
VENICE: A Compact Vector Processor for FPGA Applications

Aaron Severance, Guy Lemieux
Department of ECE, UBC

Vancouver, Canada
aaronsev@ece.ubc.ca, lemieux@ece.ubc.ca

Abstract—This paper presents VENICE, a new soft vector
processor (SVP) for FPGA applications. VENICE differs from
previous SVPs in that it was designed for maximum throughput
with a small number (1 to 4) of ALUs. By increasing clock-
speed and eliminating bottlenecks in ALU utilization, VENICE
can achieve over 2x better performance-per-logic block than
VEGAS, the previous best SVP. VENICE is also simpler to
program, uses standard C pointers into a scratchpad memory
rather than vector registers, and has no penalty for unaligned
data.

Keywords-vector; SIMD; soft processors; scratchpad mem-
ory; FPGA;

I. INTRODUCTION

FPGAs offer low power operation and great performance
potential through massive amounts parallelism. Although
FPGAs are designed for maximum flexibility to implement
any logic circuit, they offer little structure to guide logic
designers into building parallel compute engines. As a result,
designing a compute accelerator takes more than simple
HDL skill, it also takes a deep understanding of how to
design compute engines.

Instead of application-specific compute engines, soft pro-
cessors implemented in FPGA logic may be used to per-
form computation. Soft processors have different design
constraints than fixed processors [6]; they must rely on the
FPGA’s embedded block RAM for register files or caches
and embedded DSP blocks for complex operations such as
shifting and multiplication. Operations such as multiplexing
are relatively more resource intensive on FPGAs, while
addition is relatively cheap thanks to built in carry chains.
Soft processors allow more flexibility than fixed processors,
as parameters can be changed for every instantiation, vary-
ing cache size, adding/removing complex instructions, etc.
While clockspeeds are typically limited to a few hundred
megahertz, they have abundant on-chip block RAM that can
be used in parallel to achieve high memory bandwidth.

This work builds a soft vector processor (SVP), named
VENICE, which can be used to accelerate a wide range
of tasks that fit the SIMD programming model. VENICE
is smaller and faster than all previously published SVPs.
Overall, it achieves a superior area-delay product that is
roughly 2× better performance per logic block (speedup per
ALM) than the previous best, VEGAS [1]. It is also 5.2×
better than Altera’s fastest Nios II/f processor. As a result,

less area is needed to achieve a fixed level of performance,
reducing device cost or allowing more room to be left for
other application logic.

The key contributions of this work are:
• Removal of vector address register file (area)
• Use of 2D and 3D vectors (performance)
• Operations on unaligned vectors (performance)
• New vector conditional implementation (area)
• Optimized multiplier implementation (area)
Programming VENICE requires little specialized knowl-

edge, utilizing C langauge with simple extensions for data
parallel computation. Changes to algorithms require a simple
recompile taking a few seconds rather than several minutes
or hours for FPGA synthesis. The removal of the vector
address register file, streamlining of instructions, and lack
of performance penalty for unaligned instructions make
VENICE easier to program than previous SVPs.

Previous work describes a compiler for VENICE based on
Microsoft Accelerator [4]. By contrast, this paper describes
the design, architecture, native programming interface, and
native programming results of VENICE.

II. PRIOR WORK

Vector processing has been applied in supercomputers on
scientific and engineering workloads for decades. It exploits
the data-level parallelism readily available in scientific and
engineering applications by performing the same operation
over all elements in a vector or matrix. It is also well-suited
for image processing.

A. Vector Processing Overview

Classical vector execution originated with the CRAY-
1 [5]. The CRAY-1 is a load/store architecture with a
fixed number of vector registers (8) of a fixed maximum
size (64 elements of 64b each). By streaming data into a
pipelined FU, the CRAY-1 produces 1 result per 80MHz
cycle. Additional parallelism is obtained by chaining FU’s
together. However, chaining requires complex register files
with multiple read and write ports. Alternatively, several
parallel ALUs can operate in lockstep SIMD mode to
execute the same instruction. Since each ALU writes back
to its own independent partition of the vector register file,
multiple write ports are not required [2].

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

Modern microprocessors are augmented with SIMD pro-
cessing instructions to accelerate data-parallel workloads.
These typically operate on short, fixed-length vectors (e.g.,
only 128b, or four 32b words) in a fixed number of data
registers. Significant overhead comes from instructions to
load/pack/unpack these short vectors.

There are two key distinguishing traits of vector proces-
sors that set them apart from SIMD processing instructions.
First is the use of the vector length (VL) control register,
which can be changed at run-time to process arbitrary-
length vectors up to a certain maximum vector length (MVL).
Second is the use of complex addressing modes, such as
walking through memory in strides to columnwise traverse
a 2D array.

B. Soft Vector Architectures

Early soft vector architectures are based on the VI-
RAM [2] embedded vector processor. VIPERS [8] and
VESPA [7] were both modeled closely on VIRAM, with a
fixed number of vector data registers of configurable MVL.

VEGAS [1] followed VIPERS, but uses an 8-entry vector
address register file that points into a large vector scratchpad
memory rather than vector data registers. The scratchpad
can be partitioned into any number of vectors of any length.
Furthermore, the ALUs can be fractured to support subword
arithmetic. This means a fixed-width vector engine can
operate on more elements if they are halfword or byte sizes.
Also, it makes more effective use of on-chip memory, since
smaller operands are not expanded to fill an entire word as
done with prior architectures.

III. VENICE ARCHITECTURE

VENICE is a new SVP architecture that improves in
several areas on VEGAS. A block diagram of the VENICE
(Vector Extensions to NIOS Implemented Compactly and
Elegantly) architecture is shown in Figure 1. Similar to
previous SVPs, VENICE requires a scalar core as the control
processor; in this case, a Nios II/f executes all control flow
instructions and issues instructions to the VENICE vector
core as one or two tandem Nios custom instructions. In our
work, Nios is configured to use a 4kB instruction cache
and a 4kB data cache. Unfortunately, Nios lacks support
for hardware cache coherence, so the programmer must
sometimes explicitly flush data from the cache to ensure
correctness.

The VENICE vector engine implements a wide, double-
clocked scratchpad memory which holds all vector data.
Operating concurrently with the vector ALUs and the Nios
core, a DMA engine transfers data between the scratchpad
and main memory. The DMA engine also has a 1-entry
control queue, allowing the next transfer to be queued.

It is very important for the DMA engine to operate
concurrently with the vector ALUs, because this hides the
memory latency of prefetching the next set of data elements.

D
D

R
2

D$

I$ Nios
II/f

CPU

ABS

Accum.

MUL

SHIFT

ROTATE

Align 1

Align 2

ALU

EXTEND

CMOV

Align 3

VENICE Vector EngineInstruction Queue

Scratchpad

Memory

2kB - 2MB

2x clk

Address Logic

Altera Avalon

Fabric

(2nd

pipe

stage)

DMA

Custom Instruction Port

Figure 1. VENICE Architecture (vertical gray bars are pipeline stages)

36x36

18x18

9x9

9x9

64

16

byte 0 / halfword 0 / word

byte 3

byte 2 / halfword 1

byte 1

32

16

b) VENICE Fracturable Multiplier
2 lanes pack into 2 DSP blocks and use fewer ALMs

<<16

<<32

18x18

18x18

18x18

18x18

64

32

32

word

byte 0 /
halfword 0

byte 3 /
halfword 1

byte 2

byte 1
16

16

a) VEGAS Fracturable Multiplier
1 lane packs into 1 DSP block

36x36

9x9

9x9

36x36

9x9

9x9

One DSP Block
contains two

36b Multipliers

Each 36b Multiplier
can be divided into

two 18b Multipliers or
four 9b Multipliers

18x18

18x18

18x18

18x18

18x18

18x18

Figure 2. Fracturable Multiplier Styles

All of our benchmarks implement some form of double-
buffering, allowing us to hide most of the memory latency.

All vector ALU operations are performed memory-to-
memory on data stored in the scratchpad. The configurable
number of vector lanes (32-bit vector ALUs) provides scal-
able data-level parallelism on top of the instruction and
memory-level parallelism achieved by running the scalar
core, vector core, and DMA engine concurrently. Each 32-
bit ALU supports subword SIMD operations on halfwords
or bytes, thus doubling or quadrupling the data parallelism
available with these smaller data types, respectively.

IV. VENICE IMPLEMENTATION

Below, we will describe each of the key improvements
made to VENICE. As a result of these and other optimiza-
tions, the design was pipelined to reach 200MHz+ (roughly
50–100% higher than previous SVPs).

A. Removal of Vector Address Register File

One major difference from VEGAS is removal of the vec-
tor address register file. Instead of storing vector addresses

2

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

Figure 3. Example of Misaligned Operation

in a separate register file, VENICE relies upon the Nios
scalar register file to contain the vector addresses. Each
vector instruction is emitted with the contents of 3 scalar
registers (two source addresses and one destination address
in the scratchpad) as well as immediate bits specifying the
opcode and other information. Nios instructions can run
concurrently with vector operations, calculating addresses
for the next vector instruction while the current one executes.

One drawback of this approach is that increased instruc-
tion issue bandwidth is required between the Nios and
VENICE vector engine. The NIOS II/f custom instruction
interface can only access 2 register values per cycle. Hence,
2 custom instructions are needed to issue 3 required ad-
dresses to the vector engine.

B. 2D and 3D Vector Instructions

To achieve high ALU utilization on problems with short
but regular vectors, VENICE implements 2D and 3D vector
instructions. A 1D vector is an instruction applied to a
configurable number of elements, which can be thought
of as columns in a matrix. The 2D vector extends this to
repeat the 1D vector operation across a certain number of
rows. In between each row, each operand (2 source addresses
and 1 destination address) will be incremented by a unique
configurable stride value, allowing for selection of arbitrary
submatrices. When executing, the address logic inside the
vector core dispatches a separate vector instruction for each
row, and in parallel adds the strides for each operand to
determine the address of the next row. As a result, VENICE
can issue up to 1 row per cycle. This has a direct extension
to 3D instructions for operations on 3D data, or to process
multiple 2D matrices with a single instruction.

C. Operations on Unaligned Vectors

When input and/or output vectors are not aligned, data
needs to be shuffled between lanes. For example, Figure 3
shows how VENICE uses 3 alignment networks to shuffle
unaligned data. This is especially useful when doing con-
volution, as one operand’s starting address is continuously
changing and seldom aligned. VENICE suffers no penalty

for unaligned operations, in contrast with previous SVPs that
required extra instructions to be inserted for alignment.

Note that only two alignment networks are required to
align the 2 input operands and 1 output operand; the extra
one is in place to allow for future work when operand data
sizes mismatch. It could be removed from the current design
for a nominal area reduction.

D. Vector Conditional Operations

VIRAM based SVPs traditionally have a separate register
file of flag registes that can be used to implement predication
and data-conditional operations. VEGAS does not have fixed
length vector registers, so it uses a separate, configurable
length, flag scratchpad.

In VENICE a single vector flag is written alongside each
byte, utilizing the 9th bit in BRAMs that have an extra data
bit for parity or optional storage (such as the M9K in modern
Altera FPGAs). Conditional move operations that read the
flag bits as one of the input operands are used to implement
simple predication. The flag and result can be used to check
out-of-range results, less-than/greater-than/equal-to, or ex-
tended precision (64-bit) arithmetic. Instead of supporting
separate flag registers and operations, flags can be stored at
different locations and combined using logic operations.

E. Multiplier Implementation

Figure 2 shows VENICE’s method of implementing frac-
turable multipliers versus the partial products method used in
VEGAS. The VENICE method does not require additional
adders or multiplexers on the inputs, so has lower ALM
usage and delay. The only drawback of the VENICE orga-
nization is that the multipliers used by a single lane cannot
be packed into a single DSP Block. Instead, two lane’s worth
of multipliers must be packed into two DSP Blocks. Hence,
V1 may use an additional half of a DSP Block, but larger
designs use the same amount as VEGAS.

V. NATIVE PROGRAMMING INTERFACE

VIPERS and VESPA both required assembly level pro-
gramming, with the programmer manually dealing with
register allocation and usage. VEGAS introduced more user
friendly C macros to dispatch vector assembly instructions,
but its vectors were still indexed by an address register file
that had to be filled and spilled manually by the program-
mer. The native VENICE application programming interface
(API) also uses C macros to generate inline assembly in C.
However, the removal of a vector address register file means
that instructions can directly address the scratchpad using C
pointers.

The sample code in Figure 4 adds three vectors together.
Each macro dispatches one or more vector assembly instruc-
tions to the vector engine. Depending upon the operation,
these may be placed in the vector instruction queue, or the
DMA transfer queue, or executed immediately. A macro that

3

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

#include "vector.h"

int vadd3(int *A, int *B, int *C, int *D, int length)
{
// if A,B,C are dynamically modified,
// then flush them from the data cache here

const int num_bytes = length * sizeof(int);

// alloc space in scratchpad, DMA from A to va
int *va = (int *)vector_malloc(num_bytes);
vector_dma_to_vector(va, A, num_bytes);

// alloc and DMA transfer, in one simple call
int *vb = (int *)vector_malloc_and_dmacpy(B, num_bytes);
int *vc = (int *)vector_malloc_and_dmacpy(C, num_bytes);

// setup vector length, wait for DMA
vector_set_vl(length);
vector_wait_for_dma(); // ensure DMA done

vector(VVW, VADD, vb, va, vb);
vector(VVW, VADD, vc, vb, vc);

// transfer results from vc to D
vector_instr_sync(); // ensure instructions done
vector_dma_to_host(D, vc, num_bytes);
vector_wait_for_dma();

vector_free();
}

Figure 4. VENICE Native API to Add 3 Vectors

emits a queued operation may return immediately before the
operation is finished. Some macros are used to synchronize
the vector core, scalar core, and DMA engine.

The VENICE programming model uses a few basic steps:

1) Allocation of memory in scratchpad
2) Optionally flush data in data cache
3) DMA transfer data from main memory to scratchpad
4) Setup for vector instructions (e.g., the vector length)
5) Perform vector operations
6) DMA transfer resulting data back to main memory
7) Deallocate memory from scratchpad

The basic instruction format is vector(MODE, FUNC,
DEST, SRCA, SCRB), where the values of MODE and
FUNC must be predefined symbols, while the values of
DEST and SRCB must be scratchpad pointers and SRCA
can be a scalar value or scratchpad pointer.

For example, to add two unsigned byte vectors located in
the scratchpad by address pointers va and vb, increment the
pointer va, and then store the result at address pointer vc,
the required macro would be vector(VVBU, VADD,
vc, va++, vb);.

Space can be allocated in vector scratchpad memory using
the special vector_malloc(num_bytes) which re-
turns an aligned pointer. The vector_free() call simply
frees all previous scrachpad allocations, since the common
case is to utilize the scratchpad for one kernel/function
after which it can be reused for the next kernel/function.
DMA transfers and instruction synchronization are handled
by macros as well.

Figure 5. Area Savings Breakdown (ALMs)

VI. RESULTS

All soft processor results in this paper are measured by
running the benchmarks on an Altera DE4-530 development
system using Quartus II version 11.0. All software self-
verifies itself against a sequential C solution.

A. Area and Clock Frequency

The overall compilation results for VENICE are compared
with VEGAS in Table I. In this table, the overall Stratix
IV-530 device capacity is shown for ALMs, DSP Blocks,
and M9K memory blocks. It is important to note that an
Altera DSP Block is a compound element consisting of
two 36b multipliers. Alternatively, each 36b multiplier can
be statically configured as two independent 18b multipliers
or four independent 9b multipliers. Altera literature usually
quotes device capacity using a special mode that achieves 8
18b multipliers per DSP block.

Table I gives area and clock frequency results for VEGAS
and VENICE, including their Nios II/f scalar processor.
VENICE uses fewer ALMs, and fewer M9Ks, than VEGAS
across the board. With one vector lane VENICE is using 0.5
more DSP Blocks than VEGAS, but there is room for one
18b and two 9b multipliers to be packed into partially used
DSP blocks. The clock frequency achieved with VENICE is
also 50% higher than VEGAS.

Figure 5 gives a more detailed area breakdown. VENICE
has consistently lower area than VEGAS for everything but
the alignment network (when using multiple lanes). Precise
area values for the V1 configuration are shown in Table II.
The savings in each area is primarily due to:

• Fracturable ALU savings due to the new parallel mul-
tiplier, which uses fewer adders and requires less input
and output multiplexing.

• Control/Pipeline savings due to removal of the vector
address register file.

• DMA savings due to not needing to align operands
during transfer since there is no penalty for unaligned
operations in VENICE.

• Alignment network savings due to being optimized
for a small number of lanes, though having multiple

4

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

Table I
RESOURCE USAGE COMPARISON

VEGAS VENICE
Device or CPU ALMs DSP Blocks M9Ks Fmax ALMs DSP Blocks M9Ks Fmax

Stratix IV EP4SGX230 91,200 161 1,235 – 91,200 161 1,235 –
Stratix IV EP4SGX530 212,480 128 1,280 – 212,480 128 1,280 –

Nios II/f 1,223 1 14 283 1,223 1 14 283
Nios II/f + V1 (8kB) 3,831 2 35 131 2,529 2.5 27 206
Nios II/f + V2 (16kB) 4,881 3 49 131 3,387 3 40 203
Nios II/f + V4 (32kB) 6,976 5 77 130 5,096 5 66 190

Table II
AREA SAVINGS BREAKDOWN (ALMS)

VEGAS VENICE Savings
Fracturable ALU 771 471 300
Control/Pipeline 1200 538 662
DMA 501 181 320
Alignment (V1) 136 116 20
Alignment (V4) 448 855 -407

alignment networks means scaling worse than VEGAS
when going to a large number of lanes.

B. Benchmark Performance

The characteristics of nine application kernels are reported
in Table III. The input, output, and internal data types for
each kernel are shown. The overall input data set size is also
shown, along with the size of a filter window in the Taps
column. Some of these kernels come from EEMBC, others
are from VIRAM, and others are written by the authors.

The Nios II/f processor was run at 283MHz with a
200MHz Avalon interconnect and 200MHz DDR2 con-
troller (i.e., at the limit of the DDR2-800 SODIMM). The
VENICE V1 and V2 configurations were run synchronously
at 200MHz for everything, including the Nios II/f, VENICE
engine, Avalon interconnect, and DDR2 controller, while the
V4 configuration was run with everything at 190MHz.

Results are in units of millions of output elements com-
puted per second, except matrix multiply (which is not
linear in computations per output element), for which we
report performance as millions of multiply-accumulates per
second (MAC/S). The peak performance of VENICE V4 at
190MHz is 760 million MAC/S, so our matrix multiply code
is running at 78% of peak performance, whereas the Nios
II/f (assuming it can do one multiply or add per cycle) only
achieves 8.3% utilization.

C. Speedup versus Area

Figure 6 demonstrates the speedup versus area increase
from VEGAS to VENICE, normalized to the Nios II/f.
Speedup results are a geometric mean of the execution
times for nine benchmark programs. Area results account
for ALMs only. VENICE dominates VEGAS in both area
and speed, achieving with just 4 ALUs a geomean speedup
of 20.6× Nios at an area overhead of 4.0×.

0	

5	

10	

15	

20	

25	

0	
 2	
 4	
 6	
 8	

Sp
ee
du

p	

(r
el
a+

ve
	
 to

	
 N
io
s	
 I
I/
f,	

ge
om

ea
n	

of
	
 b
en

ch
m
ar
ks
)	

Area	
 (rela+ve	
 to	
 Nios	
 II/f,	
 ALM	
 count)	

Nios	
 II/f	

Single	
 CPU	

Nios	
 II/f	

Ideal	
 Scaling	

VEGAS	

V1,	
 V2,	
 V4	

VENICE	

V1,	
 V2,	
 V4	

Figure 6. Speedup (geomean of 9 Benchmarks) vs Area Scaling

0.1	

1	

10	

100	

au
tco
r	

rgb
cm
yk
	

rgb
yiq
	

im
gb
len
d	

filt
3x
3	

me
dia
n	

mo
tes
t	
 fir	

int
	
 m
atm

ul	

ge
om
ea
n	

Sp
ee
du

p	

pe

r	
 A
LM

	

(r
el
a.

ve
	
 to

	
 N
io
s	
 I
I/
f)	

	

VEGAS-­‐V1	
 VENICE-­‐V1	

Figure 7. Computational Density with V1 SVPs

Figure 7 compares the computational density (speedup
divided by area) for VEGAS and VENICE using a small
V1 configuration. Simple benchmarks such as rgbcmyk,
rgbyiq, imgblend and median achieve the smallest
performance increase over VEGAS. These benchmarks have
large vector lengths and no misaligned vectors; the speedup
comes mostly from clock speed increase. Convolution
benchmarks like fir and autocor benefit from the lack
of misalignment penalty. 2D vectors accelerate autocor,
motest, and fir. On matmul, using 3D vectors and the
accumulators achieves 3.2× the performance of VEGAS.

5

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

Table III
BENCHMARK PERFORMANCE AND PROPERTIES

Performance (Millions of elem. per second) Speedup Data Type Benchmark Properties
Benchmark Nios II/f V1 V2 V4 V1 V2 V4 In/Out Intermed. Data Set Size Taps Origin

autocor 0.46 5.94 11.11 18.94 12.9 24.2 41.2 halfword word 1024 16 EEMBC
rgbcmyk 4.56 17.68 21.41 22.72 3.9 4.7 5.0 byte 896×606 EEMBC
rgbyiq 5.20 6.74 11.09 15.61 1.3 2.1 3.0 byte word 896×606 EEMBC

imgblend 4.83 77.63 145.57 251.18 16.1 30.1 52.0 halfword 320×240 VIRAM
filt3x3 2.11 16.82 26.95 36.42 8.0 12.7 17.2 byte halfword 320×240 3×3 VIRAM
median 0.10 0.74 1.45 2.69 7.3 14.4 26.6 byte 128×21 5×5 custom
motest 0.09 2.37 4.18 6.29 27.4 48.2 72.4 byte 32×32 16×16 custom

fir 3.32 20.11 34.95 41.67 6.1 10.5 12.5 halfword 4096 16 custom
matmul 11.7 148.20 322.22 593.75 12.6 27.4 50.6 word 1024×1024 custom

Geomean 7.95 13.8 20.6

For one application, rgbyiq, the computational density
falls below 1.0 on VENICE, meaning Nios II/f is better. This
is because the area overhead of 1.8× exceeds the speedup of
1.3×. The limited speedup is due to a combination of mem-
ory access patterns (r,g,b triplets) and wide intermediate data
(32b) to prevent overflows. However, on average, VENICE-
V1 offers 3.8× greater computational density than Nios II/f,
and 2.3× greater density than VEGAS-V1. For V4 VENICE
(not shown), the computational density is 5.2× that of Nios
II/f and 1.9× that of V4 VEGAS.

VII. CONCLUSIONS

This work has shown that an optimized soft vector pro-
cessor can provide significant speedups on data parallel
workloads. With a single ALU, VENICE achieves 7.95× the
performance of Nios II/f. With just 4 ALUs, speedups over
70× were demonstrated. From V1 to V4 VENICE has 3.8×
to 5.2× better performance per logic block than Nios II/f.
The VENICE soft vector processor is also both smaller and
faster than VEGAS, offering roughly 2× the performance
per logic block while using fewer block RAMs and the same
number of DSP blocks.

During our experiments, we discovered some limita-
tions that should be addressed by future work. Proper
gather/scatter support is needed for rearranging data (e.g.,
de-interleaving r,g,b triplets). These currently must be done
with 2D instructions operating on one element per cycle and
bottleneck certain benchmarks, such as rgbyiq.

The use of 2D and 3D instructions allows for high
ALU utilization even with small vector lengths. Further
speedups require either extensive rearranging of data with
scatter/gather type operations or extending past the vector
paradigm. VENICE has been conceived as a building block
in a vector/thread hybrid solution [3]. Future work will
attempt to simplify the programming of such a system
and integrate the components to reduce the overhead of
connecting multiple VENICE processors.

VIII. ACKNOWLEDGMENTS

The authors would like to thank NSERC, and VectorBlox
Computing, Inc. for funding and Altera for donating DE4-

530 development boards.

REFERENCES

[1] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and
G. Lemieux. VEGAS: Soft vector processor with scratchpad
memory. In FPGA, pages 15–24, 2011.

[2] C. Kozyrakis and D. Patterson. Scalable, vector processors
for embedded systems. Micro, IEEE, 23(6):36 – 45, nov.-dec.
2003.

[3] R. Krashinsky, C. Batten, M.Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanovic. The vector-thread architecture. In
ISCA, June 2004.

[4] Z. Liu, A. Severance, S. Singh, and G. G. Lemieux. Accelerator
compiler for the venice vector processor. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable
Gate Arrays, FPGA ’12, pages 229–232, New York, NY, USA,
2012. ACM.

[5] R. M. Russel. The CRAY-1 computer system. Communications
of the ACM, 21(1):63–72, 1978.

[6] P. Yiannacouras, J. Rose, and J. G. Steffan. The microarchi-
tecture of fpga-based soft processors. In Proceedings of the
2005 international conference on Compilers, architectures and
synthesis for embedded systems, CASES ’05, pages 202–212,
New York, NY, USA, 2005. ACM.

[7] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA: portable,
scalable, and flexible FPGA-based vector processors. In
CASES, pages 61–70. ACM, 2008.

[8] J. Yu, C. Eagleston, C. H. Chou, M. Perreault, and G. Lemieux.
Vector processing as a soft processor accelerator. ACM TRETS,
2(2):1–34, 2009.

6

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

