
Wavefront Skipping using BRAMs
for Conditional Algorithms on Vector Processors

Aaron Severance
University of British Columbia

Vancouver, BC Canada
aaronsev@ece.ubc.ca

VectorBlox Computing, Inc.
Vancouver, BC Canada

aseverance@vectorblox.com

Joe Edwards
University of British Columbia

Vancouver, BC Canada
jedwards@ece.ubc.ca

VectorBlox Computing, Inc.
Vancouver, BC Canada

jedwards@vectorblox.com

Guy G.F. Lemieux
University of British Columbia

Vancouver, BC Canada
lemieux@ece.ubc.ca

VectorBlox Computing, Inc.
Vancouver, BC Canada

glemieux@vectorblox.com

ABSTRACT
Soft vector processors can accelerate data parallel algorithms
on FPGAs while retaining software programmability. To
handle divergent control flow, vector processors typically use
mask registers and predicated instructions. These work by
executing all branches and finally selecting the correct one.
Our work improves FPGA based vector processors by adding
wavefront skipping, where wavefronts that are completely
masked off are skipped. This accelerates conditional algo-
rithms, particularly useful where elements terminate early
if simple tests fail but require extensive processing in the
worst case. The difference in logic speed and RAM area for
FPGA based circuits versus ASICs led us to a different im-
plementation than used in fixed vector processors, storing
wavefront offsets in on-chip BRAM rather than computing
wavefronts skipped dynamically. Additionally, we allow for
partitioning the wavefronts so that partial wavefronts can
skip independently of one another. We show that <5% ex-
tra area can give up to 3.2× better performance on condi-
tional algorithms. Partial wavefront skipping may not be
generally useful enough to be added to a fixed vector pro-
cessor; it provides up to 65% more performance for up to
27% more area. In an FGPA, however, the designer can use
it to make application specific tradeoffs between area and
performance.

1. INTRODUCTION
Soft vector processors (SVPs) are a particular type of

overlay that creates a vector processor inside of an FPGA.
Having a software-programmable model reduces design cy-
cle time and makes programming and debugging easier than
writing at the RTL level. An SVP has one or more lanes
(ALUs with their own local memory) that can process data
in parallel; the data processed in a single cycle is called a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3315-3/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684746.2689072.

Figure 1: Wavefront Skipping on a 4 Lane MXP

wavefront. If the vector length is longer than the number of
lanes the instruction will sequentially process one wavefront
per cycle until the whole vector instruction has completed.
For algorithms that use conditional execution, i.e. branch-
ing, the vector processor must execute both paths of the
branch and mask off writes for elements not on the current
branch. This can result in a large portion of execution unit
results that are not used, especially for algorithms that can
stop processing some data elements early depending on a
conditional check.

In order to speed up these conditional algorithms, masked-
off elements must not utilize execution slots. It is possible
to compress vectors in order to remove masked-off elements,
but this is costly for algorithms that use packed data such
as stencil filters. Rather, we would like to skip over ele-
ments without rearranging data, which led us to implement
wavefront skipping. A wavefront is one cycle of data within
the parrallel vector pipelines. In wavefront skipping, wave-
fronts where all the elements are masked off are skipped. We
also implemented partial wavefront skipping, by which the
wavefront is divided into partitions that can skip indepen-
dently. This finer grained skipping can lead to performance
increases, at the cost of requiring more resources.

Figure 1 helps illustrate how wavefront skipping works.
The values shown are the mask bits corresponding to each



data element; a zero indicates that element is masked off. In
Figure 1a one of the eight wavefronts can be skipped since
all elements are masked off. Normally this instruction would
take eight cycles to process, but with wavefront skipping it
can complete in seven. Figure 1b shows two wavefront par-
titions; the finer granularity means more partial wavefronts
can be skipped, and so the instruction can run in only four
cycles (the partition with only three cycles ends up being
idle during the last cycle). And Figure 1c shows four wave-
front partitions, at which point the partition size is a single
element, and the instruction can execute in two cycles.

Our work gives the first implementation of wavefront skip-
ping on SVPs. It uses a different approach than used on
fixed vector processors, where the mask register is read out
in parallel and the number of leading masked-off elements is
computed each cycle. Instead, we took advantage of the rel-
ative cheapness of BRAMs on FPGAs by computing wave-
front offsets beforehand in a setup instruction and storing
them in BRAMs. Additionally, we implement partitioned
wavefront skipping, where instead of entire wavefronts skip-
ping together, partial wavefronts (down to individual bytes)
can skip by different amounts. To our knowledge this is
the first implementation of this idea in any vector proces-
sor. The full wavefront skipping implementation requires
no more than 5% increase in area and a single BRAM and
achieves speedups of up to 3.2× for early exit algorithms.
The addition of partial wavefront skipping provides addi-
tional gains but requires up to 27% additonal area, so it
might not make sense to implement in a hard vector proces-
sor. However, it may make sense to add in an SVP if the
design has some unused BRAMs within the device or the al-
gorithm is particularly sensitive to wavefront partitioning.

2. BACKGROUND
Vector processors have been used in supercomputers since

the 1970’s [3]. By performing the same operation on mul-
tiple elements, vector processors are able to achieve high
throughput on data parallel problems using only a small
amount of code. In particular, the inner loops of many sci-
entific and signal processing algorithms can be converted
to vector instructions. Vector processing is a form of SIMD
(single instruction, multiple data) processing which is highly
efficient for simple, regular algorithms such as dense linear
algebra and stencil filters. In much of the supercomputer
world, vector processors have given way to GPUs, which
share many concepts and structures with vector processors
but are more general purpose (at the cost of more area and
power). Vector processing has a few niches still; for example
the Convey HC-2ex [1] uses FPGAs as a vector coprocessor
for memory-intensive applications, and IBM’s ViVA (Vir-
tual Vector Architecture) [5] allows programmers to treat
multiple POWER processors as a single vector processor in
supercomputer applications.

2.1 FPGA-based Soft Vector Processors
Given that vector processing is relatively inexpensive in

terms of logic gates and can give high throughput for data
parallel applications, it makes sense in hindsight for it to
be used in FPGAs (where gates are much more expensive
than ASICs). The history of the idea can be traced back
to VIRAM [6], which was an ASIC vector processor that
showed vector processing to be more efficient in both power
and performance than superscalar or VLIW processors for

Align B

Align A

Align C

Scratchpad

Address Generation

DMA and Vector 

Instruction Queues

System

Bus or

NoC

ALUs

Σ

DMA

M

S
Rd

SrcA

Rd

SrcB

Wr

DstC

R/W

DMA

A B C D

From Scalar Core

Masked Unit

Figure 2: VectorBlox MXP with four 32-bit lanes

embedded media applications. Two parallel SVP implemen-
tations showed the feasibility of implementing a vector pro-
cessor on an FPGA, VESPA from University of Toronto [13]
and VIPERS from University of British Columbia [14]. Fur-
ther work has been done to customize vector processors for
FPGAs, with the most recent being the VectorBlox MXP [9]
which has the ability to dispatch multi-operand custom in-
structions to the external FPGA fabric. Additional work on
applications and programmability has been done at Univer-
sity of Cambridge [8] where a neural network simulation was
implemented and a C++ library developed to encapsulate
vectors as objects.

2.2 VectorBlox MXP
Our SVP, the VectorBlox MXP (MXP), is shown in Fig-

ure 2. It consists at a high level of a scalar core (Altera’s
Nios II/f) coupled to a vector core and DMA engine. The
scalar core handles all control flow and I/O, and dispatches
instructions to the vector core and DMA engine. All data
processed by MXP is held in a flatly-addressable, multiple-
bank scratchpad memory. Rather than have individual vec-
tor registers, a vector can start at any address in the scratch-
pad and be of any length. Data is initially read into the
scratchpad using the DMA engine. Once it has been read
into the scratchpad, a vector instruction can execute. If
there are data hazards between the vector instruction and
DMA transaction, hardware interlocks stall the vector core
until the hazard is resolved.

When a new vector instruction is ready to issue, the ad-
dress generation logic will generate the addresses for the
vector operand wavefronts, then increment them appropri-
ately each cycle until the end of the vector is reached. After
the source operands are read from the scratchpad, they pro-
ceed through an alignment network. Alignment is required
because vectors can start at any address within the scratch-
pad, hence be located in any bank of the scratchpad. The
operands are then fed into the parallel ALUs to execute. An
optional reduction-accumulate stage reduces the output to
a single sum; a commonly needed operation in vector pro-
grams. Finally, the data is realigned to the destination bank
before being written back to the scratchpad. The pipeline
takes 8 stages from read to writeback, with extra stages



added for alignment and reduction in wider vector proces-
sors.

We also support subword SIMD operations where two 16-
bit operations or four 8-bit operations can execute in one
lane. Additionally, we have a conditional move operation
(discussed in Section 3) that will only overwrite the desti-
nation vector if a condition check is true. The conditional
move uses byte enables to enable or disable writing to spe-
cific scratchpad banks.

2.3 Conditional Execution
Support for conditional execution in vector processors is

well researched; a good summary is [11]. For short condi-
tionals, implementations that use predicated operations or
conditional moves can give good performance. These opera-
tions are performed on all data elements, with only the ele-
ments that pass some conditional test written back; the rest
of the results are discarded. For longer conditional branches,
though, this can lead to a large percentage of execution time
spent on unused results. In these instances, it is desirable
to skip elements that are not on the current branch. Three
strategies can be employed (separately or together): com-
press/expand, scatter/gather, and wavefront skipping (also
referred to as density-time masking).

Compress vector operations are a way to take a source vec-
tor and a mask and produce a new vector that only contains
the valid (unmasked) elements without gaps. The expand
vector operation is the opposite of a compress; it takes a
compressed source vector and a mask and fills in the un-
masked slots in the destination vector with the source data.
VIRAM implemented VCOMPRESS and VEXPAND oper-
ators. During a long branch, the source operands can be
compressed, followed by processing only the shorter (com-
pressed) vector operations, and finally the result expanded.
The main drawback to this approach is that all source operands
must be compressed, and all destination operands must be
expanded. In a MxN conditional stencil filter on an image,
for instance, the MxN input pixels would all have to be sep-
arately compressed. Viola-Jones face detection operates in
this manner, which is why compress/expand was not consid-
ered suitable for our implementation. This will be explained
further in Section 3.4.

Scatter/gather is a method of performing indexed mem-
ory accesses (indexed store is a scatter, indexed load is a
gather), either to the local memory store or external mem-
ory. Along with a compress operation or special index cal-
culating instructions, scatter/gather can be used to speed
up conditional execution. For the conditional stencil fil-
ter example, the indices of pixels to be processed could be
compressed, and then the pixel data needed for each loca-
tion could be loaded using gather operations. The main
drawback of this approach is that parallelizing scatter and
gather operations requires parallel memory acceses, which
are nontrivial. VESPA could perform parallel scatter gather
accesses within a single cache line. A special throughput
cache [10] was developed for MXP to support scatter/gather
operations, but even in the best case where all data could
fit in a statically allocated multiple-bank on-chip memory,
speedups were modest.

Wavefront skipping, by contrast, uses knowledge of the
mask register to skip elements that do not need to be pro-
cessed. An earlier implementation scans the mask regis-
ter during instruction execution to determine if subsequent

wavefronts can be skipped. This introduces enough latency
that [7] gives a way to reduce the overhead by only skip-
ping powers of 2 elements (at the cost of doing some extra
work because the skipping is not exact). Given that an
FPGA implementation is already slower than a hard pro-
cessor and we are double-clocking our scratchpad to provide
additional ports, we wished to avoid the additional latency
in our design. Our implementation uses a special mask setup
instruction to store the offsets of valid wavefronts in one or
more BRAMs within the FPGA. Prior work [11] suggests
the idea that each lane can skip forward individually rather
than lockstep as entire wavefronts. We take this one step
further by allowing the wavefront to be partitioned and sep-
arately implement wavefront skipping in each partition. The
number of partitions can range from 1 (the entire wavefront)
to four times the number of lanes (making each byte-lane in
a separate partition). To our knowledge, we are the first to
propose and implement partitioned wavefront skipping in a
vector processor.

A similar concept exists in GPUs. GPUs divide up a ker-
nel (consisting of hundreds of threads) into warps (analo-
gous to our wavefronts, usually 16 or 32 threads). Inside
a kernel, branch instructions allow different threads to di-
verge. If no threads inside a warp are on one of the branches,
that warp is not scheduled to execute that branch; this is
somewhat analagous to unpartitioned wavefront skipping
in vector processors. Our method of wavefront skipping
keeps more of the management of testing and skipping un-
der software control; we consider this a good tradeoff for
SVPs where logic gates and power are more precious than
in custom chips. Additionally [4] gives simulation results
for SIMT warp compaction. Their approach works within
blocks of warps and moves elements between warps to re-
duce the amount of unnecessary work done. This achieves
a similar result as our partitioned wavefront skipping where
elements from different wavefronts are executed at the same
time. To our knowledge no GPU has implemented this tech-
nique yet.

3. BRAM BASED WAVEFRONT SKIPPING
Prior to this work MXP supported predicated execution

through conditional move, or CMOV, instructions only. This
differs from wavefront skipping in that the CMOV operation
does both a condition check and move in the same instruc-
tion, and it operates on the entire vector instead of just
the valid wavefronts. The CMOV instruction checks con-
ditions using a flag bit associated with each element; each
9-bit wide scratchpad BRAM stores 8-bits of data and one
flag bit. The flag bit is set by earlier vector instructions;
for instance an add instruction stores overflow while a shift
right stores the bit shifted out. The flag bit is used along
with whether the resulting byte is zero or non-zero to per-
form several different CMOV operations. The most common
CMOV operations first perform a subtraction-based com-
parison; the result is predicated based on whether the result
is less than zero (LTZ), less than or equal to zero (LTE),
etc. The CMOV hardware is part of the ALUs shown in
Figure 2.

3.1 Full Wavefront Skipping
Figure 3 gives an example of how to use wavefront skip-

ping to perform strided operations, such as operating on
every fifth element as in Figure 1. The first loop sets every



#define STRIDE 5

//Toy functition to double every fifth element
//in the vector v_a
void double_every_fifth_element( int *v_a,

int *v_temp
int vector_length )

{
int i;

//Initialize every fifth element of v_temp to zero
for( i = 0; i < vector_length; i++ ) {
v_temp[i] = i % STRIDE;

}

//Set the vector length which will be processed
vbx_set_vl( vector_length );

//Set mask for every element equal to zero
vbx_setup_mask( CMOV_Z, v_temp );

//Perform the wavefront skipping operation:
//multiply all non-masked off elements of v_a by 2
//and store the result back in v_a
vbx_masked( SVW, MUL, v_a, 2, v_a );

}

Figure 3: Code Example: Double Every Fifth Ele-
ment of a Vector

fifth element to be 0 (this could be done with vector divide
or modulo instructions if the SVP supports them, but is
shown in scalar code for clarity). The setup mask instruc-
tion takes as input a comparison operation (CMOV Z, or
use the CMOV hardware to test for equal to zero) and a
pointer to the vector operand (v temp, which is a pointer to
a vector of 32-bit data).

After the mask is set, the svp masked instruction is exe-
cuted. The ‘SVW’ type specifier indicates that it operates on
a scalar (2) and vector (v a) inputs and that the values are
words (32-bit). The elements in the source and destination
vector (both v a) that are masked-off will be skipped, while
the valid elements will be multiplied by 2. Although this is
a trivial example and is not faster than using a conditional
move, complex algorithms that reuse the mask several times
and/or have sparse valid bytes can give significant speedup.

In order to support wavefront skipping, we need to alter
the address generation logic of MXP. For normal vectors, the
addresses of the operands are incremented by one wavefront
every cycle. So, with a V2 MXP (meaning it has two 32-bit
vector lanes), each address is incremented by 8 bytes (the
width of one wavefront) each cycle. To support wavefront
skipping, we want to add a variable number of wavefronts
to the operand addresses depending on the value of a mask
that has been set. We accomplish this by storing the offsets
of wavefronts that have valid elements in a BRAM inside
the ‘masked unit’. Because not all elements in the wave-
front may be valid, we also have to store a valid bit for
each byte; during subsequent execution this becomes a byte
enable upon writeback. Finally, the length of a wavefront
skipped vector will (hopefully) be shorter than the length of
the full vector, so we have to mark the last wavefront. We
use an extra bit to mark the wavefront that is the end of the
skipped vector. This is an implementation detail that was
convenient in our design and could be replaced by storing
the number of wavefronts in a register.

Block RAMs are limited in depth, however, and MXPs
scratchpad can hold vectors of any length. To allow for wave-

Figure 4: Data Written to Mask BRAM (Every
Fifth Element Valid)

front skipping of vectors of the whole scratchpad length, the
masked unit would need a BRAM as deep as the scratchpad
itself. This would be wasteful for many applications, so we
allow the user to configure a maximum masked vector length
(MMVL). The minimum depth of BRAMs in the Stratix IV
FPGAs we tested on is 256 words, so lower MMVL than 256
will result in underutilized BRAMs. The fact that wavefront
skipping instructions have their own length restriction must
be known by the programmer. In real applications data
does not fit entirely in scratchpad memory and so is oper-
ated on in chunks (also known as strip-mining) even without
an MMVL; the MMVL only affects the size of the chunks.

To generate the wavefront offsets, we added the mask
setup instruction. This mask setup instruction uses the con-
ditional move logic already in MXP to generate the valid bits
set in the mask BRAM. Figure 4a shows the data written
the mask BRAM during the mask setup instruction. For
each wavefront processed, the offset and valid bytes are sent
to the masked unit. If no valid bytes are set, as in wave-
front 4 (data values 16-19), the masked unit does not write
into the mask BRAM. If any of the valid bytes are set, the
masked unit writes the current offset and the valid bytes to
its current BRAM write address and increments the write
address. The final wavefront (wavefront 7) causes the end
bit to be written to the mask BRAM along with its offset
and byte enables, provided there are any byte enables set.
In this example the final wavefront has valid byte enables,
but in instances where the final wavefront has no byte en-
ables set we avoid writing an empty wavefront by redoing
the last write to the mask BRAM with the end bit set.

In the case of algorithms with multiple early exit tests, it
is often desirable to do a wavefront skipping ’setup mask’
instruction. This is a trivial extension of the normal mask
setup instruction; instead of the wavefront numbers pro-
gressing linearly, they are taken from the output of the
masked unit. In this way the number of valid elements can
decrease until either the algorithm finishes or no more valid
elements are left. When no valid elements are left, any wave-
front skipping instructions will execute as NOPs. Alterna-
tively, the scalar core can query a mask status register and
exit the algorithm if it reports no valid elements are left.



for stage in classifier:
for row in image:

vector::init-mask

for feat in stage:
for rect in feat:

vector::feat.sum += vector::image[rect]

if vector::feat.sum > feat.threshold
vector::stage.sum += feat.pass

else:
vector::stage.sum += feat.fail

if vector::stage.sum < stage.threshold:
vector::update-mask (exit early if possible)

Figure 5: Pseduocode for Viola-Jones Face Detec-
tion

3.2 Wavefront Partitioning
So far we have only discussed skipping whole wavefronts.

When dealing with wide SVPs, it may be of little value to
skip whole wavefronts, since it will be rare (i.e., improb-
able) that the entire wavefront is skippable. As a trivial
example, the code from Figure 3 will skip 4/5 of wavefronts
on a V1, 1/5 of wavefronts on a V4, and no wavefronts on
wider MXPs (every wavefront will contain at least one valid
word). To get a speedup on this code on a wide MXP,
we need to support skipping at a narrower granularity than
the wavefront. We support this by partitioning the wave-
front into narrower units which each get their own BRAM
in the masked unit; for instance, a V4’s masked unit can
have 1 BRAM (whole wavefront skipping), 2 BRAMs (pairs
of lanes can skip together), or 4 BRAMs (each lane can skip
individually). Each BRAM stores a separate offset and end
bit, but the byte-enables are split across them.

Figure 4b shows the data written to the 2 mask partition
BRAMs for the doubling every fifth element code from Fig-
ure 3. This mask will take 4 cycles to execute (the maximum
of the depth written to all of the partitions), compared to the
7 cycles needed for the single partition shown in Figure 4a.

One complication with wavefront partitioning in our archi-
tecture is the mapping from partitions to scratchpad BRAMs.
In an architecture with a simple register file or a scratchpad
that did not allow unaligned accesses, each BRAM would
get its offset from a fixed partition; in a V2 with two par-
titions lane 1 would get its offset from partition 1and lane
2 from partition 2. However, as mentioned in Section 2.2,
our scratchpad supports unaligned addresses. This means
that partitions are not directly associated with a scratchpad
BRAM; instead, depending on the alignment of the vector
operands a scratchpad BRAM address may come from any
of the partitions. This means we had to implement an off-
set mapping network to map wavefront offsets to scratchpad
BRAMs. With a single offset (full wavefront skipping) the
same offset goes to all BRAMs, which is just a broadcast of
the offset requiring no additional logic.

3.3 Application Example: Viola-Jones Face De-
tection

Figure 5 gives high level psuedocode for one of the bench-
marks we’ve implemented, Viola-Jones face detection. Face
detection attempts to detect a face at every (x,y) pixel loca-
tion in an input image. To vectorize this, we will test several
possible starting locations in parallel: a 2D vector of starting

Figure 6: Haar Features Calculated for Different
Groupings (Relative to Minimum)

locations characterized by (x+i,y+j). In this way, we will be
testing for n2 face locations in the vector simultaneously.

The vector/SIMD algorithm must compute several thou-
sand values, called Haar features, for each pixel location.
Features are grouped into stages. The features in a stage
must pass a threshold test if a face is to be detected at that
location. If any stage fails this threshold test, there is no
point in testing further features at that location.

Features are calculated in-order across a vector of loca-
tions. Utilizing predicated instructions, we require process-
ing the maximum number of stages required by any location
within the vector. Only if there is no face at any of the
locations we are testing, can we exit early. In this model,
parallelism due to vectorization runs against the ability to
exit early; longer vectors are more likely to contain locations
requiring computation of many features, leading to extensive
processing for all elements in the vector. By using wavefront
skipping, we can avoid processing elements that are already
known not to contain a face. Further features are computed
only for those locations still in question, effectively shorten-
ing the vector length to the relevant elements.

The only differences between the predicated/CMOV ver-
sion (without wavefront skipping) and this code are the
init-mask and update-mask instructions and the low level
details of the early exit test. Were we not to exit early
the code would continue to run correctly, but the vector
instructions would skip all wavefronts and effectively be-
come NOPs. Porting an existing predicated algorithm to
wavefront skipping is therefore straightforward and requires
minimal effort.

Figure 6 shows the amount of work done for different lo-
cations; at minimum 3 Haar features need to be calculated,
and at maximum 2135. The three order of magnitude dif-
ference shows the need for some smarter form of predication
than simply computing the worst case on all pixels. The
input face is shown on the left, with the other subfigures
showing the number of Haar features calculated at each lo-
cation. In order to run the application on an SVP, groups
of pixels must be operated on as parallel vectors. Larger
groupings provide more parallelism, but without wavefront
skipping (only using CMOV instructions) every pixel in a



Figure 7: Vector Compress Operations Needed for
5x1 Stencil Filter

group must pass the maximum number of Haar feature tests
of any pixels within the group. It can be difficult to balance
the CMOV implementation; it is tempting to use the min-
imum vector length possible to reduce the amount of work
done, but below a certain level the lack of parallelism means
runtime actually increases. These results are from a 4 lane
MXP implementation, and we found the runtime optimal
vector length for CMOV implementations empirically.

A naive vector layout would be to have every row be a
vector (6a), which does almost 8× as much work as the
optimal. A slightly better method uses rectangular blocks
to get better spatial locality (6b); getting sufficient paral-
lelism still requires vectors long enough that almost 6× as
much work as the minimum is done. In contrast, simply
by changing the implementation to use wavefront skipping,
the effective grouping is the wavefront partition width (6c).
Wavefront skipping removes the need to profile an applica-
tion to determine the best vector length to use; the wavefront
skipping implementation can use the longest vector length
possible and will always achieve at least the performance of
the CMOV implementation. Finally, a fully partitioned de-
sign performs the minimal number of feature tests (6d), the
same as a scalar implementation would.

3.4 Comparison with Vector Compress
An alternative method mentioned in Section 2.3 is a vec-

tor compress operation. The compress operation removes
masked-off elements from a vector, creating a shorter vector
as a result. Figure 7 demonstrates how this would work for
a simple 5x1 stencil filter on our architecture. The stencil
filter takes as inputs shifted versions of the input data, from
an offset of -2 to +2. Before running the stencil filter, each
of the inputs must be separately compressed. The 5 offseted
versions of the data must be compressed into 5 scratchpad
locations, each of which uses as much storage as the original
in the worst case. After compressing the inputs, subsequent
vector operations can operate on the shorter vectors at full
speed.

The drawbacks of requiring a compress instruction and
additional storage space for each input make it impracti-
cal in many stencil filter algorithms. For instance, on the
Viola-Jones face detection application the amount of work
and extra space needed would be prohibitive. The Haar
feature tests operate on a sliding 20x20 window; each fea-
ture selects a subset of the window. Compressing the inputs

would require compressing each location, or 400 compress
operations and 400 temporary vectors. The wavefront skip-
ping method does not need to manipulate the input data,
meaning MXP only needs one copy of the chunk of the image
being scanned.

Compress operations also need the inverse vector expand
operation to restore the output. This is less critical for al-
gorithms like stencil filters where the number of outputs is
fewer than the number of inputs. Note that the compress
operation is only of use when the vector being compressed
is used multiple times, because compressing the vector takes
an extra instruction. Setting up a mask for wavefront skip-
ping also takes an extra instruction, but the same mask can
be used for multiple offsets in a stencil filter.

4. RESULTS
Our results were obtained using Altera Stratix IV GX230

FPGAs on the Terasic DE4-230 development board. FPGA
builds were done using Quartus II 13.0sp1. We used one
64-bit DDR2 channel as our external memory.

4.1 Area Results
Table 1 shows the resources used and maximum frequency

achieved for various configurations of MXP. In addition to
the actual FPGA resources used we also report the area in
equivalent ALMs (eALMs) [12]. By factoring the approxi-
mate silicon area of all of the resources used, eALMs are a
convenient way to compare architectures that use different
mixtures of logic, memory, and multipliers.

All MXP configurations shown have a maximum masked
vector length (MMVL) of 256 wavefronts (the effect of MMVL
on area and benchmark results will be investigated later).
MXP configurations are listed as VX PY where X is the
number of 32-bit vector lanes and Y is the number of mask
partitions. P0 means that masked instructions are disabled
and only CMOV instructions can be used for conditionals.
V1s are configured with 64kB of scratchpad, V4s 128kB, and
V32s 256kB. The area numbers for MXP include the Nios
scalar core used for control flow and vector instruction dis-
patch, as well as prefix sum and square root custom vector
instructions that are only used in the face detection bench-
mark.

The eALM area penalty is 5.0% from no wavefront skip-
ping to wavefront skipping with full wavefront skipping on
a V1, mostly in ALMs. Since the number of ALMs for full
waverfront skipping is roughly constant with respect to the
number of lanes, the overhead drops to 3.6% on a V4 and
<1% on a V32. For multiple partitions, the area overhead
is much higher (up to 27.3% more eALMs in the V32-P32
case), because of the partition to scratchpad BRAM map-
ping needed (as explained in Section 3.2). We tried imple-
menting this mapping using both a switching network and
multiplexers; the area results were similar but the multi-
plexer implementation had lower latency and so was used
for our results.

4.2 BRAM Usage
BRAM usage is minimal for the V1 and V4 as each mask

partition uses just 1 BRAM. For the V32, a single partition
uses 4 BRAMs since it has to store 128-bits worth of byte
enables, 8 bits of offset, and 1 end bit, which fits in four 36-
bit wide M9Ks. With more partitions, the number of byte
enables per partition is reduced, so that the V32-P32 only



Table 1: Resource Usage
MXP Configuration Logic Memory DSP Blocks Total Area Area Increase fmax

Vector Lanes - Wavefront Partitions ALMs M9Ks eALMs % Over CMOV MHz
(CMOV) V1-P0 4,697 96 2 7,502 206

V1-P1 5,034 97 2 7,877 5.0% 200
(CMOV) V4-P0 9,732 152 5 14,243 173

V4-P1 10,210 153 5 14,750 3.6% 176
V4-P4 13,276 156 5 17,902 25.7% 183

(CMOV) V32-P0 63,334 414 33 76,198 144
V32-P1 63,027 418 33 76,005 -0.3% 144
V32-P4 78,698 422 33 91,791 20.5% 149

V32-P32 83,220 446 33 97,002 27.3% 146

Nios II/f 1,370 19 1 1,945 283
DE4230 Maximum 91,200 1,235 161 131,434 –

Figure 8: BRAM Usage vs Wavefront Partitions
(MMVL = 1024)

uses 1 BRAM per partition. Although not shown, the V32
can use up to 128 partitions; this would require 128 more
BRAMS than the 414 used in the P0 version. The masked
unit has no critical timing paths; increasing the number of
BRAMs used does make the placement job harder for the
CAD tools, but the critical path always remains outside the
masked unit. Since the contribution of this work is not af-
fecting Fmax directly, we decided to remove this variability
from our results by running all benchmarks shown here at
125MHz.

Figure 8 shows how many BRAMs are used in our parti-
tioned wavefront skipping with a maximum masked vector
length (MMVL) of 1024 wavefronts. With a small number
of partitions, as the vector processor gets wider, multiple
BRAMs per partition are required to store the byte enables.
With a large number of partitions, the byte enables are di-
vided up into small enough chunks that they always fit in a
single BRAM per partition. This wide range in the number
of BRAMs that can be used gives the designer freedom to
allocate BRAMs on the FPGA device to achieve the needed
performance for their algorithm.

4.3 Mandelbrot Benchmark
Figure 9 shows speedup results for computing the Man-

delbrot set (geometric mean of 23 frames in a flyby demo).
Results are shown compared to a scalar version run on the
Nios II/f as a baseline. The Mandelbrot computation iter-
ates a complex valued equation at each pixel until either the

Figure 9: Mandelbrot Benchmark

pixel reaches a set condition (the early exit) or else a max-
imum iteration count is reached. Without masked instruc-
tions (CMOV configurations) we can only exit early after all
pixels in the group agree to exit early. We show two results,
the ‘line’ implementation which naively computes pixels in
raster order (row by row), and the ‘square’ implementation
which computes a 2D block of pixels at a time. The ‘line’
implementation is more straightforward and is what we first
used when writing this code. However, since the early exit
pixels are correlated spatially, selecting a group of pixels
closer together in a block results in less wasted computation
and therefore higher performance.

For the CMOV configurations, the difference between the
line and square implementations is vast; almost a 4× differ-
ence at V32. With the masked implementations, the differ-
ence between line and square are much less; 10% at most.
The masked implementations always outperform the CMOV
implementations. Partitioned wavefront skipping has little
effect in Mandelbrot and so is not shown; the data is grouped
together smoothly so that wavefronts exit at the same or
nearly the same time. The CMOV implementation also uses
a vector length determined by profiling; too long and early
exits aren’t helpful, too short and instruction dispatch rate
and data hazards reduce performance. The masked imple-
mentation just uses the maximum vector length it can, which
is either determined by the MMVL of the masked instruc-
tions or the size of the scratchpad and number of vectors
needed. Between not having to profile to find the best vector
length, and being able to use the naive ’line’ implementation
with little performance penalty, the masked implementation
seems much easier for the programmer.



Figure 10: FAST9 Feature Detection

Figure 11: Viola-Jones Face Detection Speedup

4.4 FAST9 Feature Detection
Figure 10 shows the results of FAST9 feature detection.

FAST9 determines if a pixel is a feature by examinining a
circle of pixels around the target location and looking for
a consecutive series of pixels that are darker or lighter by
a threshold. An early exit can happen if certain conditions
hold, such as if neither of two pixels on opposite sides are
above or below the threshold. All operations are byte-wide,
taking advantage of MXPs subword-SIMD which executes
byte operations 4× faster than word operations. While run-
ning FAST9 on simple input data with the CMOV code, we
found checking early exit (as done in Mandelbrot) to be help-
ful. However, on a real image (Lenna again), the early exit
code only helped on a V1. Thus, the CMOV code is doing
the full calculation for all pixels on V4 and V32. In contrast,
the masked code is able to achieve speedup by skipping at a
more granular level. However, if the mask is too coarse, such
as at V32-P1 which is 128 bytes wide, very little is gained.
Only with 4 or 32 partitions is speedup achieved, and it
may be possible to gain even more speed by using byte-wide
partitions (our test configurations had a minimum partition
size of one 32-bit lane wide).

4.5 Viola-Jones Face Detection
For Viola-Jones face detection, we used the settings of [2],

a custom FPGA implementation using the same DE4 devel-
opment board we are using. No reference image was specified
in the publication, so we used the standard ‘Lenna’ image.
Their hardware implementation with 32 PEs was able to
achieve 30fps. Our SVP implementation has an inner loop

Figure 12: Viola-Jones Face Detection Speedup Vs
Area

of 9 or 13 instructions long (depending on the Haar classi-
fier), instead of being fully pipelined as in a hardware imple-
mentation, so it is expected to be somewhat slower. Also,
our implementation includes full data movement, from input
image to framebuffers driving a DVI display.

Figure 11 shows the results for CMOV only and masked
implementations including partial wavefront skipping. The
masked implementations with a single partition are up to
3× faster than CMOV, and partitioning increases it to up
to 4.1×. At V4, partitioning gives a 29% improvement from
P1 to P4, and at V32 a 35% improvement from P1 to P4 and
an additional 22% improvement from P4 to P32. While the
impact of partitioning is not as dramatic as the impact of
switching from CMOV instructions to wavefront skipping, it
provides a performance increase without having to rewrite
software.

Figure 12 presents the results as speedup versus area (eALMs).
MXP without wavefront skipping is only able to achieve
about the performance per area of a Nios II/f (which in
practice can’t scale ideally to achieve higher performance).
Wavefront skipping provides significantly higher performance
per area, since the area impact is minimal compared to the
performance gained. The highest performance per area is
4.1× that of Nios II/f (37.8× faster with 9.2× more area for
the V4-P4 configuration).

With our fastest configuration we achieve 3 frames per
second, or about 1/10th that of the previous hardware re-
sult, on the Lenna input image. A blank image takes 60
frames per second; even though all locations exit early, the
Viola-Jones algorithm requires multiple steps of resizing and
calculating integral images.

4.6 Maximum Masked Vector Length (MMVL)
Tradeoffs

So far we have examined tradeoffs in additional logic and
BRAMs when using multiple partitions, but it’s also possi-
ble to use more RAM to allow for longer masked vector in-
structions as mentioned in Section 3.1. Each BRAM needs
to store an offset of width log2(MMV L) as well 4 byte en-
ables per lane and an end bit; when partitioning, the byte
enables are split between BRAMs but the other data is repli-
cated. As explained in Section 3, we default to a MMVL of
256 wavefronts since that is the minimum depth of M9Ks.
Figure 13 shows the BRAM usage for two configurations of
MXP as the MMVL is varied. A MMVL of 128 or 256 wave-
fronts almost always has the same resource usage, except on
a V16 with one partition where the width of the BRAM data



Figure 13: BRAM Usage for Masks When Vary-
ing Maximum Masked Vector Length (MMVL) for
1 (top) and 4 (bottom) Partitions

goes from 72 and 73 bits and can no longer fit in two 36-
bit wide M9Ks. Increasing MMVL to 512 does have a cost
in BRAMs though once the width of the BRAM data gets
past 18-bits, with an MMVL of 1024 requiring even more as
BRAMs are only 9-bits wide at that depth.

Figure 14 shows the results of changing MMVL on the face
detection benchmark. For V1, there is a reasonable gain to
be had in increasing MMVL; 16% better performance from
128 wavefronts to 256, with an additional 13% improvement
going from 256 wavefronts to 512. The results are even more
dramatic on a V4: 100% faster from MMVL of 128 to 1024
with 4 mask partitions. The fact that a V4-P4 with MMVL
128 is actually slower than a V4-P1 with MMVL 256+ sug-
gests that using BRAM for increased depth is better than us-
ing it for more partitions. The reason that increased MMVL
makes such a large difference is that as masked instructions
have fewer and fewer valid wavefronts, they start taking so
few cycles that efficiency drops (either data hazards or in-
struction dispatch rates dominate). Longer MMVL means
that fewer masked instructions are needed, and less time
is spent in this low efficiency regime. However, by V32,
masked vector length is no longer limited by MMVL but by
the number of vectors needed and the size of the scratchpad.
In this case, changing MMVL had no effect on the results
so they are not shown. The trend for V1 and V4 does sug-
gest that increased vector length (in this case by having a
larger scratchpad) would provide higher performance on this
application, though.

4.7 Results Summary
Figure 15 summarizes the speedup of wavefront skipping

over the previous CMOV implementation on our three bench-
marks, while Figure 16 shows the speedup per area (eALMs).

Figure 14: Effect of Changing MMVL on Viola-
Jones Face Detection

Figure 15: Speedup from Wavefront Skipping

The maximum speedups for a single partition is 3.3× on
FAST9 (V1-P1) and 3.2× on Viola-Jones (V4-P1). The
biggest speedup from partitioning over full wavefront skip-
ping is 65% on Viola-Jones (V32-P32 vs V32-P1). All of
the benchmarks gain at least as much in speedup as the
cost in area of the wavefront skipping implementation, with
the minimum gain being 1.1× better performance per area
for FAST9 on a V32 with one wavefront partition. Though
increased partitions cause a large increase in the area of
MXP, for FAST9 and Viola-Jones the performance per area
continues to increase as the number of partitions increases.
Wavefront skipping is therefore useful for all the benchmarks
we tested, and partitioning useful for two of the three.

For a programmer implementing a conditional algorithm,
the configuration of BRAM usage for scratchpad size, wave-
front partitions, and maximum masked vector length will
depend on the application. The designer will generally want
to devote as much BRAM as possible to scratchpad data, as
longer vectors will benefit all parts of an application. But,
for heavily conditional applications like Viola-Jones, having
long enough masked vectors to keep the vector core busy as
the number of valid wavefronts shrink is also important. Few
BRAMs are needed for just a single partition; using multi-
ple partitions adds several BRAMs, but this may be justified
when performance is absolutely necessary or the targetted
FPGA has leftover BRAMs with a given design.

5. FUTURE WORK
We mentioned in Section 4.6 that it would be possible to

support multiple masks at the same time. Multiple masks
would allow for a greater degree of freedom in control flow



Figure 16: Speedup per Area (eALMs) from Wave-
front Skipping

before having to save and restore the mask contents. With a
short enough MMVL, multiple masks could share a BRAM.

We may also be able to repurpose our multiple partition
addressing logic to increase the speed of transposed matrix
accesses. Strided accesses already run at full speed provided
they do not cause bank conflicts. We could similarly do
transposed accesses for matrices of the correct dimensions
(2N ± 1) or that were padded to the correct dimensions.
However, in this case, we would want to write out the des-
tination at different offsets than we read the input, requir-
ing a different addressing mode or separate offsets for each
operand.

6. CONCLUSIONS
This work has shown that integrating wavefront skipping

into soft vector processors (SVPs) can be done efficiently in
terms of logic and BRAM usage. Wavefront skipping not
only allows for higher performance due to skipping masked
off elements, it is much easier to use than checking early exit
conditions on blocks of elements using predicated/CMOV
instructions. Our implementation stores offsets in BRAMs,
which are relatively cheaply available and high-performance
in FPGAs. The alternative, which uses a count-leading-
zeros operation, would have higher latency and also limit the
number of wavefronts skipped in one cycle. Our approach
keeps the mask logic simple and off the critical path, and
can also skip an arbitrary number of wavefronts.

When not partitioned, our wavefront skipping implemen-
tation uses <5% extra area and can give up to 3.2× bet-
ter performance on Viola-Jones face detection. Extra logic
and BRAMs can be used to gain additional performance by
partitioning, allowing parts of a wavefront to have different
offsets. Though costly in terms of area, partitioning can
give up to 65% extra performance. Partitioned wavefront
skipping may not be a reasonable design tradeoff in a fixed
vector processor. In an FPGA, partitioned wavefront skip-
ping gives a designer an extra tool to tradeoff additional
logic and BRAMs for application specific performance.

7. ACKNOWLEDGMENTS
The authors would like to thank Altera for donating hard-

ware and software licenses used in this research, and MI-
TACS and NSERC for providing funding.

8. REFERENCES
[1] The Convey HC-2 architectural overview.

http://www.conveycomputer.com/index.php/
download file/view/143/142/.

[2] B. Brousseau and J. Rose. An energy-efficient, fast
FPGA hardware architecture for OpenCV-compatible
object detection. In Field-Programmable Technology
(FPT), 2012 International Conference on, pages
166–173, Dec 2012.

[3] R. Espasa, M. Valero, and J. E. Smith. Vector
architectures: Past, present and future. In Proceedings
of the 12th International Conference on
Supercomputing, pages 425–432, 1998.

[4] W. Fung and T. Aamodt. Thread block compaction
for efficient SIMT control flow. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, pages 25–36, Feb 2011.

[5] J. Gebis, L. Oliker, J. Shalf, S. Williams, and
K. Yelick. Improving memory subsystem performance
using ViVA: Virtual vector architecture. In
Architecture of Computing Systems, pages 146–158.
2009.

[6] C. Kozyrakis and D. Patterson. Vector vs. superscalar
and VLIW architectures for embedded multimedia
benchmarks. In Microarchitecture, pages 283–293,
2002.

[7] R. Lorie and H. Strong. Method for conditional
branch execution in SIMD vector processors, Mar. 6
1984. US Patent 4,435,758.

[8] M. Naylor, P. Fox, A. Markettos, and S. Moore.
Managing the FPGA memory wall: Custom
computing or vector processing? In Field
Programmable Logic and Applications (FPL), 23rd
International Conference on, 2013.

[9] A. Severance, J. Edwards, H. Omidian, and
G. Lemieux. Soft vector processors with streaming
pipelines. In The 2014 ACM/SIGDA International
Symposium on Field-programmable Gate Arrays, 2014.

[10] A. Severance and G. Lemieux. TputCache:
High-frequency, multi-way cache for high-throughput
FPGA applications. In Field Programmable Logic and
Applications (FPL), 2013 23rd International
Conference on, 2013.

[11] J. E. Smith, G. Faanes, and R. Sugumar. Vector
instruction set support for conditional operations.
SIGARCH Comput. Archit. News, pages 260–269,
2000.

[12] H. Wong, V. Betz, and J. Rose. Comparing FPGA vs.
custom CMOS and the impact on processor
microarchitecture. In Proceedings of the 19th
ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA ’11, pages 5–14,
New York, NY, USA, 2011. ACM.

[13] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA:
portable, scalable, and flexible FPGA-based vector
processors. In CASES, 2008.

[14] J. Yu, C. Eagleston, C. H. Chou, M. Perreault, and
G. Lemieux. Vector processing as a soft processor
accelerator. ACM TRETS, 2(2):1–34, 2009.


