bit transfer Per 16-bit transfer

Energy(fJ) Ratio Energy(fJ) Ratio
Parallel bus 62 1 (base) 124 1 (base)
(12.5% activity)
Wave 744 12.0 992 8.0
Wave+LEDR 496 8.0 744 6.0
Surfing 912 14.7 1168 9.4

in which there is exactly one transition per bit across both data and
timing wires. (Surfing cannot use LEDR encoding because it re-
quires a timing strobe with 100% activity.)

7. CONCLUSIONS
This paper proposes adding bit-serial interconnect for word-

oriented applications to achieve high-throughput in high-end FP-
GAs and reduced routing area in low-cost FPGAs. It investigates
two of the biggest concerns with bit-serial interconnect, reliability
and performance. The next concern, power, is left as future work.

Two bit-serial circuit designs are suggested: wave pipelining and
surfing. In both cases, a source-synchronous approach is proposed
for improved performance and reliability. In particular, this work
has presented the first in-depth study of noise on wave-pipelined in-
terconnect in FPGAs, and proposed surfing as a potential solution.

Wave-pipelined interconnect was shown to have the potential for
higher bandwidth while incurring a smaller latency penalty than
surfing. However, due to reliability concerns, wave pipelining
bandwidth drops as connections are made longer.

Surfing interconnect was shown to be more reliable than wave
pipelining: it exhibits less jitter and skew, and the probability of
error is less sensitive to voltage noise. Furthermore, surfing band-
width is insensitive to connection length.

Noise sources are either static or dynamic. Static noise, such
as systematic process and temperature variation, results in lower
bit rates. Random process variation results in a small skew com-
ponent that affects wave-pipelining more than surfing. Also,
low-frequency supply voltage variation was found to affect wave
pipelining and surfing throughput, but not significantly affect relia-
bility as it does not contribute to jitter or skew.

Dynamic or high-frequency variation is the greatest concern for
reliability. Crosstalk can be tolerated by shielding the wires. In
general, however, tolerating dynamic variation requires extra tim-
ing margin, resulting in lower performance. In particular, high-
frequency voltage variation inducing cycle-to-cycle jitter is the
greatest concern, and jitter is a larger concern than skew. Given
the high sensitivity of wave pipelining to supply noise, it is very
important to have accurate noise models for the power grid; with-
out them, it is difficult to accurately assess its reliability.

0 10 20 30 40 50
0

2

4

6

8

10

12

Number of stages

M
ax

 r
el

ia
bl

e
th

ro
ug

hp
ut

 (
G

bp
s)

Comparison of schemes

Wave pipelining (ideal)
Wave pipelining (practical)
Surfing (ideal)
Surfing(practical)
16−bit bus (ideal)
16−bit bus (practical)

Figure 17: Throughput comparison for all schemes

0 10 20 30 40 50

1

2

3

4

5
6
7
8
9

10

Number of stages

Li
nk

 la
te

nc
y

(n
or

m
al

iz
ed

)

Normalized transit time

Bit 1

Bit 8
Bit 16

Bit 32

Wave pipelining
Wave pipelining + FIFOs

Figure 18: Latency at 5Gbps with 400ps FIFOs

7.1 Future work
Bit-serial interconnect introduces many exciting issues for future

work. Power is likely to be the most immediate challenge; accord-
ingly, the first priority for future work is investigating low-power
techniques such as low-swing signaling.

For improved throughput, wave pipelining can be ‘rebuffered’
by placing an asynchronous FIFO roughly every 10 stages. This
would attenuate accumulated jitter and would allow higher sus-
tained bandwidths of 5Gbps on long links. Each FIFO would be
small, only 1b wide and about 8b deep for 32b words, adding min-
imal area and latency. Asynchronous FIFOs are simple to design
and very fast [13]. Figure 18 shows that an additional 400ps FIFO
latency has almost no impact on the total latency of long links, be-
cause the higher bit rates attained with FIFOs improves latency.

Once data is transmitted serially, it is possible to replace some
parallel computation with serial computation. For example, a serial
adder becomes a single BLE, a bit-parallel multiplier becomes a
fast adder, and wide multiplexers in the user datapath become a
single 1-bit multiplexer. This may save considerable area.

The data transfer window is smaller than the user clock (e.g.,
8*300ps=2.4ns versus 10ns), so it may be possible to time-
multiplex two serial nets onto one physical wire if they arrive in a
routing channel at non-overlapping times. The interconnect would
merge (logical OR) the two signals onto a single bit-serial wire and
broadcast both bursts to all downstream sinks for both nets. The
DES block at each sink accepts either the first or second burst. This
may save wiring.

For improved area utilization, the clock and data wires in wave
pipelining can be dual-purpose and used to transport regular signals
(not bit-serial signals). These wires are fast and shielded, making
them highly suitable for clocks, asynchronous signals, or timing-
critical nets [29].

The analysis in this paper considered only length 4 wires, but
longer wires should be considered. For example, wave pipelining
and surfing may achieve optimum performance at different lengths.
Architectural experiments also need to determine how many SER
and DES blocks are needed, whether SERDES blocks should be
in every CLB, how much bit-serial interconnect is required, and
what connection patterns should be used. Furthermore, datapath-
preserving CAD such as [30, 31] is needed.

Finally, our analysis and simulation shows that properly account-
ing for noise is essential for designing reliable serial interconnect
for FPGAs, and power supply noise has the largest impact of the
noise sources we considered. Unfortunately, existing power noise
models tend to be simplistic and don’t provide the information
needed to design robust serial interconnect. Thus, we see better
supply noise modeling as a critical area for future work. This is
especially important in the context of FPGA designs where noise
depends on the functionality and placement of blocks in the FPGA.

8. ACKNOWLEDGMENTS
The authors would like to thank Suwen Yang, Andy Ye, Ter-

rence Mak, Alastair Smith, the Actel architecture team including
Jonathan Greene and Sinan Kaptanoglu, and the anonymous re-
viewers for valuable feedback. This work was funded by NSERC.

9. REFERENCES
[1] M. Saldana, L. Shannon, J.S. Yue, S. Bian, J. Craig, and P.

Chow, “Routability prediction of network topologies in
FPGAs,” T-VLSI, vol. 15, no. 8, pp. 948–951, August 2007.

[2] A. Singh, A. Mukherjee, and M. Marek-Sadowska,
“Interconnect pipelining in a throughput-intensive FPGA
architecture,” FPGA, pp. 153–160, 2001.

[3] D.P. Singh and S.D. Brown, “The case for registered routing
switches in field programmable gate arrays,” FPGA, pp.
161–169, 2001.

[4] B.D. Winters and M.R. Greenstreet, “A negative-overhead,
self-timed pipeline,” ASYNC, pp. 37–46, 2002.

[5] M.R. Greenstreet and Jihong Ren, “Surfing interconnect,”
ASYNC, 2006.

[6] S. Yang, M.R. Greenstreet, and J. Ren, “A jitter attenuating
timing chain,” ASYNC, pp. 25–38, 2007.

[7] R.R. Dobkin, A. Morgenshtein, A. Kolodny, and R. Ginosar,
“Parallel vs. serial on-chip communication,” SLIP, pp.
43–50, 2008.

[8] T. Mak, C. D’Alessandro, P. Sedcole, P.Y.K. Cheung,
A. Yakovlev, and W. Luk. “Implementation of
wave-pipelined interconnects in FPGAs,” NoCs, pp.
213–214, 2008.

[9] T. Mak, P. Sedcole, P. Y. K. Cheung and W. Luk,
“Wave-pipelined signalling for on-FPGA communication,”
FPT, pp. 9–16, December 2008.

[10] A.G. Ye and J. Rose, “Using bus-based connections to
improve field-programmable gate-array density for
implementing datapath circuits,” T-VLSI, vol. 14, no. 5, pp.
462–473, 2006.

[11] K. Y Yun and R. P Donohue, “Pausible clocking: a first step
toward heterogeneous systems,” ICCD, pp. 118–123,
October 1996.

[12] P. Teehan, M.R. Greenstreet, and G. Lemieux, “A survey and
taxonomy of GALS design styles,” IEEE Design and Test,
vol. 24, no. 5, pp. 418–428, 2007.

[13] J. Sparsø, Asynchronous circuit design - a tutorial, Kluwer
Academic Publishers, Boston / Dordrecht / London,
December 2001.

[14] I. Sutherland and S. Fairbanks, “GasP: a minimal FIFO
control,” ASYNC, pp. 46–53, 2001.

[15] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and
single-driver wires in FPGA interconnect,” FPT, pp. 41–48,
December 2004.

[16] C. Yingmei, W. Zhigong, and Z. Li, “A 5GHz 0.18-µm
CMOS technology PLL with a symmetry PFD,” ICMMT,
vol. 2, pp. 562–565, 2008.

[17] M. Miller, G. Hoover, and F. Brewer, “Pulse-mode link for
robust, high speed communications,” ISCAS, pp. 3073–3077,
2008.

[18] E. Lee, G. Lemieux, and S. Mirabbasi, “Interconnect driver
design for long wires in field-programmable gate arrays,”
Journal of Signal Processing Systems, Springer, 51(1), 2008.

[19] V.V. Deodhar, “Throughput-centric wave-pipelined
interconnect circuits for gigascale integration,” PhD
dissertation, Georgia Institute of Technology, 2005.

[20] S. Yang, B.D. Winters, and M.R. Greenstreet, “Surfing
pipelines: Theory and implementation,” JSSC, vol. 42, no. 6,
pp. 1405–1414, 2007.

[21] S. Nassif, K. Bernstein, D.J. Frank, A. Gattiker, W. Haensch,
B.L. Ji, E. Nowak, D. Pearson, and N.J. Rohrer, “High
performance CMOS variability in the 65nm regime and
beyond,” IEDM, pp. 569–571, 2007.

[22] P. Sedcole and P.Y.K. Cheung, “Within-die delay variability
in 90nm FPGAs and beyond,” FPT, pp. 97–104, December
2006.

[23] N.E. Weste and D. Harris, CMOS VLSI Design: A Circuits
and Systems Perspective, Addison Wesley, 2005.

[24] S. Kirolos, Y. Massoud, and Y. Ismail,
“Power-supply-variation-aware timing analysis of
synchronous systems.” ISCAS, pp. 2418–2421, 2008.

[25] J. Jang, S. Xu, and W. Burleson, “Jitter in deep sub-micron
interconnect,” Proc. Symp. VLSI, pp. 84–89, 2005.

[26] E. Alon, V. Stojanovic, and M.A. Horowitz, “Circuits and
techniques for high-resolution measurement of on-chip
power supply noise,” JSSC, vol. 40, no. 4, pp. 820–828,
2005.

[27] P. Teehan, “Reliable high-throughput FPGA interconnect
using source-synchronous surfing and wave pipelining,”
MASc thesis, Department of Electrical and Computer
Engineering, University of British Columbia, 2008.

[28] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient
self-timing with level-encoded 2-phase dual-rail (LEDR),”
Proc. Conf. Advanced Research in VLSI, pp. 55–70, 1991.

[29] M. Hutton, V. Chan, P. Kazarian, V. Maruri, T. Ngai, J. Park,
R. Patel, B. Pedersen, J. Schleicher, and S. Shumarayev,
“Interconnect enhancements for a high-speed PLD
architecture,” FPGA, pp. 3–10, 2002.

[30] A.G. Ye, J. Rose, and D. Lewis, “Synthesizing datapath
circuits for FPGAs with emphasis on area minimization,”
FPT, pp. 219–226, December 2002.

[31] A.G. Ye and J. Rose. “Using multi-bit logic blocks and
automated packing to improve field-programmable gate
array density for implementing datapath circuits,” FPT, pp.
129–136, December 2004.

