
Self-Hosted Placement
for Massively Parallel Processor Arrays

Graeme Smecher, Steve Wilton, Guy G. F. Lemieux

University of British Columbia
2332 Main Mall, Vancouver, BC Canada V6T 1Z4
gsmecher,stevew,lemieux@ece.ubc.ca

Abstract—We consider the placement problem as part of the
CAD flow for a massively parallel processor arrays (MPPAs). In
contrast to traditional placers, which operate on a workstation
with one or several cores and are able to take advantage of par-
allelism to a limited degree, we investigate running the placer on
the target architecture itself. As the number of processor elements
(PEs) in such a device scale, so too does the computational power
available to the placer. This natural scaling helps avoid the long
runtimes that afflict FPGA flows.

In this paper, we propose a distributed placer suitable to run
on a MPPA. This placer takes advantage of local interconnect
fabric, and may be efficiently coded on a simple, RISC-like
core. We investigate the performance of this placer and compare
it to traditional, simulated annealing-based placers using both
unrealistic (but nearly optimal) and realistic (but suboptimal)
annealing schedules.

On a simulated 32× 32 = 1024-core MPPA, the proposed
algorithm furnishes placements within 5% of the optimal place-
ment quality – a level competetive with the realistic, traditional
placer. To do so, the distributed placer requires each PE to
consider 1/256th as many swaps as the traditional placer, a
computational advantage which scales favourably as the number
of cores on the MPPA increases.

I. INTRODUCTION

As silicon geometries shrink, power and design complexity
become first-class design constraints. As a result, massively
parallel processor arrays (MPPAs) have become a research
focus as single-core processor performance ceases to scale
aggressively. In contrast to single-core designs deriving their
performance from advanced control logic (e.g. branch pre-
diction, out-of-order execution, transactional memory, vector
units, etc.), MPPAs feature hundreds or thousands of relatively
simple cores arranged in a single-chip array.

In addition to academic and affiliated research projects
(e.g. PiCoGA [1] and PACT XPP [2]), numerous commercial
ventures (e.g. Nethra/Ambric, Tilera, Picochip, IntellaSys)
have begun producing such devices. The number of cores they
integrate is expected to scale rapidly.

Effective synthesis of programs for MPPAs remains a
major challenge. Different approaches range from explicitly
parallel programming models (such the approach used by
Nethra/Ambric, in which numerous parallel programs are
hand-coded in a Java-like language) and automatic synthesis
and parallelization of code (e.g. [3], which synthesizes parallel
programs from Verilog source code.) In most of these models,
once the user program has been synthesized into a set of
parallel processes, these processes must be placed and routed

in a sequence analogous to traditional CAD flows for FPGAs.
To greatly oversimplify, the major difference between MPPA
and FPGA flows is the larger size and greater capabilities
of each element in the architecture, and the correspondingly
lower number of elements.

In this paper, we consider fast placement algorithms for
MPPAs. Since the problem is similar to FPGA placement,
any placement algorithm suitable for FPGA flows may readily
be adapted to MPPAs. Moreover, since the number of cores
in such an architecture is several orders of magnitude lower
than the number of placement elements (i.e. clusters) in an
FPGA, such an approach would furnish a CAD flow with
greatly reduced execution times. In order to shorten placement
time further, we investigate a distributed placement algorithm
intended to run on the MPPA itself. We do so for several
reasons:
• We prefer to look to compilers (instead of FPGA flows)

as a barometer for reasonable synthesis times,
• As MPPA sizes scale upwards, placement complexity

may again become a significant problem,
• Fast placement will motivate research into more intelli-

gent tools (e.g. combined placement and routing), and
• A distributed approach in which the target silicon per-

forms its own placement is interesting in its own right.
In the following section, we review previous research into

distributed placement algorithms. Then, we introduce a dis-
tributed simulated annealing algorithm suitable for running on
a MPPA.

II. BACKGROUND

In this section, we review several approaches to distributed
placement. We restrict our focus exclusively to approaches
based on Simulated Annealing (SA), since it is an established
placement technique with a significant history in the FPGA
community. There are few published placement algorithms
specifically targeting MPPA flows, and especially for our
purposes, SA’s strengths as a general technique that may easily
be extended to arbitrary placement constraints (e.g. to manage
any architectural quirks of a particular MPPA) is desirable.
A familiarity with simulated annealing is assumed; for an
overview, please consult the references.

Several early works considered distributed simulated anneal-
ing via shared-memory and message-passing multiprocessors.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

In [4], placement cells are divided dynamically between pro-
cessors. Each processor may only select and move cells it
‘owns.’ Runtime speedups of 3.3 (using 4 processors) and
6.4 (with 8 processors) were reported. In [5], annealing is
parallelized differently during two distinct phases: in the high-
temperature phase, where the probability of accepting an
unfavourable move is substantial, each processor investigates
a completey distinct placement. After these placement have
been independently refined, the best is selected for the low-
temperature phase, during which each processor is assigned a
geometric partition of the chip. Each processor then anneals
this partition, swapping nodes with the processors working on
adjacent partitions. Speedups are up to 4.3 on a 5-processor
system, and are projected to 7.1 on a 10-processor system.
These early works and others (e.g. [6]) are characterized by
the use of relatively few processors, and do not investigate
scaling to hundreds or thousands of processors.

More recently, a distributed placement algorithm for FPGAs
which runs on an FPGA accelerator has been proposed [7].
In this paper, placement occurs on a systolic architecture in
which each placement node (i.e. a cluster) is assigned its own
processor, and is permitted to communicate only with its four
nearest neighbours. The topology and detailed architecture
of this approach are shown respectively in Fig. 1 and 2.
The placement architecture was described in an HDL and
synthesized for FPGAs; as each processor element (PE) in
this architecture requires many more FPGA resources than it
manages, this approach required multiple FPGAs to generate
placements for a single one.

PE PE PE PEPE

PE PE PE PEPE

PE PE PE PEPE

PE PE PE PEPE

· · ·

... . . .

Fig. 1. Top-level architecture of distributed SA from [7]. Each square
represents a processing element in the systolic array. Nearest-neighbour links
are shown using solid arrows; the position update chain (which furnishes PEs
with estimates of block locations) is dashed.

In the following section, we adopt a similar approach to
placement on MPPAs. In doing so, we find that each core is
suitably powerful to manage placement of a block its own size.

III. PROPOSED ALGORITHM

Figs. 3 and 4 show the high-level and detailed MPPA de-
scribed in [3]. This architecture consists of an array of identical
processor elements (PEs) and a local routing fabric. Each PE
is a simple, 32-bit RISC-like core executing a program stored
on local memory. Programs for each PE, as well as a static
routing schedule for inter-PE communications, are synthesized

Control Logic

Random number generator
Accumulator
Comparator

State Machine

North Neighbour

South Neighbour

Neighbour
West East

Neighbour

Update
Chain Chain

Update

CAM
Position
Estimate
Memory

Fig. 2. Architecture of a single PE from [7]. Note the reliance on content-
associative memory (CAMs) for position look-ups.

from Verilog RTL. The choice of this particular architecture is
arbitrary, in a sense: Subject to per-node memory requirements
(which are examined below), this investigation is equally
relevant to other MPPA architectures.

PE PE PE

PEPE

PE

clock

router

core

PE

Fig. 3. Top-level architecture of MPPA in [3]

We propose a simulated annealing algorithm with the fol-
lowing characteristics:
• Each PE is assumed to be a traditional RISC-like core,

with a moderate amount of local memory and without
specialized structures (e.g. CAMs),

• The computational architecture (i.e. the resources used
to compute placement) are structured identically to the
placement problem. In other words, an array of size (x, y)
is used to route a netlist involving at most x× y nodes.

• The SA implementation is conventional (i.e. it includes
an exponential function to relate probability of swap
acceptance, temperature, and difference in cost.)

• Communication between PEs is restricted to their imme-
diate neighbourhood (which we will define below.)

2

N

S

E

W

N

S

E

W

N

S

E

W

N

S

E

W

(R)

mem

A
L

U

mem

(X)

accum

PLA

mem (N, S,E,W)

to/from

router

mem

data

(D)

Fig. 4. Architecture of a single PE from [3]

In [7], the number of logic resources used in an FPGA to
compute placement of a single cluster were much larger than
the clusters themselves. In contrast, each PE in an MPPA is
capable enough to handle placement of an element its own
size. Thus, the placement problem scales exactly with the
architecture. The high-level pseudocode is similar:

generate random placement()
for interval in 0 to TMAX do

for each PE do
for n=1 to ‘updates’ do

Update position chain
end for
for n=1 to ‘swaps’ do

Consider swaps with each PE in our neighbourhood
end for

end for
end for
This algorithm operates deterministically, and the placement

results are reproducible. The second ‘for’ loop (which loops
over each PE) is done in parallel, i.e. the loop’s contents define
the program which runs independently on each PE.

In the following subsections, we provide some details on
each of the steps. First, we describe the data structures used
to track annealing and qualitatively describe the memory
requirements of the algorithm.

A. Data Structures

We use the four structures shown in Fig. 5 to track PE
contents:
pbm The Placement-to-Block Map maps each PE’s (x, y)

location to the ID of the block it contains, or a token
if the block is unoccupied.

bnm The Block-to-Net Map maps each block ID to the IDs
of every net with which it connects.

nbm The Net-to-Block Map maps each net ID to the IDs of
every block with which it connects.

bpm The Block-to-Placement Map maps each block ID to
the (x, y) location of the PE it currently occupies.

These same structures are applicable to an ordinary anneal-
ing implementation. We use forward- and reverse structures in

ordinary RAM to avoid either costly list searches or special
structures such as associative memories that would not be
available in a generic MPPA.

Of these structures, the net-to-block mapping (nbm) and
the block-to-net mapping (bnm) encapsulate the block and net
connections of the desired routing and are static throughout
the annealing process. The other two (the block-to-placement
map or bpm, and the placement-to-block map or pbm) link
blocks with their (estimated) locations in the processor array,
and are dynamic. Moreover, each PE’s knowledge of blocks’
locations is only approximate; their bpm and pbm structures
are local and not synchronized with other PEs.

Assuming we allocate 16 bits for net and block IDs, and 16
bits for placement (8 bits each for the horizontal and vertical
position), each single entry in the pbm and bpm occupies 32
bits. Such an allocation scales to 65536-core processors in a
256 × 256 array. Each entry in the nbm and bnm requires a
variable number of 16-bit entries, depending on connectivity.
It is unreasonable to store a complete version of any of these
structures in each PE (for example, a complete pbm requires
256×256×2 = 131 kB, which is a trivial amount for a PC but
an order of magnitude larger than PE memories in a typical
MPPA.) Fortunately, a given PE only accesses the entries in
its own connectivity structures (the bnm and nbm) that are
relevant to the block it contains; other entries are unaccessed
and need not be stored. A strategy for avoiding full placement
maps (the pbm and bpm structures) is described in [7]; this
approach does impact the accuracy of each PE’s knowledge of
its neighbouring blocks, and requires transfers of moderately
large data structures during block swaps. We assume complete
copies of each structure are available to each PE, and thus
model the effects of information staleness (but not the effects
of limited per-PE memory.)

B. Position Chain Updates

Any distributed annealing algorithm requires some method
to ensure all processors have some “image” of the placement
state, and that each processor’s image is updated in some
fashion. It is not necessary that these images be either syn-
chronized or correct, provided they are eventually updated and
the impact of stale information is limited.

Here (as in [7]), each PE participates in an “update chain”,
a ring that passes through each PE once and snakes its way
through the topology. At each iteration of the inner loop,
each PE passes information along the chain, updating its
internal structures with information about block placement.
When information about a particular block arrives at the PE
containing it, this PE absorbs the stale data and pushes out new
information. Using this mechanism, position updates occur
with only nearest-neighbour communications.

The pseudocode for updating each PE is as follows:
(x,y,bid) = local uq.deq()
if (x,y) == (local x, local y) then

bid = local bid
end if
update local PBM, BPM

3

(bid)
or -1

block ID

1 2

y = 0

y = 1

y = 2

y = Y − 1

. . .
...

...
...

...

. . .

. . .

x = 0 (X − 1)

nid = 0

. . .

1 2 3 . . . (B − 1)

block ID
(bid)

bid = 0

. . .

1 2 3 . . . (B − 1)

net ID
(nid)

. . .

(x, y)

bid = 0 1 2 3 (B − 1)

Block-to-Placement Map (bpm) Net-to-Block Map (nbm)

Block-to-Net Map (bnm)Placement-to-Block Map (pbm)

Fig. 5. Data structures used in distributed annealing algorithm

next uq.enq(x,y,bid)
where ‘local uq’ and ‘next uq’ are input queues for the

current and next PE in the update chain. The cost of main-
taining the update chain is constant, and largely depends on
the queueing or local routing hardware available.

In [7], the update chain takes a zigzag geometric loop
through each PE. Here, because PE geometries change with
each placement scenario, we have adopted a linear scheme
that traverses each row, left-to-right, before jumping to the first
column in the following row. This scheme is not necessarily
appropriate for fabrication, but allows us to evaluate scenarios
in which such a circuit cannot be constructed (i.e. with an
odd number of rows or columns.) Because simulations do not
suggest that stale placement information is a problem, we have
not investigated other update-chain policies.

C. Neighbour-Neighbour Swaps

After the position chain has been updated, each PE consid-
ers block swaps with its neighbours. This process occurs in a
synchronized fashion in a manner much like square dancing:
every PE begins by pairing itself with a neighbouring PE
and exchanging swap cost information. Paired PEs agree on a
random number (using local, simple pseudo-random number
generators) and use this number to agree on whether the swap
is accepted. If so, the PEs exchange block IDs and any relevant
data structures used to track them. PEs then change partners
and start again.

In [7], swaps are considered for the 4 neighbouring PEs
on the north, east, south, and west sides. As we will see, the
use of these 5-PE neighbourhoods reduces placement quality;
accordingly, we investigate two larger neighbourhoods: an 9-
PE neighbourhood adds the possibility of swapping each block
with PEs to the northeast, southeast, southwest, and northwest;
and a thirteen-PE neighbourhood adds the possibility of swap-
ping each block with PEs two blocks to the north, east, south,

and west. These neighbourhoods are illustrated in Fig. 6. The
use of larger neighbourhoods is particularly appropriate given
the MPPA shown in Fig. 3, since the dedicated routing network
may forward communications to nearby PEs without requiring
cooperation from PEs along the route, and with only a small
latency penalty.

dud

dud

West

(a) 5-PE

North

South

(b) 9-PE

dud

dud

East

(c) 13-PE

Fig. 6. Five-, Nine-, and Thirteen-PE Neighbourhoods. PEs correspond to
grid locations; a given PE (black) may exchange blocks with each of its
neighbours (grey) once during a single swap round.

Pseudocode for the swapping phases is as follows:
for each neighbour do

∆C = calculate swapped cost() - our old cost
if random() < e−∆C/T then

swap()
end if

end for
For each swap, the change in global cost is the change in

the half-perimeter bounding box for each net connected to
the two blocks undergoing swapping. This requires each PE
to track the approximate position of all blocks with which
its block is connected. These positions need not be accurate,
and each PE may use its own (possibly different) estimate
without problems; as the temperature is reduced and fewer
swaps are accepted, each PE’s position estimates converge to
the ‘true’ state. Although the pseudocode indicates floating-

4

TABLE I
BENCHMARKS (WITH BEST-CASE PLACEMENT COSTS)

Benchmark Blocks Nets Cost
me 1024 998 1,242
dir 1024 760 1,785
chem 1024 749 1,250
mcm 256 244 404
honda 256 240 379
pr 256 128 181

point calculation, a fixed-point implementation could readily
be obtained (e.g. by taking the logarithm of both sides, and
using a log-weighted pseudorandom number generator.)

The computational cost of this stage depends on several
factors, including the net-to-net connectivity (over which we
iterate in calculate swapped cost) and the routing fabric. In
our implementation, we assumed no limits on per-PE memory,
which reduces the amount of neighbour-neighbour communi-
cation during a swap (only the local swap costs and block
IDs need to be transferred.) If placement or connectivity
information at each node is incomplete, these structures must
also be swapped, and the neighbour-to-neighbour transfer
speed (as well as the amount of PE supervision required)
becomes important.

IV. RESULTS

In this section, we present some results from comparing a
traditional (sequential) implementation of distributed anneal-
ing with our approach.

Both annealing algorithms were evaluated using six bench-
marks. Five of these (chem, dir, honda, mcm, and pr)
are DSP- or dataflow-style benchmarks taken from [8]. The
final benchmark (me) is a motion-estimation algorithm, ex-
haustively searching for the offset of an 16×16-pixel subimage
within a 32 × 32-pixel image with the minimal sum of
absolute differences (SAD). All benchmarks are described in
behavioural Verilog. From there, our CAD flow synthesizes
Verilog into a dataflow graph (DFG) using a RISC-like instruc-
tion set. Nodes in the DFG are clustered, forming a program
for each PE in the MPPA. The placement step requires each
instruction cluster (block) to be assigned to a physical PE.

Benchmarks are listed, along with the half-perimeter cost of
the best placement,1 in Table I. Each placement has targeted
a 32 × 32 architecture for a total of 1024 cores.

We evaluate the two placers by varying their parameters and
investigating the corresponding change in placement quality.
As the placement cost for each benchmark vary wildly, we
have normalized each result to the placement cost in Table I;
1.0 indicates placement with excellent quality, and higher
numbers indicate worse results. The default parameters used
in the experimental results below are shown in Table II.

Since the “swaps” parameter (the number of node swaps
considered at each temperature step) has a different meaning

1Generated via an extremely slow annealing schedule with α = 0.99,
T0 = 100, Tstop = 10−4, and 200, 000 swaps per temperature step.

TABLE II
DEFAULT ANNEALING PARAMETERS

Param. Value Description
α 0.985 Rate of exponential decay in T
T0 50 Starting temperature
Tstop 0.01 Ending temperature

Sequential Annealer
swaps 2048 × 250 Swaps per temperature step

Distributed Annealer
swaps 250 Swap rounds per temperature step
updates 20 Update-chain shifts per swap
neighbours 12 Blocks neighbouring each PE

for the distributed and traditional placers, we have scaled
these parameters to give a consistent total number of swaps
for the entire architecture. For the traditional placer, 2048 ×
250 = 512, 000 swaps are considered at each temperature
step. The distributed placer considers only 250 “swap rounds”
per core at each temperature step; since each swap round
includes a possible swap with each block in its neighbourhood,
the overall number of swaps for the distributed placer is
250× 12÷ 2 = 1500 (where 12 is the number of neighbours,
and the division by 2 reflects pairing of nodes – it requires two
nodes to consider a single swap.) This scaling permits results
for both placers to be shown on the same graph.

To convert these figures into concrete units (i.e. placer run-
time in seconds), more information about each placer’s archi-
tecture (clock rate, interconnect bandwidth, local memory) are
required. However, it is already clear that the computational
requirements of distributed placement are several orders of
magnitude lower than the traditional algorithm due to the
reduced per-core swaps. (The fast clock and high IPC of
modern workstation CPUs, relative to commercially available
MPPAs, makes up some of this gap.)

We begin by investigating the relationship between place-
ment quality and the number of swaps. With the 5-PE
neighbourhoods shown in Fig. 6(a), the placement quality in
Fig. 7(a) is frequently over 10% worse than the reference
solution and over 5% worse than the traditional placer. It is
possible that with only four nearest neighbours to choose from,
blocks become “fenced off” or trapped when their neighbours
have highly favourable placements. In other words, there is
insufficient path diversity for a given block to migrate to a
favourable location in the presence of obstacles. A traditional
placer, in which blocks are selected randomly and may swap
independently of their relative proximity, does not suffer
from this syndrome. Circumventing blockages can be difficult,
unlikely, or effectively impossible for blocks depending on
how content their neighbours are with their current location.

5

(a) 5-PE neighbourhoods

(b) 9-PE neighbourhoods

(c) 13-PE neighbourhoods

Fig. 7. Placement cost; Swaps parameter is varied. Distributed results use
solid lines; traditional results are dotted.

With the 9-PE neighbourhood shown in Fig. 6(b), placement
quality varies with the number of swaps as shown in Fig. 7(b).
Path diversity (and thus placement quality) improves for most
benchmarks. When a large number of swaps per temperature

step are permitted, the distributed and traditional placer per-
form equivalently.

With the 13-PE neighbourhoods shown in Fig. 6(c), place-
ment quality is with 5% of the optimal placement and com-
petetive with the traditional placer. These results, shown in
Fig. 7(c), suggest that adequate path diversity exists and that
a favourably placed block no longer impedes movement of
nearby blocks.

In terms of computational requirements, the distributed
placer using 5-PE neighbourhoods considers a total of 250 ×
4 ÷ 2 = 500 swaps per temperature step. The 9- and
13-PE neighbourhoods, respectively, require 1000 and 1500
swaps per temperature step, a doubling and tripling of swap
effort. Compared to the traditional placer, which performs
comparably, each PE in the distributed placer only considers
a tiny fraction of the total number of swaps: respectively,
1/1024th, 1/512th, and 1/256th as many. This advantage of
the distributed placer over the traditional one improves as the
size of the MPPA increases.

Fig. 8 shows the normalized placement costs as the α
parameter (which controls the rate of temperature decrease) is
varied from 0.95 to 0.999. Dotted lines represent the traditional
placer, and solid lines represent the distributed algorithm.
Both placers exhibit better-quality results with higher α, as
is expected. Note that with very high α, experimental results
actually dip beneath the 1.00 threshold, indicating that our
estimated ‘best-case’ placements were not actually optimal.

0.95 0.96 0.97 0.98 0.99 1.00
alpha

1.00

1.05

1.10

1.15

1.20

N
o
rm

a
liz

e
d
 P

la
ce

m
e
n
t

C
o
st

dir
me
pr
mcm
honda
chem

Fig. 8. Placement cost; α parameter is varied. Distributed results use solid
lines; traditional results are dotted.

Fig. 9 shows the normalized placement cost as the starting
temperature (T0) is increased from 5 to 50. With a sufficiently
high T0, it is difficult to pick a trend out of this graph (except
that both placers are extremely sensitive to starting conditions.)

Fig. 10 shows the implementations’ sensitivities to the
stopping temperature Tstop. The distributed placer is able to
produce excellent placement results with a slightly higher
Tstop than the traditional one, further increasing its compu-
tational advantage. The cause is straightforward: when Tstop

is sufficiently low, non-greedy swaps effectively cease to

6

0 10 20 30 40 50
T0

1.00

1.05

1.10

1.15

1.20
N

o
rm

a
liz

e
d
 P

la
ce

m
e
n
t

C
o
st

dir
me
pr
mcm
honda
chem

Fig. 9. Placement cost; T0 parameter is varied. Distributed results use solid
lines; traditional results are dotted.

occur in both placers. However, in the traditional placer,
swaps are considered randomly and there is no guarantee that
every advantageous swap is actually evaluated. Adding several
temperature steps with negligible probability of accepting non-
greedy swaps permits more greedy swaps to be considered.
These extra temperature steps are not required by the dis-
tributed placer.

10-210-1100

Tstop

1.00

1.05

1.10

1.15

1.20

N
o
rm

a
liz

e
d
 P

la
ce

m
e
n
t

C
o
st

dir
me
pr
mcm
honda
chem

Fig. 10. Placement cost; Tstop parameter is varied. Distributed results use
solid lines; traditional results are dotted.

Fig. 11 shows the normalized placement cost as the ‘up-
dates’ parameter is varied from 1 to 19. This parameter
determines the quality of each block’s estimates of its neigh-
bours’ positions. Unless otherwise stated, the simulation re-
sults shown use 13-block neighbourhoods and 20 updates per
swap round, suggesting just over 1 position-chain update per
swap. Fig. 11 suggests this is an adequate balance between
information staleness and extra data-structure maintenance.

V. CONCLUSIONS

In this paper, we explored the potential for MPPAs to
perform self-hosted placement, i.e. for such a device to be used

0 5 10 15 20
Updates

1.00

1.05

1.10

1.15

1.20

N
o
rm

a
liz

e
d
 P

la
ce

m
e
n
t

C
o
st

me
pr
mcm
honda
chem
dir

Fig. 11. Placement cost; ‘updates’ parameter is varied. Only the distributed
placer is shown; the traditional placer has no such parameter.

as part of its own CAD flow. We showed how a distributed
annealing algorithm can furnish placements with comparable
quality to ordinary simulated annealing, with a number of
iterations that is several orders of magnitude lower, and with an
architecture that scales naturally with the number of elements
being placed.

Overall, the distributed algorithm was able to provide com-
petetive results with a vastly reduced workload per PE. Perfor-
mance was within 5% of the best-case placements obtained,
and competetive with a traditional placer using a practical
schedule, but requiring orders of magnitude less calculation
per core. (At the operating point shown in Table II, the per-
PE placement program required 1/256th as many swaps per
temperature step, compared to the traditional placer.) Not only
were the per-core swaps reduced, but the distributed placer’s
stopping temperature could be raised significantly without
negatively impacting performance. In contrast to earlier work
on distributed placement [4], [5], [6], the extremely high
processor count, as well as the low latency and high intercon-
nect bandwidth of MPPAs provides encouraging results and
excellent parallelism.

We expanded the notion of a PE’s ‘neighbourhood’ (the
nearby PEs with which it may swap blocks directly) beyond
the four PEs immediately to its north, south, east, and west.
We found that larger neighbourhoods were a key to avoiding
“stuck blocks” whose placements were suboptimal, but whose
movement was impeded by immediate neighbours with satis-
factory placements.

We considered the computational cost of the algorithm
in generic terms, by exploring the number of swap rounds
required for a given level of performance. A natural extension
of this work involves mapping it to a specific architecture,
allowing a characterization of the placer’s performance in
concrete units. Such an investigation requires some additional
work on memory-efficient packing and fast exchanges of each
PE’s structures.

Several other avenues of investigation include better cost

7

functions (e.g. to improve power consumption or routability).

VI. ACKNOWLEDGEMENTS

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] A. Lodi, L. Ciccarelli, C. Mucci, R. Giansante, and A. Cappelli, “An
embedded reconfigurable datapath for SoC,” in Proc. 13th IEEE Symp.
on Field-Programmable Custom Computing Machines (FCCM), 2005, pp.
303–304.

[2] M. Ganesan, S. Singh, F. May, and J. Becker, “H. 264 decoder at HD
resolution on a coarse grain dynamically reconfigurable architecture,” in
Proc. Int. Conf. on Field Programmable Logic and Applications (FPL),
2007, pp. 467–471.

[3] D. Grant and G. Lemieux, “A spatial computing architecture for imple-
menting computational circuits,” in CMC Microsystems Annual Sympo-
sium, 2008.

[4] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel simu-
lated annealing algorithm for the placement of macro-cells,” vol. 6, no. 5,
pp. 838–847, September 1987.

[5] J. Rose, W. Snelgrove, and Z. Vranesic, “Parallel standard cell placement
algorithms with quality equivalent to simulated annealing,” vol. 7, no. 3,
pp. 387–396, March 1988.

[6] P. Banerjee, M. Jones, and J. Sargent, “Parallel simulated annealing
algorithms for cell placement on hypercube multiprocessors,” vol. 1, no. 1,
pp. 91–106, Jan. 1990.

[7] M. G. Wrighton and A. M. DeHon, “Hardware-assisted simulated anneal-
ing with application for fast FPGA placement,” in Proc. ACM/SIGDA Int.
Symp. on FPGAs, 2003.

[8] M. Srivastava and M. Potkonjak, “Optimum and heuristic transformation
techniques for simultaneous optimization of latency and throughput,”
vol. 3, no. 1, pp. 2–19, 1995.

8

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
