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Abstract
Embedded systems frequently use FPGAs to perform highly paral-
lel data processing tasks. However, building such a system usually
requires specialized hardware design skills with VHDL or Verilog.
Instead, this paper presents the VectorBlox MXP Matrix Processor,
an FPGA-based soft processor capable of highly parallel execution.
Programmed entirely in C, the MXP is capable of executing data-
parallel software algorithms at hardware-like speeds. For example,
the MXP running at 200MHz or higher can implement a multi-tap
FIR filter and output 1 element per clock cycle. MXP’s parameter-
ized design lets the user specify the amount of parallelism required,
ranging from 1 to 128 or more parallel ALUs. Key features of the
MXP include a parallel-access scratchpad memory to hold vector
data and high-throughput DMA and scatter/gather engines. To pro-
vide extreme performance, the processor is expandable with cus-
tom vector instructions and custom DMA filters. Finally, the MXP
seamlessly ties into existing Altera and Xilinx development flows,
simplifying system creation and deployment.

1. Introduction
Modern embedded systems often contain high bandwidth I/O de-
vices and require extensive computing resources. One example is
smart cameras with built-in video analytics. This in-device or edge-
based processing can reduce wireless bandwidth costs and power-
hungry server farms.

Furthermore, these embedded devices are almost always built
around an FPGA. The FPGA is used to control I/O, particularly
image sensors or similar arrays connected to high-speed DACs and
ADCs. When performance demands are fairly low, a soft processor
in the FPGA is often sufficient. The fastest available soft processors
are pipelined, in-order RISC processors running up to 250MHz.
There are many advantages to this software-based approach, pri-
marily the ease of developing in C and the rapid edit-compile-
debug loop. Unfortunately, attempts to build even faster proces-
sors have failed due to the difficulty of implementing multiple write
ports and high clock rates in FPGAs.

The next level of performance is achieved by transferring the
computation to an off-chip CPU or DSP. This preserves all of
the advantages of a software-based development model. However,
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Figure 1. Typical VectorBlox MXP system (Altera version)

there are downsides as well: limited performance, increased circuit
board area, a new chip in the BoM and inventory with possibly lim-
ited future re-use, and device procurement. Also, if the CPU/DSP
has specialized memory or voltage requirements, there may be ad-
ditional cost and complexity for increased on-board memory or
voltage regulators.

The final solution is designing a circuit at the RTL level to do
the processing inside the FPGA. However, in addition to designing
with a hardware description language such as Verilog or VHDL,
this also requires performing hardware-level debug and waiting for
slow FPGA place-and-route iterations after every design change.

To mitigate the need to create RTL, we have designed the Vec-
torBlox MXP Matrix Processor as an embedded supercomputer to
greatly accelerate what can be done with Nios II/f or MicroBlaze
soft processors. Using a vector-oriented data-parallel programming
model, it is programmed entirely in C/C++ and produces speedups
of up to 1000×. The ability to add custom vector instructions offer
potential for an additional 10-100× speedup. These levels of per-
formance are not possible with any other FPGA-based processor,
including FPGAs with the new hard dual-core ARM A9s.

A high-level block diagram of a VectorBlox MXP system is
given in Figure 1. In the figure, an Altera-based system using the
Avalon interconnect fabric is shown, but we also support Xilinx
and the AXI interconnect fabric. The system is based around a
fast Nios II/f processor with its direct-mapped instruction (I$) and
data caches (D$). The blocks labelled ‘M’ and ‘S’ are master and
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Figure 2. Vector and SIMD modes of execution

slave ports for the Avalon interconnect; a master issues an address
for either reading or writing. The camera shown can inject data
either using a FrameWriter or StreamWriter module. The former
writes an entire frame to external DDR DRAM for processing,
while the latter writes a few scanlines at a time directly to either the
MXP scratchpad or to external memory. A FrameReader module
continuosly reads a framebuffer from DRAM for the output display.
The MXP components consist of a parameterizable vector engine
and optional scatter/gather cache. A vector engine with as few as
16 parallel ALUs running at 200MHz can perform many interesting
transforms in real-time on 1080p60 video (1920x1080 at 60fps).

A number of features contribute to the novelty of the MXP
architecture:

• scratchpad to hold vector data
• fracturable ALUs to operate on bytes, halfwords or words
• 1D (vector), 2D (matrix) or 3D (volume) operations
• DMA engine with 1D or 2D transfers
• automatic alignment of data
• datasize conversion in-flight with operations
• decoupled scalar/vector/DMA cores
• custom DMA filters
• double-buffering hides most memory latency
• scatter/gather support with high-throughput cache
• custom vector instructions for increased parallelism
• scalable processor size for performance
• easy-to-use parallel programmming model

The VectorBlox MXP is available as an FPGA IP core which is
added to any Altera or Xilinx FPGA design using Avalon or AXI
interconnects, respectively. To our knowledge, it is the only com-
mercially oriented soft processor capable of achieving significant
speedup.

2. Vector Processing and SIMD Background
Vector processing has been around since the late 1960s when it
was applied to supercomputing. The first commercially successful

vector supercomputer was the Cray-1 [3]. Running at 80 MHz,
it supported 64-bit word size and a 64-bit, 8MB ECC memory
subsystem with 16-way interleaving. With a peak throughput of
250MFLOPs, and sustained throughput of 138MFLOPs, it was
faster than any other computer in the mid-1970s.

One of the strengths of the Cray-1 architecture is the load/store
RISC-like architecture to vector processing. Prior vector machines
stored vectors in main memory. Instead, Cray uses a fast 4kB vec-
tor register file arranged as 8 named vector registers that are 64
elements long and 64 bits wide. Since each vector instruction takes
up to 64 clock cycles to execute, high throughput is achieved by
pipelining. The CPU contains only one instance of each functional
unit, so increased parallelism is provided by operator chaining,
where the output of one pipeline is sent to another pipeline before
the complete vector is written out to the register file. In addition
to chaining, the ability to overlap vector-load or vector-store op-
erations with vector arithmetic operations provided memory level
parallelism for increased performance.

Recently, there has been increased attention given to SIMD-
oriented instructions. These are often called multimedia instruc-
tions, or sometimes vector extensions. However, the vectors these
instructions operate upon are obtained by dividing a fixed process-
ing width into sub-units; for example, Intel’s latest mainstream vec-
tor extensions (AVX) are 256 bits wide while the extensions used
in the Xeon Phi device are 512 bits wide. A key aspect of SIMD
extensions is the need to iterate to cover a longer vector; for best
performance, the CPU must issue and execute loop iteration in-
structions concurrently (in the superscalar sense) along with the
SIMD instructions. To execute in a streaming fashion, these pro-
cessors must also execute SIMD-load and SIMD-store instructions
concurrently. Finally, there is considerable instruction-level over-
head to pack/unpack and manipulate byte/word orderings within a
SIMD payload.

In contrast with traditional vector and modern SIMD instruc-
tions, the VectorBlox MXP takes a hybrid approach. First, it takes



the SIMD approach by creating a wide data engine that can be sub-
divided into words, halfwords, or bytes; we have built engines up
to 4096 bits wide. This can also be described as 128 vector lanes,
where one vector lane contains a full 32-bit datapath. Second, it
takes the vector approach of adding hardware iteration to eliminate
loop and control overhead. This allows us to define vectors that are
long as well as wide. We illustrate the three choices taken in Fig-
ure 2. In part (a), the vector approach is bottlenecked by a need
for multiple read and write ports. In part (b), the SIMD approach
is shown, but significant loop overhead and the need to constantly
reload SIMD registers can be a problem. In part (c), our approach
with long, wide vectors is shown.

On top of the hybrid vector/SIMD model, we eliminate the
rigidly defined register files from both approaches and instead use a
flexible, multi-banked scratchpad; in essence, we have rejected the
RISC load/store approach taken by the Cray-1 and most vector pro-
cessors since then and instead regressed to the memory-based vec-
tors architectures developed before Cray. As will be shown, our on-
chip scratchpad choice provides significant freedom for program-
ming and is often beneficial for performance while maintaining the
locality and fixed latency of a register file.

The next section explores VectorBlox MXP architectural de-
tails.

3. VectorBlox MXP High-level Architecture
In Figure 1, the VectorBlox MXP is shown added to an existing
Altera Nios II/f based system. Within the Altera environment it
utilizes the Avalon interconnect to access memory and devices.
Within the Xilinx environment, it can be added to an existing
MicroBlaze based system, and utilizes the AXI interconnect. All
vendor-provided tools, such as IDEs and debuggers, can be used
normally by the programmer. To access accelerated features, the
program must contain specific calls to invoke the MXP accelerator.
This can be done by calling MXP specific library routines or by
using MXP intrinsic functions placed inline with regular C/C++
code.

3.1 Overview
The VectorBlox MXP is a scalable processor that uses a blend of
traditional vector processing and SIMD-style execution to operate
upon vectors, arrays, and volumes of data. The user can specify the
number of 32-bit ALU datapaths to create in parallel; we call this
the number of lanes. We denote the size of a processor engine as
V 4, for example, when it contains 4 vector lanes; alternatively, this
could be described as a 128-bit wide vector-SIMD engine.

The MXP is a fixed-point processor. It supports data sizes of
8 (byte), 16 (halfword) and 32 (word) bits. All operations have
both signed and unsigned variants. In a traditional RISC processor,
operations on bytes or halfwords are the same speed or slower than
operations on integers because they are expanded to fill the contents
of a 32-bit register. In MXP, operands remain at their original size,
requiring significantly less storage when operating on vectors of 8-
bit or 16-bit data. Furthermore, the 32-bit ALUs can be fractured
into smaller 8-bit or 16-bit ALUs, providing increased parallelism
on smaller operands. Due to area overhead, divide and modulo
are not supported by default. However, they can be optionally
added using a custom vector instruction (to be discussed later). As
well, a full suite of logical, arithmetic, multiply, shift/rotate, and
conditional move instructions are supported.

Central to the MXP is the vector data storage area, called the
vector scratchpad. The scratchpad can be sized independently of
the number of lanes, spanning a range from 4kB to the maximum
memory of the FPGA device (which can 2MB or more). Practical
sizes will depend on the FPGA memory blocks used, which come
in a variety of sizes depending upon the device. For example,

the Altera Cyclone IV device contains 9kb memory blocks. To
support unaligned accesses at the byte level, we configure these
to be byte wide (arranged as 1024 x 9); four are needed for each
each vector lane, so 4kB of scratchpad data per vector lane is the
practical minimum for these devices. We have found this amount
(4kB/lane) to be a useful value in almost all of our scalable software
applications; less scratchpad does not allow for long enough vectors
to be stored while more has minor, diminishing gains. We make use
of the 9th bit of the memory blocks as a per byte condition code, so
the memory is fully utilized.

The next important subsystem is a dedicated DMA engine that
is used to fill or empty the scratchpad storage. The DMA engine
transfers blocks of data between the MXP and any other memory-
mapped device. It supports long bursts as well as 2D windowed
operations; a windowed operation is the repeated operation of a
burst followed by a fixed gap or stride. For maximum flexibility
different strides can be applied to the source and destination.

It is important to note that the scalar host processor, the vector
engine, and the DMA engine all operate concurrently. This is ac-
complished by having the scalar host processor (Nios II or MicroB-
laze) deposit vector and DMA instructions into a processing queue.
If the queue is full, or if the user performs an explicit synchro-
nization, the scalar host will stall until both the vector and DMA
engines have completed their operations. Otherwise, the vector and
DMA operations will be removed from the queue in-order, but com-
pleted out-of-order relative to each other and the scalar host. Hard-
ware interlocks between the vector and DMA engine ensure that the
original program order is maintained by stalling the respective en-
gine when there is a hazard. In all cases, the vector engine executes
instructions in-order, as does the DMA engine.

3.2 System Design
Since we have not modified the host Nios or MicroBlaze develop-
ment environment, users do not have to learn new tools. Instead,
they merely learn to use our software library system. Furthermore,
since the MXP is placed in an existing Avalon or AXI computer
system, which are designed using a GUI environment, virtually no
hardware design skills are needed to build a system.

When first deploying a MXP in a Nios or MicroBlaze environ-
ment, it must be configured. The MXP has a few simple parameters
that govern its size and operation:

• number of lanes
• size of scratchpad
• width of interconnect path to memory
• length of memory bursts
• multiplier implementation style
• fixed-point radix position

The first two parameters have already been discussed. The width to
memory and the length of a memory burst, affect the interconnect
that will be generated via Avalon/AXI to connect with off-chip
memory; it has a direct impact on the maximum bandwidth to
memory. The multiplier implementation style will be discussed
later, but it allows trade-off between performance and the number
of hard multiplier blocks used. Finally, the processor can accelerate
fixed-point operations for a specified radix position; other radix
positions can still be used at runtime but must be handled by
software.

A program written for the MXP architecture can run on any size
vector engine. The inability to run the same program on different
processors was a key downfall of early VLIW processors, and it is
a key weakness of the ever-widening SIMD instructions.1 MXP’s
scratchpad size is a hard limit, but programs can be written to

1 In addition, Intel has progressed through several generations of SIMD in-
structions, from MMX to SSE versions 1 through 4 (and sub-versions), and



a) Plain Nios II/f b) Intel i7 AVX c) MXP using 1D instruction d) MXP using 2D instruction
for(j=0; j<DATA_SIZE; j++){
out[j] = 0;
for(i=0; i<NUM_COEFFS; i++){

out[j] += in[j+i]*coeffs[i];
}

}

for(j=0; j<DATA_SIZE; j++){
out[j] = 0;
for(i=0; i<NUM_COEFFS; i++){

out[j] += in[j+i]*coeffs[i];
}

}

vbx_set_vl( NUM_COEFFS );
for(j=0; j<DATA_SIZE; j++){
vbx_acc( VVW, VMUL, v_output+i,

v_input+i, v_coeff );
}

vbx_set_vl( NUM_COEFFS );
vbx_set_2D( DATA_SIZE, sizeof(int),

sizeof(int), 0 );
vbx_acc_2D( VVW, VMUL, v_output,

v_input, v_coeff );

;; Compiled with gcc 4.5.3 -O3
20003d4: stw zero,0(r9)
20003d8: bne r13,zero,2000414
20003dc: mov r8,zero
20003e0: mov r6,r11
20003e4: mov r5,r15
20003e8: mov r7,r8
20003ec: ldw r2,0(r6)
20003f0: ldw r3,0(r5)
20003f4: addi r8,r8,1
20003f8: addi r6,r6,4
20003fc: mul r2,r2,r3
2000400: addi r5,r5,4
2000404: add r2,r7,r2
2000408: mov r7,r2
200040c: stw r2,0(r9)
2000410: bne r10,r8,20003ec
2000414: addi r12,r12,1
2000418: addi r9,r9,4
200041c: addi r11,r11,4
2000420: bne r14,r12,20003d4

;; Compiled with gcc 4.6.3
;; -O2 -ftree-vectorize -m64
;; -march=corei7-avx
;; -mtune=corei7-avx
.L23:

leaq (%rdi,%rsi), %rcx
xorl %eax, %eax
vpxor %xmm0, %xmm0, %xmm0

.L22:
vmovdqu coeffs(%rax), %xmm1
vmovdqu (%rcx,%rax), %xmm2
addq $4, %rax
vmovd %xmm1, %edx
cmpq $64, %rax
vmovd %edx, %xmm3
vpshufd $0, %xmm3, %xmm1
vpmulld %xmm1, %xmm2, %xmm1
vpaddd %xmm1, %xmm0, %xmm0
jne .L22
vmovdqa %xmm0, (%rsi)
addq $16, %rsi
cmpq $output+1024, %rsi
jne .L23

;; Compiled with gcc 4.5.3 -O3

;; setup instructions
2000aec: ldw r2,36(r4)
2000af0: mov r4,r2
2000af4: call <vbx_set_vl>
2000af8: mov r5,zero
2000afc: mov r4,zero

;; kernel instructions
2000b00: add r2,r18,r4
2000b04: custom 0,c2,r2,r16
2000b08: add r3,r20,r4
2000b0c: custom 1,c11,r3,c12
2000b10: addi r5,r5,1
2000b14: addi r4,r4,4
2000b18: bne r17,r5,2000b00

;; Compiled with gcc 4.5.3 -O3

;; setup instructions
2000b7c: ldw r2,36(r4)
2000b80: ldw r17,32(r4)
2000b84: sub r17,r17,r2
2000b88: mov r4,r2
2000b8c: call <vbx_set_vl>
2000b90: mov r4,r17
2000b94: movi r5,4
2000b98: mov r6,r5
2000b9c: mov r7,zero
2000ba0: call <vbx_set_2D>

;; kernel instructions
2000ba4: custom 0,c6,r21,r20
2000ba8: custom 1,c11,r22,c12

Table 1. Comparison of FIR filter implementations

accommodate nearly any scratchpad size. Overall, this means the
program does not need to be recompiled to run on a vector engine
with more ALUs or different scratchpad sizes; it automatically
scales up to utilize larger processors. A key aspect of MXP is that
the vector storage bandwidth is automatically scaled to match the
ALU processing bandwidth each time a different system size is
generated.

Furthermore, programs are fully portable across FPGA device
families and vendors, requiring only a recompile to execute code on
a different host processor. We provide a vendor-indpendent library
to assist with portability for common system calls.

3.3 Programming Example
To illustrate how to program the MXP, Table 1 compares various
FIR filter implementations. The first part (a) illustrates plain C code
and Nios II/f assembly code emitted by GCC, using a total of 10 in-
structions per iteration in the innermost loop. In contrast, part (b)
illustrates the same C code compiled for an i7 using autovectoriza-
tion. The innermost loop still contains 10 instructions, but each it-
eration performs 4 operations in parallel. Parts (c) and (d) show the
code for both nested loops using 1D and 2D instructions, respec-
tively. The kernel instructions are taken exactly from the compiler,
but the setup instructions are modified for clarity. The inner loop
in part (c) consists of two custom instructions at addresses b04 and
b0c while the outer loop is a total of 7 instructions per iteration. In
part (d), both nested loops are replaced by two custom instructions.
Hence, the entire FIR filter has been passed to the vector engine.

In terms of performance, the Nios II/f uses two cycles to execute
one custom instruction. These two instructions form a single vector
instruction, which the MXP can execute in as little as one cycle.
If there are 8 coefficients and 8 vector lanes, part (c) will execute
the innermost loop in 1 cycle and part (d) will execute both loops
to produce one output data point per clock cycle. Most hardware
implementations of FIR filters also achieve a speed of 1 cycle per

now AVX, each promising higher performance. Each time, programs have
to be re-written to take advantage of the new family of SIMD instructions.

output data point, so the MXP executes as fast as hardware in this
case.

In the example above, the MXP assumed all data was already
placed in the scratchpad. This is often the case in real programs
because DMA runs in the background — it is used to prefetch the
next vector of input data and write the output data back to external
memory concurrently with the FIR filter execution. In streaming
applications such as a camera, a stream writer can be used to write
input data directly into the scratchpad.

4. VectorBlox MXP Architectural Details
Figure 3 provides a detailed view of the internal VectorBlox MXP
architecture. The scalar host processor executes code written in
C/C++, and places any vector or DMA operation into a work queue
for the MXP. The precise mechanism to represent vector or DMA
operations is different for each host: the Nios II/f implementation
uses inline custom Nios instructions, while the MicroBlaze imple-
mentation uses inline put instructions for its FSL interface.

During execution, the front of queue is examined and dispatched
to either the DMA or vector engine. If the dispatched instruction
depends upon the result of an earlier instruction, the dispatched
instruction will stall until the data hazard is cleared. Structural
hazards can also cause a dispatched instruction to stall.

As mentioned earlier, DMA operations will transfer blocks of
data between the scratchpad and an external memory-mapped re-
gion, which is usually external DRAM but could be a large block
of on-chip SRAM, for example. Likewise, 2D windowed transfers
are possible where several blocks have a constant stride between
each block.

The DMA has an advanced mode where it can also filter the data
by passing it through a user-defined pipeline. This allows advanced
users to write a small amount of VHDL code that does custom
data manipulation, such as interpolation between data points or
colorspace conversion. For system flexibility, regular and filtered
DMA operations are sent to different Avalon master ports. As
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Figure 3. VectorBlox MXP detailed architecture (Altera version)

shown in Figure 1, this allows filtered DMA operations to be sent
through a cache, for example.2

4.1 Vector Operations
For any vector operation, there are one or two source operands and
one destination operand. Vector operands are specified by a pointer
into the scratchpad; these pointers are passed along with the opcode
to the vector engine to give the starting address of each vector. The
pointers are manipulated only by the scalar host processor; copies
of their values are used by the vector engine. However, the vector
engine has several addressing modes that manipulate the pointer
copies while executing a vector instruction.

Each of the source operands can also be specialized. The first
operand can also be a scalar value in order to broadcast an imme-
diate or scalar host register value to all vector lanes. The second
operand can generate an enumerated value, which produces a vec-
tor where each element contains its positional value (0, 1, 2, etc)
which is useful for indexing.

All operations can operate on either byte, halfword or word data
sizes. Data size conversion can be done during the instruction —
for example, two vectors of bytes can be multiplied to produce a
vector of halfwords. All conversions, either up or down in size, are
supported with all instructions.

4.2 Alignment Networks
An operation on a vector of length 8 is shown in Figure 3. Vectors A
and B are the source operands, and vector C is the destination. Data
in a vector is striped across the banks of the scratchpad, similar to
a RAID array. This allows parallel access to multiple elements in
the vector each clock cycle. In this case, 4 elements per cycle are
accessed. However, notice that vectors A, B and C all have different

2 It doesn’t make sense to cache regular DMA transactions, since they tend
to be long streaming transfers.

alignments; their first element is located in a different bank. To
correct this, three alignment networks exist in the pipeline. The
first two ensure the first element of each source operand percolates
to the top of the vector engine; the third ensures the destination
is aligned correctly. Even when misaligned, the full width of the
scratchpad can be used – this requires different addresses to reach
each bank.

The first two alignment networks also perform data expansion,
where the source vectors are increased in size from a byte to
halfword, for example. The third alignment network performs data
truncation, where a word result may be truncated to a halfword or
byte.

4.3 ALU and Multiplier Operation
Aligned data are sent to the parallel ALUs for execution. The
entire ALU pipeline has 4 stages, and always executes on each lane
independently. When byte or halfword operands are used, each sub-
lane executes independently.

One complex aspect is supporting integer multiply, fixed-point
multiply, shifting and rotating for both signed and unsigned, and
all data sizes of bytes, halfwords and words. To save on logic
resoures, both shifts and rotates share the hardware multiplier with
the multiply and fixed-point multiply instructions. For this reason,
fixed-point multiply consist of a fixed shift amount determined
at system build-time; this reduces it to just wiring rather than
requiring an additional barrel shifter.

Even with this sharing hardware multipliers on the chip are a
scarce resource. Large vector processors can quickly run out of
multipliers, and embedded system designers may want to dedicate
the multipliers for other FPGA-based logic (not the processor). To
save on multiplier usage when necessary, or for code that is not
multiply/shift/rotate limited, the MXP offers three implementation
styles shown in Figure 4. Part (a) shows the full mode where
four multipliers of different sizes are used; collectively, they can



C version:
for( i=0; i<VL; i++ ) {

if( v_data[i] > 100 ) {
v_data[i] = 100;

}
}

MXP code:
vbx_set_vl( VL );
vbx( SVBU, VSUB, v_flag, 100, v_data );
vbx( SVBU, VCMV_LTZ, v_data, 100, v_flag );

Figure 5. Conditional execution example

produce one word, two halfword, or four byte multiplication results
each cycle. All of this fits in 1 Stratix IV DSP block, which contains
two full 36 × 36 multipliers. Part (b) saves one-quarter of a DSP
block by eliminating two 9 × 9 multipliers; for this to work, byte
multiplications take two clock cycles each. Part (c) saves one-half
of a DSP block by also eliminating the 18 × 18 multiplier, taking
two cycles per halfword multiply and four per byte multiply.

Following ALU execution, the entire vector can be summed
using a dedicated accumulate stage. This reduces the entire vector
to a single element. The example FIR code in Table 1 uses the
accumulator to sum the innermost loop. Hence, a dot product is
possible in one instruction.

4.4 Conditional Execution
In addition to the ordinary data bits for each element, there is also
a flag bit for every byte. This flag is set or cleared by DMA and
ALU operations, and is used to store arithmetic condition codes
and perform data-dependent conditional execution. For example,
saturation, where a vector of data values are compared to a max-
imum value, and set equal the maximum. Additionally, overflow
and carry/borrow conditions can be caught, and rounding can be
performed after fixed-point multiply or right-shift operations.

An example showing the use of condition codes is given in
Figure 5. This example saturates a vector of unsigned byte values to
100. The MXP version does this using two instructions, a subtract
followed by a conditional move. The first instruction computes
100 − v data[i] and stores the 8 regular bits to v flag[i], as well
as the condition code for unsigned subtraction (a borrow) in the 9th
bit position.3 The second instruction performs a conditional move,
which may assign the new value to v data[i] if the predicate is
true. The new value to be assigned is the scalar value 100. The last
argument in the vbx() call is the location of the predicate vector
itself. In this case, it is a vector of values, and the LTZ predicate
inspects those 9-bit values to determine if the subtract result is less
than zero. In this case, the result was less than zero only if the
borrow bit is set, so the MXP will only inspect the value of the 9th
flag bit from each element in the predicate vector.

4.5 Custom Vector Instructions
Advanced users of FPGAs will want to extract maximum perfor-
mance from the hardware. These users will often be tempted to do
all of the processing in custom logic using VHDL or Verilog. How-
ever, just like writing software, there is a large gap in effort between
creating a compute kernel and developing a full application.

For these users, the MXP allows the user to define up to four
custom instructions. By leveraging all of the MXP infrastructure, an
advanced user can develop an entire application while developing
only the compute kernel at the RTL level. Basic data processing can
be done in C using the scalar host and MXP, and the performance-
intensive kernel can then be implemented as a custom instruction.

3 This is also an example of an instruction with one scalar operand.

clock
start
valid

opsize
opcode

2

2

A0

B0

A1

B1

A2

B2

A3

B3

C0

wr0

C1

wr1

C2

wr2

C3

wr3

SUB x
2

SUB x
2

SUB x
2

SUB x
2

clock
start
valid

opsize
opcode

2

2

A0

B0

A1

B1

A2

B2

A3

B3

C0

wr0

C1

wr1

C2

wr2

C3

wr3

ADD

ADD

ADD

ADD

DQ

00 01

a) Custom instruction

within lanes

b) Custom instruction

prefix sum across lanes

Figure 6. Custom vector instruction examples

Two examples of custom instructions are shown in Figure 6. In
part (a), each lane produces a separate calculation of (a− b)2. This
simple example combines two instructions into one, but more com-
plicated operations such as divide, square root, bit reversal, byte
swap, population count, and find leading zero can be implemented
for algorithms that need them and can save 10’s of instructions.

In part (b), a more advanced operation is shown where a prefix
sum is calculated; the output is a vector of sums, starting from the
first element to the current element. This represents a much broader
class of custom instructions, were values can be communicated
between vector lanes. We have used this feature to implement an
H.264 deblocking filter. It inspects up to 8 adjacent pixels and
performs inter-pixel blending, resulting in up to 6 new pixel values.
The filter is quite complex because the actual blending function
applied depends upon precise pixel values. For this application,
a single custom vector instruction replaces nearly 100 ordinary
vector instructions, resulting in a significant speedup.

Using custom vector instructions, the MXP will be able to offer
floating-point operations as well as the examples mentioned earlier.
To assist the user, a VHDL template will be provided so only the
processing engine needs to be implemented.

4.6 Scatter/Gather and Throughput Cache
Indexed memory operations are frequently needed by software.
This is an addressing mode where an offset or index is added
to a base address. For example, memory could hold an array of
counters, where each counter represents a different type of event
occuring. The index, or event number, represents which counter
should be incremented. This is a histogram computational pattern.

In vector operations, the base address is usually the same, but
every element in a vector requires access to an arbitrary index. This
may be a permutation, where the indices are all unique, or it may
involve collisions where an index value appears more than once.
Performing an indexed write operation is called a scatter, while an
indexed read operation is called a gather.

A vector of addresses is used for both scatter and gather op-
erations. The gather operation can also be used to collect data
spread across memory using any arbitrary values specified in the
address vector. Likewise, the scatter operation can write values
across memory at any arbitrary locations specified in the address
vector.

Since gather and scatter operations will ‘pick’ and ‘place’ in-
dividual elements, only narrow memory transactions can be issued
rather than wide and/or burst block transfers which make more ef-
fective use of external memory bandwidth. As a result, external
DRAM quickly becomes a bottleneck when accessing random lo-



36x36 64
byte 0 /
byte 1 /
byte 2 /
byte 3 /
halfword 0 /
halfword 1 /
word

c) Word Multiplier (0.5 DSP)
Halfword multiply takes 2 cycles
Byte multiply takes 4 cycles

36x36

18x18

64
byte 0 /
byte 2 /
halfword 0 /
word

byte 1 /
byte 3 /
halfword 1

32

b) Halfword Multiplier (0.75 DSP)

Byte multiply takes 2 cycles

a) Byte Multiplier (1 DSP)

36x36

9x9

18x18

9x9

64

16

byte 0 /
halfword 0 /
word

byte 3

byte 2 /
halfword 1

byte 1
16

32

Any multiply takes 1 cycle

Figure 4. Fracturable multiplier (Altera version)

cations. To alleviate this, the MXP employes a custom throughput-
oriented cache. The degree of associativity and size are both param-
eters set at system build time. The cache is very fast and is designed
to match the speed of the underlying FPGA block RAMs; we have
built a 256kB cache with 16 ways in a Cyclone IV at 210MHZ.

5. Data-Parallel Benchmarks
To evalute MXP, there are a variety of data-parallel benchmarks.
We have chosen some benchmarks from DSP and media process-
ing benchmarks that usually to operate on blocks of data. Some
operations, like FIR, are very straight-forward to vectorize. How-
ever, some of them are not as simple and require more interesting
approaches. This section discusses some of the more interesting
benchmarks that have been vectorized.

To exemplify the operation of the scatter/gather and cache capa-
bilities, motion compensation and histogram applications will also
be discussed.

5.1 Exemplary Benchmarks
What type of benchmarks can be vectorized? Some applications
are too simple and quickly become memory-bound rather than
compute-bound. For example, taking the average between two im-
ages is memory-bound. In these cases, the MXP processor is ac-
tually an ideal way to perform the computation because custom-
designed hardware cannot operate any faster than the memory
bandwidth. However, we also want the MXP to run fast on applica-
tions that are not memory-bound.

The best speedup is obtained when a benchmark performs re-
peated operations upon a small data set that fits in the scratchpad.
For large data sets, it is best if the data set can be divided into tiles.
Operations on halfwords or bytes are preferred, as they benefit from
double or quadruple the number of ALUs. Ideally, the same oper-
ation should be applied to every member of the data set, and data
sets must be stored or arranged in contiguous memory locations;
care should be taken at the outset to prearrange this, as significant
performance can be lost just rearranging data.

Our best speedup to date is 918× faster than a Nios II/f on in-
teger matrix multiply using 64 vector lanes on large (4096 x 4096)
matrices. Matrix multiply has good compute intensity: O(N3) op-
erations applied to O(N2) data elements with only O(N2) data
transfers. Furthermore, it can be easily tiled to fit in the scratchpad;
double-buffering and concurrent DMA hides all memory latency
even on systems with slow DRAM. Also, the same elementwise
multiply is done to every vector element, and the built-in accumu-
lator avoids the need to iterate over the data twice. Although in-
creased performance using halfwords or bytes may be possible, we
have not investigated that option. As a rough comparison, the MXP
processor is 3.2× faster than a tiled and loop-interchanged version

of integer matrix multiply we wrote for an Intel i7-2600 processor
(not using AVX or multiple cores).

Median filter and motion estimation are two other exemplary
applications. Median filter works well because it can apply to small
pixels (bytes), work with very long vectors (the image width), and
has high compute intensity (O(N2 × K2) computation for an
N×N image using a K×K window versus O(N2) data transfers).
Motion estimation can also apply to bytes, work with fairly long
vectors, and has similar compute intensity.

5.2 Motion Estimation
Motion estimation is an image encoding algorithm where a block
to be compressed is compared against candidate positions in a ref-
erence frame. The position that has the lowest sum of absolute dif-
ference (SAD) of pixel values with the block is used as a reference
for compression. Calculating these SAD values requires sweeping
a 2D block across a 2D search window; it requires four nested loops
to implement in scalar code:

SADy,x =
∑
r

∑
c

|blockr,c − imagey+r,x+c|

The vectorized code in Figure 7 uses 2D and 3D vectors to
offload the innermost loop bounds and address calculations, as well
as taking advantage of the reduction accumulators to compute SAD
values.

The innermost loop is done by a VABSDIFF vector instruction
fed into the reduction accumulators to produce the SAD of one
row of the image. The input data is 8-bit but is summed across
multiple pixels, so to prevent overflow a 16-bit accumulated value
is written out. The next level of loop is summing the SAD from each
row together to produce a SAD for the entire block comparison. A
2D vector instruction can be used to run the row SAD calculation
for each row, with a final (1D) vector operation to accumulate the
row SADs into a block SAD. Finally, another level of loop can be
moved into MXP by using a 3D vector instruction to compute block
SADs across the width of the search space.

5.3 Motion Compensation
Motion compensation is the process of constructing a new or suc-
cessive image in a video stream using an old reference image and a
set of motion vectors. For each macroblock tile in the new image,
starting at position <x,y>, it copies a tile of data from an arbitrary
<mx,my> starting location in the old image. The precise starting
location is determined by a set of motion vectors, which are delta-
encoded from the original <x,y> values. These motion vectors are
carefully chosen to represent the macroblock in the old image that
closest matches the new image. Simplified pseudocode for this is
given in Figure 8.

This function is complementary to motion estimation, but it is
memory intensive rather than compute intensive. For the very small



for( y = 0; y < SEARCH_HEIGHT; y++ ) {

// Set vector parameters to compute the SAD for each
// row in a block across the search space width
vbx_set_vl( BLOCK_WIDTH );
vbx_set_2D( BLOCK_HEIGHT,

sizeof(uint16_t),
(BLOCK_WIDTH+SEARCH_WIDTH)*sizeof(uint8),
BLOCK_WIDTH*sizeof(uint8) );

vbx_set_3D( SEARCH_WIDTH,
BLOCK_HEIGHT*sizeof(uint16_t),
sizeof(uint8_t),
0 );

// 3D vector operation with reduction accumulate
vbx_acc_3D( VVBHU, VABSDIFF,

v_row_sad,
v_img+y*(BLOCK_WIDTH+SEARCH_WIDTH),
v_block );

//Set vector parameters for accumulating the final SAD
vbx_set_vl( BLOCK_HEIGHT/2 );
vbx_set_2D( SEARCH_WIDTH,

sizeof(uint8_t),
BLOCK_HEIGHT*sizeof(uint16_t),
BLOCK_HEIGHT*sizeof(uint16_t) );

//2D vector operation to produces final SAD values
vbx_acc_2D( VVHWU, VADD,

v_result+y*SEARCH_WIDTH,
v_row_sad,
v_row_sad+(BLOCK_HEIGHT/2) );

//Transfer the line back to the host
vbx_dma_to_host( result+y*SEARCH_WIDTH,

v_result+y*SEARCH_WIDTH,
SEARCH_WIDTH*sizeof(output_type) );

}

Figure 7. Vectorized motion estimation

for( y=0; y<HEIGHT; y+= TILE ) {
for( x=0; x<WIDTH; x+= TILE ) {

my = y + motvec[x/TILE][y/TILE].dy;
mx = x + motvec[x/TILE][y/TILE].dx;
for( r=0; r<TILE; r++ ) {

for( c=0; c<TILE; c++ ) {
img_new[y+r][x+c] = img_old[my+r][mx+c];

}
}

}
}

Figure 8. Simplified H.264 full-pixel motion compensation

4×4 tile sizes in H.264, the four pixels across fit into a single word,
offering very limited spatial locality. Across the rows, there is no
locality at all. Furthermore, if motion vectors are large, accesses
can be essentially random.

To perform this calculation on MXP, one can use a gather in-
struction or a custom DMA filter. To implement H.264 motion com-
pensation, we chose a custom DMA filter because H.264 requires
pixel interpolation to be done using quarter-pixel motion vectors.
Our present implementation, which is limited to full-pixel motion
vectors without interpolations, performs as shown in Figure 9. Re-
sults are shown for various image sizes as well as with and without
the Throughput Cache connected to the DMA Filter.

Figure 9. Speedup of H.264 full-pixel motion compensation

vbx_set_vl(NUM_VPS);

for(i = 0; i < NUM_KEYS; i+=NUM_VPS) {
vbx_dma_to_vector(v_key, key+i,

NUM_VPS*sizeof(uint32_t));

//Mask off index into bins (low 8 bits)
vbx(SVWU, VAND, v_key, 0xFF, v_key);

//Compute address of bin for given key and VP
vbx(SVWU, VMUL, v_key, NUM_VPS, v_key);
vbx(VEWU, VADD, v_key, v_key, UNUSED);
vbx(SVWU, VMUL, v_key, sizeof(uint32_t), v_key);
vbx(SVWU, VADD, v_key, bin_ptr, v_key);

//Increment the counter value
vbx(VVWU, VGTHR, v_ctr, v_key, UNUSED);
vbx(SVWU, VADD, v_ctr, 1, v_ctr);
vbx(VVWU, VSCTR, UNUSED, v_key, v_ctr);

}

//Accumulate the partial counts from each VP
sum_counters(bin_ptr);

Figure 10. Histogramming benchmark kernel

5.4 Histogram
A simple example of a scatter/gather benchmark is histogramming.
A typical scalar version reads in an element, calculates the address
of the counter it corresponds to, then loads, increments, and stores
back the counter:

for(i = 0; i < NUM_KEYS; i++){
counter[key[i] & 0xFF]++;

}

Simply rewriting this loop as a vector and using scatter/gather
operations to perform the memory accesses leads to race condi-
tions: it is possible that several parallel vector lanes may attempt to
concurrently read-modify-write the same counter element. To work
around this, a separate set of counters can be created, one for each
virtual processor (VP). One virtual processor can be assigned to
each element in the vector, allowing them to accumulate their data
in separate counters. Then, after the main loop is completed, the
counters for each VP must be summed to produced the final his-
togram.



Figure 11. Speedup of histogram with Gaussian-distributed data

The vector code shown in Figure 10 performs a histogram of
32-bit input data into 256 VPs. The code is conceptually executed
on multiple virtual processors (VPs); each VP then processes a
fraction of the input data using its own set of counters. If more
VPs are used than the number of actual vector lanes in an instance
of MXP, the VPs are effectively time-multiplexed onto the vector
execution units.

Speedup of histogramming is shown in Figure 11. Performance
increases as longer vectors (more virtual processors) are used, until
the capacity of the Throughput Cache begins to be compromised.
In this result, the histogram data is randomly determined by a
Gaussian distribution, which provides some temporal locality.

5.5 Difficult Benchmarks
Not all applications can be easily vectorized. For example, simply
reversing the elements of a vector is not something that can be eas-
ily done using vector parallelism. Likewise, transposing a matrix
cannot be done easily under ordinary circumstances.

Algorithms that perform different operations upon each vector
element, particularly if it depends upon the value of the element
or nearby elements, are also very difficult. One example of this is
the H.264 deblocking filter, where the blending function that must
be applied to pixels depends upon the pixel position, nearby pixel
values, and run-time parameters. In this particular case, we were
able to overcome this difficulty using a custom vector instruction.

Also, algorithms that perform sequential updates to data are dif-
ficult to parallelize. For example, summing all values from the first
element to the current element is difficult. For this case, called
a prefix sum problem, we have also implemented a custom vec-
tor instruction to overcome the sequential dependence. As another
example, the H.264 deblocking filter has a built-in sequential de-
pendence: macroblocks must be filtered in a predefined order, be-
cause the latest (new) pixel values for the previous macroblock are
used as input values for the next macroblock. Wherever possible,
algorithms that contain such a sequential dependence should be re-
designed to expose more data-level parallelism.

Finally, algorithms that require values from adjacent vector
lanes can be difficult to vectorize. Some cases are easy, for example
computing the difference with a neighbour element can be done
with a single instruction by using a pointer to a vector, as well
as an incremented value of the same pointer. However, FFT-like
communication patterns can be difficult to implement.4

4 Large FFTs, for example 1024 points or larger, can be easily vectorized,
but not small FFTs.

VectorBlox MXP on Stratix IV 4GX530
Device or CPU ALMs DSP 18× 18 M9Ks MHz

FPGA Device Maximum 212,480 1,024 1,280 –
Nios II/f (no vectors) 1,223 4 14 283
Nios II/f + V1 (4kB) 3,433 12 29 221
Nios II/f + V4 (16kB) 7,181 36 39 242

Nios II/f + V16 (64kB) 23,293 132 112 220
Nios II/f + V32 (128kB) 46,411 260 200 188
Nios II/f + V64 (256kB) 80,720 516 384 122

Table 2. Area resources and maximum clock frequency

Processor MHz Memory (kB) 3× 3 Sobel (fps)
TI OMAP L138 456 64/256 (L1/L2) 11.0
MXP V1 100 32 19.7
MXP V2 100 32 34.2
MXP V4 100 32 54.0
MXP V8 100 32 76.0
MXP V16 100 32 94.9

Table 3. Performance of Sobel edge detection on 752x480 pixels

6. Benchmark Results
MXP has been implemented on a variety of FPGAs, including those
from Altera (Cyclone II, IV and V, Stratix III and IV) and Xilinx
(Spartan 6, Virtex 6, Artix 7, and Kintex 7). The results for mapping
it to the largest available Stratix IV device are given in Table 2.
When mapped to Cyclone, the clock speeds are lower and the logic
count goes up because units are 4-input LUTs instead of 8-input
ALMs. Also, Cyclone is based upon 18× 18 multipliers versus the
36×36 DSP Blocks found in Stratix, but overall mapping efficiency
is similar. The number of hard multipliers can be roughly cut in half
using the control parameter described earlier.

To compare performance results to a typical embedded plat-
form, Table 3 gives the performance of a 3 × 3 Sobel edge de-
tection on a Texas Instruments OMAP L138 DSP and various sizes
of MXP. The MXP is implemented in a low-end Cyclone IV device
and limited to 100MHz, although higher clock speeds are possible.
In both cases, the image size is 752x480 pixels. Processing times
include accurate (16-bit) RGBA-to-LUMA conversion as well as
both horizontal and vertical gradients. Despite running at less than
1/4 of the clock speed, the smallest MXP with a single lane is 70%
faster than the TI DSP; with 16 vector lanes it is 8.6× faster. At
95 fps and 32 bits per pixel, the MXP version achieves roughly
275 MB/s throughput and nearly saturates the 400 MB/s DRAM.
On a Stratix IV FPGA, with a faster memory subsystem, signifi-
cantly higher rates are possible. This example shows that an exter-
nal DSP is not always required when MXP can do the job just as
well.

Figure 12 shows the speedup of MXP over Nios II/f on a larger
suite of embedded data parallel benchmarks. Speedups range up
to 918× on a 64-lane MXP (V64) on matrix multiplication. The
geometric mean of benchmark results ranges from 8.8× for a V1
MXP to 116× for a V64 MXP.

Matrix multiplication and motion estimation both perform par-
ticularly well as they can take advantage of 2D/3D vectors and the
reduction accumulators. Motion estimation fails to scale past V16,
however, due to limited vector length. Other benchmarks such as
imgblend and filt3x3 fail to scale well to 64 lanes due to mem-
ory bandwidth saturation even with the 64-bit DDR2 memory con-
troller running at twice the system frequency on our Terasic DE4
(Stratix IV) test board.

The benchmarks rgbyiq and rgbcmyk do not get as high a
speedup on a V1 as other benchmarks due to packing and unpack-



Figure 12. Cycle count speedup (y-axis) compared to Nios II/f

ing RGB triplets. This is a special case of the problem of dealing
with data in array-of-structures (AoS) format on vector processors;
it is better to arrange data as structures-of-arrays (SoA). For larger
AoS data structures, the 2D DMA engine or scatter/gather units
can be used to reorganize the data into the SoA format that is more
readily handled by the vector processor. However, in this case, the
overhead of fetching individual bytes is greater than that of pack-
ing/unpacking the RGB triplets in the scratchpad. In practice, this
is not a severe limitation, because these types of colorspace conver-
sions can be easily performed using a custom DMA filter, leaving
all of the MXP ALUs available for other computation.

7. Related Work
VIRAM [2] demonstrated that vector archictectures could outper-
form VLIW and superscalar processors for embedded systems. VI-
RAM was an ASIC implementation, but it inspired the first gen-
eration of FPGA-based soft vector processors VIPERS [7] and
VESPA [6]. These SVPs were traditional load/store vector architec-
tures. The first scratchpad-based SVP was VEGAS [1] followed by
VENICE [4]. VENICE added 2D/3D vector instructions (but only
1D DMA), as well as condition codes using the 9th bit of FPGA
memory blocks.

MXP inherits some features from each of these SVPs, but adds
several novel features, most notably custom vector instructions
and custom DMA filtering support, 2D DMA, enumerated vector
operands, and scatter/gather operations with a throughput oriented
cache for memory access coalescing. MXP also adds interlocks to
DMA operations to simplify the programming model, and includes
fixed-point support.

Examinations of the impact of FPGA fabric on processor de-
sign [5] show that many techniques used to implement VLIW, wide
superscalar, and out-of-order processors are prohibitively expen-
sive on FPGAs. SVPs are the only purely software option shown
to achieve significant speedups over the base RISC soft processors
provided by FPGA vendors.

8. Conclusions and Future Work
The VectorBlox MXP is a drop-in addition to any FPGA-based
computing system. It allows data-parallel processing to be done
in an FPGA using a software development model. Algorithms can
be programmed in C/C++ with vector intrinsics to accelerate data
processing over 900× faster than the fastest currently-available
FPGA-based soft processor.

MXP provides additional flexibility over previous solutions by
supporting scatter/gather instructions, custom vector instructions
and custom DMA filters. Together this allows programmers to
implement many applications entirely in software on the FPGA
while being able to accelerate those applications that need even
more performance by implementing only a small amount of RTL.

The performance of MXP is sufficient to displace off-chip
DSPs, yielding a more streamlined embedded system with a
smaller board design footprint. This can also lead to extrinsic ben-
efits such as streamlined inventory management due to lower BoM
counts.

For the simplicity of extending an existing design environment,
the MXP currently relies upon integration with the scalar host
processors provided by Altera and Xilinx. However, these RISC
processors were not designed to be attached to a high-performance
vector engine, and suffer many inefficiencies. For example, neither
Nios II/f nor MicroBlaze support external cache invalidations, so all
coherence needs to be manually maintained. Also, for small vector
processors, significant resources could be shared between the scalar
front-end host processor and the vector engine. Overall, significant
gains in performance could be achieved by redesigning the scalar
host front-end to better suit the vector backend. This would also
allow for better integration of the MXP ISA and scalar host ISA.

Work on producing a high-level compiler is underway. This
will ease some of the burden of explicit memory management,
eg double-buffered DMA can be automated. However, we do not
recommend producing a full autovectorizing compiler; such an
approach has had limited success with GCC, and we note that a
significant source of MXP speedups come from reorganizing data
to better suite the processor. Typically, significant data organization
transformations fall outside of the scope of most compilers.
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