
TPUTCACHE: HIGH-FREQUENCY, MULTI-WAY CACHE FOR HIGH-THROUGHPUT
FPGA APPLICATIONS

Aaron Severance, Guy G.F. Lemieux

Department of Electrical and Computer Engineering
University of British Columbia

email: aaronsev@ece.ubc.ca, lemieux@ece.ubc.ca

ABSTRACT

Throughput processing involves using many different con-
texts or threads to solve multiple problems or subproblems
in parallel, where the size of the problem is large enough that
latency can be tolerated. Bandwidth is required to support
multiple concurrent executions, however, and utilizing mul-
tiple external memory channels is costly. For small working
sets, FPGA designers can use on-chip BRAMs achieve the
necessary bandwidth without increasing the sytem cost. De-
signing algorithms around fixed-size local memories is dif-
ficult, however, as there is no graceful fallback if the prob-
lem size exceeds the amount of local memory. This paper
introduces TputCache, a cache designed to meet the needs
of throughput processing on FPGAs, giving the throughput
performance of on-chip BRAMs when the problem size fits
in local memory. The design utilizes a replay based architec-
ture to achive high frequency with very low resource over-
heads.

1. INTRODUCTION

There is growing interest in using FPGAs to do data process-
ing, harnessing the massive parallelism available and low
power operation without having to create a custom ASIC.
As well, FPGAs are used in embedded designs for connec-
tivity due to their flexible I/Os; since data is passing through
the FPGA anyway any data processing that can be done in-
side the FPGA potentially saves power and board space. FP-
GAs can support many types of parallelism, including bit-
level, pipeline, and data parallelism. Data parallelism that
is not latency sensitive lends itself to throughput process-
ing, where multiple data elements are interleaved so each
stage of execution is processed in a time-multiplexed man-
ner. This allows for on-chip resources to be used mostly for
computation rather than expensive control structures such
as hazard detection and data forwarding. A flexible overlay
architecture may implement throughput processing suitable

for a variety of applications while supporting software-like
algorithm compile and download times (seconds) compared
to the long FPGA synthesis design cycle (tens of minutes to
hours).

Of interest in supporting such overlays is the memory
system, which must be flexible enough to support differ-
ent applications without going through synthesis again. For
simple applications, data for each context may be statically
analyzable and fit into on-chip memory, in which case the
FPGA’s BRAMs can be configured to be a fixed-size global
memory, as in Figure 1. If data is too large to fit on-chip ex-
ternal memory may be used, but going off-chip carries per-
formance and power penalties. An alternative for applica-
tions with large or unknown size data sets is to create a cache
out of memory-mapped BRAMs, as in Figure 2. Ideally,
the cache would allow for the same level of performance as
BRAMs when data can be mapped to the size of the cache.
At the same time, it would function as a traditional cache,
increasing performance in other situations as long as some
locality of reference existed. Low resource overhead would
be needed so that designers would be willing to tradeoff any
increase in logic and BRAM usage rather than laboriously
redesigning their algorithms to manually move data between
on-chip and external memory.

While caches have been implemented in FPGAs many
times before, they do not meet our need for throughput com-
puting for the following reasons:

• Fmax requirements: to be a viable BRAM replace-
ment the cache should be able to operate at near BRAM
frequencies. This will require deep pipelining; single-
cycle latency will not be possible. In systems that can
only run at a fraction of BRAM Fmax multipumping
can be used to provide additional ports.

• Fully pipelined: The design must be able to provide
one hit per cycle on all ports when hitting in the cache
to provide BRAM level throughput.

• Support multiple outstanding misses: Blocking on a

Nios II/f
D$

I$

DMA

Multiported

Througput

Processor

M2

M3

On-chip

BRAM

(2x clk)

Double-pumping

Port Mux

UniPHY

Memory Controller

External Memory

M1

M0

S1

S0

M0

Double-pumping

Port Mux

S1

S0

M0

S1

S0

S0

Fig. 1. System Design Utilizing BRAM As Shared Scratch-
pad

miss will degrade performance on throughput appli-
cations, where some contexts may be able to make
forward progress while others wait. This would also
help if the cache was placed in front of a high latency
external interface such as flash memory.

• Write coalescing: A throughput application may write
many words on the same line before reading from that
line, in which case write-through caches will not save
external memory bandwidth. Writeback caches with
an allocate on write miss policy are required at the
least.

• Arbitrary associativity: To allow multiple contexts to
coexist in the cache without undue effort on the part
of the programmer to avoid cache indexing conflicts,
high associativity should be supported. Previous work
has looked at direct mapped and two-way set associa-
tive caches.

To address these concerns, this paper introduces Tput-
Cache. TputCache uses a simple replay-based architecture
to achieved fully pipelined, high frequency operation with-
out undue added latency. It achieves a frequency of up to
253 MHz in a Cyclone IV device using a six-stage pipeline,
comprable to the 270 MHz maximum frequency of BRAMs.
Though requests are serviced in-order, it can have multi-
ple outstanding misses in its replay pipelining, allowing for
prefetching up to six outstanding misses concurrently.

2. BACKGROUND AND RELATED WORK

Previous work on overlay architectures for throughput com-
puting includes highly multithreaded processors [1] and soft
vector processors (SVPs) [2]. These overlays allow a throughput-
amenable program to be written in software and downloaded
and executed without performing synthesis again. Multi-
threaded processors are programmed for throughput com-
puting in a single-instruction multiple-thread (SIMT) fash-
ion, where multiple copies of the same thread are used to

Nios II/f
D$

I$

DMA

Multiported

Througput

Processor

M2

M3

TputCache

(2x clk)

Double-pumping

Port Mux

UniPHY

Memory Controller

External Memory

M1

M0

S1

S0

M0 M0S0

S0

Fig. 2. System Using TputCache

process data in parallel. SVPs, by contrast, run a single
thread of execution but operate on many data elements in
parallel. These operations may be executed in parallel in a
single-instruction multiple-data (SIMD) fashion as well as
pipelined over multiple cycles. This paper uses MXP, an
SVP that includes scatter-gather support, to exercise Tput-
Cache. Scatter-gather uses a vector of addresses to do either
multiple stores (scatter) or loads (gather) concurrently. The
acceses may therefore be correlated or random depending
on the application’s access patterns, and may be both paral-
lel (SIMD) and pipelined.

Previous FPGA cache work includes Choi et al. [3], which
focuses on implementing multiple port caches with single
cycle access latency. Their investigation looks at both mut-
lipumped and live-value table approaches, and gives from
2 to 7 ports with single cycle latency at up to 138.9 MHz
on a Stratix IV. However, optimizing for single cycle la-
tency severely limits Fmax and is not necessary in through-
put computing, where multiple contexts are used to allow for
latency tolerance. The blocking design of the cache also lim-
its its usefulness in a throughput environment, where multi-
ple cache misses may be outstanding concurrently. A similar
work is the parameterized cache generator of Yiannacouras
el al. [4], which is also not optimized for throughput.

Other works such as CHiMPS [5] focus on synthesizing
multiple caches for a given application to give a large num-
ber of ports to aid in throughput. These designs are fixed
at synthesis, though, and so are not suitable for fixed over-
lays. They also rely upon the programmer or compiler to
restrict accesses to not overlap and flush data from caches
at certain points, limiting their general purpose usefulness.
Reconfigurable caches, as in Gil et al. [6] are a general pur-
pose cache solution, but sacrifice absolute performance for
runtime configurability.

3. TPUTCACHE DESIGN AND ARCHITECTURE

Figure 2 shows an example system with a multiported ac-
celerator connected to TputCache. TputCache is currently
has a single internal facing port, but can run at close to

Tag BRAM

Way 0

Tag BRAM

Way 1

Tag BRAM

Way N-1

.

.

.

=?

=?

=?

Way Select

Hit Detect

Evict/Fill Logic

To External Memory

Data

BRAMs

Return Data

miss

New

Request

Pipeline

Reg

Pipeline

Reg

Pipeline

Reg

Pipeline

Reg

Tag Invalidate

and Update

Evict/Fill

Request

Evict Data Read

Fill Data Write

Evict

Data

Fig. 3. TputCache Pipeline

BRAM fmax. This contrasts with our tested accelerator,
MXP, which has a memory interface that runs at 1/2 BRAM
fmax (using multipumping internally for its BRAM based
scratchpad). To achieve higher throughput than directly con-
necting MXP to TputCache, a doublepumping 2to1 mux is
placed on TputCache’s internal port.

TputCache is built in genericized VHDL, with top level
generics for size, associativity, request width, external mem-
ory width, and line width. Figure 3 shows the replay based
architecture. A six-stage pipeline is used, consisting of tag
lookup, hit detection and way selection, and finally data ram
write or read. Cache misses are dealt with by reinjecting
missed requests and replaying them until the request finally
hits; missed requests are sent to the fill pipeline that reads
new lines from memory and evicts the lines’ previous oc-
cpuants. By using a replay architecture no stalling is needed,
and no multiplexers are needed after the initial mux to select
a new request or replay.

Initially requests come in on the two input ports operat-
ing at half the cache frequency and are passed through the
2to1 doublepumping mux. Each request is tagged with a
requestor signal so that requests to different ports can com-
plete out of order with respect to each other. Each port’s
requests will complete in order, but it is expected that for
throughput applications there will be no need to guarantee
ordering between ports.

Once requests have been translated to TputCache’s in-
ternal frequency, they enter the main pipeline. Stage 0 of
the pipeline muxes in either a new request or a replayed re-
quest. If a new request is inserted into the pipeline, a token is
also placed into a request number token FIFO which will be
later used to ensure that requests complete in-order. The re-
quest address is then broadcast to a configurable number of
ways in the cache, with a separate tag BRAM for each way.
Because the pipeline operates at near the maximum BRAM
frequency, output registers are used on the tag BRAM so tag

Fill

In

Progress?

miss
Evict/Fill

Address

Queue

Evict

Data

Queue

External Memory

Return

Address

Queue

t
a
g

i
n
v
a
l
i
d
a
t
e

e
v
i
c
t

d
a
t
a

f
i
l
l

d
a
t
a

f
i
l
l

a
d
d
r
e
s
s

Cache Pipeline

Fig. 4. Fill/Evict Pipeline

lookup is not available until stage 2. On stage 2 each way
uses a comparator to check for hit or miss. Stage 3 is used to
aggregate the hit and miss signals from each way and select
the correct way. Stage 4 drives the way and address to data
BRAMs. At this point a write hit will commit if its request
number matches the token FIFO head. A read hit requires
two extra cycles before data is available (again, the output
registers on the BRAM are used). On Stage 6 a read hit can
commit if the return port is ready and the request number
matches the token FIFO head.

If a request is not marked as committed, after Stage 6 it
is reinserted into the beginning of the replay pipeline. This
allows requests to be out-of-order within the pipeline, and is
the reason for the token FIFO. The token FIFO is a simple
way to ensure all requests commit in-order. More aggres-
sive out-of-order retirement would be possible if required
for performance but was not necessary for our test cases.
Out-of-order reads (hit under miss) would require associa-
tive structures (which are expensive to implement in FP-
GAs) to reorder data before returning it to the system in-
terconnect.

On a miss, the miss address and a way selected for re-
placement are passed into the fill pipeline, shown in Fig-
ure 4. Way replacement is random, fed by a 16-bit LFSR
from which the appropriate number of bits are selected for
the number of ways instantiated. If there are no misses to the
same line pending, the fill pipeline places the address to fill,
as well as the address of the evicted cache line are placed
into the evict address queue. On the same cycle, the corre-
sponding tag BRAM is invalidated so that no further writes
to the line can occur. After the line is invalidated there may
still be requests which have hit in the tag ram but are still in
the pipeline, so a delay of four cycles is inserted to flush any
requests to the evicted line.

Once the evict address queue has a valid entry (and data
is in the evict data queue if necessary) memory requests are
issued for the evict and the fill. The fill address and way are
placed into a writeback queue similar to the evict address

queue. When data is returned from external memory the
return address queue supplies the way and address of the tag
BRAM to be updated at the same time the data BRAMs are
written.

The address queues for both evict address and return are
be used for hazard detection against new miss requests to
ensure that a miss is not enqueued multiple times; this re-
quires reading them out in parallel. Though this means they
cannot be placed into FPGA memories (placed into FFs in-
stead), only a small number of entries is needed to track out-
standing misses (serving the function that MSHRs serve in a
traditional lockup-free cache). For our test board, there was
no increase in performance moving to more than 2 entries in
each queue. Evict data is held in a separate queue and does
not need to be read in parallel, so it is implemented with
FPGA memories.

4. RESULTS

All soft processor results in this paper are measured by run-
ning the benchmarks on an Altera DE2-115 development
system using Quartus II version 12.0sp2.

4.1. Area and Clock Frequency

Table 1 shows results from implementing various cache con-
figurations on the Cyclone IV EP4CE115 used for bench-
marking, as well as a Stratix IV EP4SGX530. On the Cy-
clone IV, Fmax reaches up to 253 MHz, and decreases as
the size and associativity of the cache increases. The design
goal was to operate at the BRAM Fmax of 270 MHz; crit-
ical paths in the token FIFO and fill logic have decreased
Fmax by 7% for the smallest implementation tested. Larger
caches have lower Fmax due to higher routing delays as
more BRAMs must be used, increasing routing distance and
congestion.

Logic usage ranges from 2632 to 3383 LEs including
the port multiplexors and buffering. The cache itself takes
1709 to 2371 LEs, about the size of a Nios II/f processor
(1810 LEs). One M9K is used per kB of data RAM, with tag
RAMs using two to four BRAMs per way depending on the
way depth, and an additional M9K used by evict data FIFO.
This gives an overhead of 7% to 28% in BRAM usage.

Though TputCache was not optimized for Stratix de-
vices Table 1 shows Stratix IV results for the same device
used in Choi et al.[3]. TputCache achieves 422.8 MHz (211.4
MHz port clock) compared to their maximum RAM clock
of 271.6 MHz (135.8 MHz port clock). Area numbers are
only given for the whole system including accelerator and
cache (13,460 ALMs), so a direct comparison is not possi-
ble. TputCache uses 2050 ALMs for the core; 2582 includ-
ing the 2to1 doublepumping mux.

Fig. 5. Histogram of Uniformly Distributed Random Data

Fig. 6. Histogram of Gaussian Distributed Random Data

4.2. Soft Vector Processor Benchmarks

The following benchmarks are written for the MXP soft vec-
tor processor and use scatter-gather instructions for data de-
pendent memory operations. MXP was configured with 16
vector lanes, 128kB of scratchpad memory, and 4 scatter-
gather ports. The cache used in all benchmarks was config-
ured as a 4-way, 128kB cache with 32-byte lines. For com-
parisons with memory mapped BRAMs, a 128kB double-
pumped BRAM was used to give 4 ports compared to the
cache’s 2. Scatter-gather memory operations were mapped
into cacheable memory space while other data was left un-
cached to avoid pollution. Additionally a ’blocking’ version
of the cache was created where only one evict-fill memory
operation was allowed in flight at a time to demonstrate the
value of prefetching multiple outstanding misses. Results
are presented normalized to running the alogrithm from the

Table 1. Resource Usage (32B Line Size)
Parameters Cyclone IV EP4CE115 Stratix IV EP4SGX530

Ways Size (kB) M9Ks Fmax (MHz) Cache LEs LEs w/2x Adapter M9Ks Fmax (MHz) Cache ALMs ALMs w/2x Adapter
4 32 41 253 1840 2726 41 423 2050 2582
4 64 73 244 1709 2632 73 398 2144 2636
4 128 141 231 1806 2683 137 385 2234 2718
4 256 273 223 1871 3023 265 333 2641 3157
8 256 281 213 1969 3084 273 322 2689 3178
16 256 289 213 2371 3383 289 340 2875 3390

Device Maximum 432 270 114480 1280 490 212480

external memory of the DE2-115 board.
Figure 5 shows the results of histogramming 4M uni-

formly distributed randomly generated 32-bit numbers into
256 bins. The vectorized algorithm uses a number of virtual
processors (VPs) which each histogram a subset of the data.
Each VP requires a separate set of 256 counters, as incre-
menting a counter is a read-modify-write operation that is
not atomic. With 32-bit counters, this means 1kB of state
is needed for each VP. The VPs are time multiplexed on to
physical lanes, so as the number of VPs is increased the la-
tency of the scatter-gather operations is amortized over mul-
tiple sequential store-load operations and performance in-
creases.

There is a considerable gain going from external mem-
ory to cache, 8.9x at 128 VPs. A double-pumped BRAM
gives slightly higher performance, up to 10.5x at 128 VPs.
After 128VPs, cache performance degrades until at 240 VPs,
when the working set is 2x the size of the cache, perfor-
mance becomes slightly worse than just using external mem-
ory.

Using uniformly distributed data does not exploit spatial
locality in the cache and is the worst case; Figure 6 shows
the results of histogramming a Gaussian distribution (ap-
proximated by adding multiple uniformly distributed data
sets together and normalizing). When there is locality in the
data, performance degrades much more gradually, and stays
above that of external memory with a working set more than
2x the size of the cache.

Figure 7 shows the results of doing the Hough transform
on different sized images. The Hough transform converts
a greyscale image to a 2D plane representing the angle and
distance from origin of a line; peaks in Hough space corre-
spond to lines in the original image. For each pixel in the
input image, it calculates the set of (angle, distance) pairs of
lines intersecting it and adds the pixel value to those loca-
tions in the output image.

Speedups over external memory reach up to 2.7X for
a 820kB output image. Speedup increases past the 128kB
size of the cache as each input pixel will modify a subset
of the output image, and nearby pixels in the input image
will have close (angle, distance) pairs in the output. As the
output image continues to grow larger eventually conflicts
in the cache force out cache lines that could be used on the

Fig. 7. Hough Transform

next pixel, leading to reduced performance, but since ran-
dom way replacement is used performance degrades grace-
fully and stays above 1.8X that of external memory. Ser-
vicing multiple outstanding requests helps as the image size
increases, giving up to an 11% boost over the blocking ver-
sion of the cache.

The motion compensation benchmark in Figure 8 uses
a custom memory instruction attached to MXP to perform
motion compensation according to the H.264 standard (only
full-pel is supported currently, though). For this test, mo-
tion vectors corresponding to +/- 16 pixels with a Gaussian
distribution (calculated in the same manner as the histogram
benchmark) were used, with a different motion vector for
every 4x4 pixel block.

Since the motion vectors are relatively small (local), which
is typical of real video data, much of the performance in-
crease comes from taking advantage of spatial locality. The
size of the image has little effect on the speed of the al-
gorithm; rather the increase in speedup over external mem-
ory as the image size grows larger comes from the external
memory slowing down at larger image sizes. As the row
size of the image increases, nearby row accesses become
less likely to hit in the DRAM’s row buffer and performance
decreases; the cache amortizes this over multiple read hits.

Fig. 8. Motion Compensation

5. FUTURE WORK

TputCache currently supports only one input port (two if run
at 2x system clock frequency). Currently the dual ported
tag and data BRAMs used have one port dedicated to the
main pipeline and one to the fill logic. A second request port
could be added by multiplexing between the fill logic and a
request. This would give the same number of ports as simply
using BRAMs, though needing additional multiplexing and
control logic.

Other ways to increase ports inclue multiporting tech-
niques such as those in LaForest & Steffan [7], but these
incur resource and frequency penalties. Banking the cache
based on address bits can also be used at the cost of stalling
when there is a collision. TputCache, with its separate core
pipeline and fill logic, could be banked fashion where mul-
tiple narrow cores are connected to a single wide (external
memory burst width, 256 to 1024-bit), arbitrated fill logic
module. Lines could therefore be spatially contiguous in
memory, yet sequential accesses would hit in different banks.

For uses such as scatter operations or DMA writes that
may store entire cache lines without reading them, it would
be desirable to allow TputCache to act as a write cache. In-
stead of reading in a cacheline on a write miss, a write cache
simply clears an existing line and tracks which bytes are
dirty (and need to be written back). The BRAMs’ 9th bit
(currently unused) could track the dirty state of each byte of
a line, increasing performance on long write operations by
eliminating unnecessary cache line reads.

6. CONCLUSIONS

TputCache allows designers of throughput processing ap-
plications on FPGAs to utilize a cache memory with only
a small loss of throughput compared to a static memory

mapped BRAM. Reaching an Fmax of 253 MHz, within 7%
of that of the BRAM Fmax, TputCache demonstrates that
for latency tolerant applications on FPGAs there is a reason-
able point of tradeoff between ease-of-use and performance.
Future work will continue to expand the areas where Tput-
Cache can be used instead of multiple on-chip memories.

7. ACKNOWLEDGMENTS

The authors would like to thank NSERC, VectorBlox Com-
puting, and the Institute for Computing, Information and
Cognitive Systems (ICICS) at UBC for funding and Altera
for donating development boards.

8. REFERENCES

[1] C. E. LaForest and J. G. Steffan, “Octavo: an
fpga-centric processor family,” in Proceedings of the
ACM/SIGDA international symposium on Field Pro-
grammable Gate Arrays, ser. FPGA ’12. New York,
NY, USA: ACM, 2012, pp. 219–228. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145731

[2] A. Severance and G. Lemieux, “Venice: A compact vector pro-
cessor for fpga applications,” in Field-Programmable Technol-
ogy (FPT), 2012 International Conference on, Dec., pp. 261–
268.

[3] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Cza-
jkowski, “Impact of cache architecture and interface on perfor-
mance and area of fpga-based processor/parallel-accelerator
systems,” in Field-Programmable Custom Computing Ma-
chines (FCCM), 2012 IEEE 20th Annual International Sym-
posium on, 29 2012-May 1, pp. 17–24.

[4] P. Yiannacouras and J. Rose, “A parameterized automatic
cache generator for fpgas,” in Field-Programmable Technol-
ogy (FPT), 2003. Proceedings. 2003 IEEE International Con-
ference on, Dec., pp. 324–327.

[5] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundarara-
jan, and S. Eggers, “Chimps: A c-level compilation flow for
hybrid cpu-fpga architectures,” in Field Programmable Logic
and Applications, 2008. FPL 2008. International Conference
on, Sept., pp. 173–178.

[6] A. Gil, J. Benitez, M. Calvio, and E. Gomez, “Reconfigurable
cache implemented on an fpga,” in Reconfigurable Computing
and FPGAs (ReConFig), 2010 International Conference on,
Dec., pp. 250–255.

[7] C. E. LaForest and J. G. Steffan, “Efficient multi-ported
memories for fpgas,” in Proceedings of the 18th
annual ACM/SIGDA international symposium on Field
programmable gate arrays, ser. FPGA ’10. New York,
NY, USA: ACM, 2010, pp. 41–50. [Online]. Available:
http://doi.acm.org.ezproxy.library.ubc.ca/10.1145/1723112.1723122

