
ROUTING ALGORITHMS FOR FPGAS
 WITH SPARSE INTRA-CLUSTER ROUTING CROSSBARS

Yehdhih Ould Mohammed Moctar1 Guy G. F. Lemieux2 Philip Brisk1

1Dept. of Computer Science and Engineering
University of California, Riverside

 {moctar, philip}@cs.ucr.edu

2Dept. of Electrical and Computer Engineering
University of British Columbia

lemieux@ece.ubc.ca

ABSTRACT

Modern FPGAs employ sparse crossbars in their intra-
cluster routing. Modeling these crossbars enlarges the
routing resource graph (RRG), a data structure used by
most FPGA routers, while enlarging the search space for
finding legal routes. We introduce two scalable routing
heuristics for FPGAs with sparse intra-cluster routing
crossbars: SElective RRG Expansion (SERRGE), which
compresses the RRG, and dynamically decompresses it
during routing, and Partial Pre-Routing (PPR), which
locally routes all nets in each cluster, and routes global nets
afterwards. Our experiments show that: (1) PPR and
SERRGE converge faster than a traditional router using a
fully-expanded RRG; (2) they both achieve better
routability than the traditional router, given a limited
runtime budget, with SERRGE achieving 1-2% better
routability than PPR, on average; and (3) PPR uses far less
memory and runs much faster than SERRGE, making it
ideal for high capacity FPGAs.

1. INTRODUCTION

FPGA routing is the process by which paths through the
FPGA routing fabric are selected to establish connections
between logic elements and the I/O pads. To establish a
connection, the router must find a sequence of unused
resources along a path from the source to the sink.
 The Routing Resource Graph (RRG) is a data structure
that represents the routing resources of an FPGA. Routing a
circuit is equivalent to finding a set of disjoint paths in the
RRG that satisfy timing constraints; this problem is NP-
hard [19]. The most successful FPGA routing heuristic is
the PathFinder algorithm [19], which iteratively tries to
eliminate congestion while minimizing the delay of the
critical paths.
 The academic Versatile Place and Route (VPR) tool
[17] employs an implementation of PathFinder. VPR
models a cluster-based architecture, in which LUTs are
grouped into Configurable Logic Blocks (CLBs);
connections between LUTs in a CLB use fast intra-cluster
routing, which is implemented as a crossbar.

 Most early cluster-based FPGAs used a full crossbar for
intra-cluster routing; however, the area overhead of a full
crossbar is significant. Modern cluster-based FPGAs now
employ sparse crossbars for intra-cluster routing. In the
past, a router could simply route all nets to CLB input pins,
as a full crossbar ensures the existence of paths from each
CLB input pin and local feedback to each LUT input pin;
however sparse crossbars do not provide this guarantee, so
the router must now consider the sparse crossbar topology
at each CLB. Naïvely, one could expand the RRG to
include the sparse crossbar for each CLB, as routing would
remain a disjoint path problem; however, doing so enlarges
the search space for finding legal and high quality routes,
and the expanded RRG consumes more memory.
 This paper introduces and compares two new routing
algorithms for FPGAs with sparse intra-cluster routing
crossbars. SElective RRG Expansion (SERRGE) executes
PathFinder on a compressed RRG; SERRGE decompresses
regions of the RRG where PathFinder is actively exploring
and negotiating new routes. Partial Pre-Routing (PPR) first
runs PathFinder at every CLB to route the intra-cluster
portion of all nets, and then runs PathFinder globally to
complete the inter-cluster portion of the routes. PPR’s
advantages are its simplicity and the fact that it never
expands the RRG; its limitation is that it cannot re-negotiate
intra-CLB routes that collectively cause congestion in the
global routing network.
 We observed that running PathFinder on a fully
expanded RRG is not competitive with either SERRGE or
PPT in terms of runtime or memory usage; PPR is faster
and uses less memory than SERRGE and produces
comparable results in terms of critical path delay, except for
very sparse crossbars, e.g., 40% population density. Based
on these experiments, we believe that PPR should be used
in most cases, and that SERRGE should be employed as a
backup, primarily when PPR either fails to route the circuit
or fails to meet timing constraints.

2. BACKGROUND AND TERMINOLOGY

This section briefly reviews the FPGA architecture
employed by VPR [17], as shown in Fig. 1.

Fig. 1. Basic Logic Element (BLE) (a); a Configurable Logic Block
(CLB) contains several BLEs, with fast local interconnect provided
by the Input Interconnect Block (IIB); the Connection Block (C
Block) inputs and outputs interface the CLB with the global routing
network (b); the floorplan of a generic island-style FPGA (c).

 The basic unit of computation in an FPGA is a K-input
LookUp Table (K-LUT). A Basic Logic Element (BLE) is a
K-LUT coupled with a bypassable flip-flop, as shown in
Fig. 1(a).
 Fig. 1(b) shows the CLB interface to the adjacent
routing channel. The Connection Block (C Block) connects
each CLB input pin to a subset of the wires in the adjacent
routing channel; the intra-cluster routing connects the CLB
input pins and local feedbacks (one per BLE) to the BLE
inputs.
 Fig. 1(c) shows the FPGA floorplan. Switch Blocks (S
Blocks) are programmable intersections between horizontal
and vertical routing channels. The multiplexers, shown on
the right-hand side of Fig. 1(b), are implemented in the S
Blocks, which are shown (without detail) in Fig. 1(c). Fig.
1(b) depicts inputs coming in from the left hand side of the
CLB and outputs leaving to the right; in actuality, inputs
and outputs may enter and exit from all four sides.
 VPR’s architecture configuration file specifies several
parameters that VPR uses to generate the logic and routing
architecture of an FPGA under exploration:

 K: the LUT size (i.e., a K-LUT);
 N: the number of LUTs per CLB;
 I: the number of CLB input pins;
 W: the number of segments per routing channel; and
 Fcin and Fcout: C Block connectivity parameters

Each C Block input multiplexer in Fig. 1(b) selects one

of W×Fcin wires, and each BLE drives W×Fcout segments in
the adjacent routing channels. Most FPGAs use single
driver routing [13], so the C Block output is a conceptual
description of the routing topology.

We model the intra-cluster routing as a 2-dimensional
binary matrix B, with I+N columns and KN rows. Each
column corresponds to an input (a CLB input pin or a local
feedback from a BLE in the cluster), and each row
corresponds to a BLE input. B(i, j) = 1 if a signal can route
from input i to output j, and 0 otherwise. It is important to
note that B simply models the input-to-output connectivity
of the crossbar, but does not model its internal architecture.

As an example, we model a CLB with N=2, K=2 (e.g.,
it contains two 2-LUTs); the four BLE inputs are denoted
b00, b01, b10, and b11. The CLB has three input pins, I0, I1,
and I2, and two local feedbacks from the BLEs, O0 and O1:

In this example, there is a connection from CLB input pin
I0 to LUT input pins b00 and b01, but not b10 and b11; also,
the local feedbacks are not used.

We used a tool developed by Lemieux et al. [15] to
generate routable sparse crossbars with a user-provided
density function p. The tool generates matrix B such that
each row, column, and the entire matrix all have a
population percentage of approximately p, i.e.:

𝐵 𝑖, 𝑗 = 𝑝 𝐼 + 𝑁 ± 1! , (1)

𝐵 𝑖, 𝑗 = 𝑝𝑘𝑁 ± 1! , and (2)

𝐵 𝑖, 𝑗 = 𝑝𝑘(𝐼 + 𝑁) ± 1!,! . (3)

3. FPGA ROUTING ALGORITHMS

The first step of most routers is to allocate the RRG. In
VPR’s implementation of PathFinder, RRG vertices
represent wires and pins internal to the FPGA, and edges
represent the switches that connect them. Here, we describe
the assumptions that underlie VPR’s router, along with two
heuristic variations that reduce the RRG’s memory
footprint. These variations restrict the search space explored
by the router, while speeding up convergence.

W routing segments

Isolation
Buffers

W×Fcin:1 multiplexer

Intra-
Cluster
Routing

BLE
K

BLE
K

...

......

N local feedbacks

Each CLB has N BLEs (K-LUTs)

Configurable Logic Block (CLB)

I = Number of of CLB inputs

C Block
(inputs)

...

W routing segments

Each BLE connects to W×Fcout
segments in the routing channel

C Block (outputs)

...

DFFK-LUT
K

Clock

BLE output

Configuration bit

(a)

(b)

(c)

I/O Pads

CLB

Switch Block
(S Block)

Connection Block
(C Block)

B =

I0 I1 I2 O0 O1

1 1 0 0
1 1 0 0
0 1 1 0
0 1 1 0

!

"

#
#
#
#

0
0
0
0

$

%

&
&
&
&

b00
b01
b10
b11

3.1. CLB Input Pins

VPR 5 (and its predecessors) assumes that the intra-cluster
routing is a full crossbar; all CLB input pins are equivalent
and there is no need to model the intra-cluster routing. A
legal route is obtained by routing all circuit nets to CLB
input pins, as the full crossbar guarantees trivially-found
routes from CLB input pins to LUT input pins.
 When the intra-cluster routing becomes sparse, CLB
input pins are no longer equivalent; some may be
equivalent, depending on the crossbar topology. Recall that
I is the number of CLB input pins, and that N is the number
of BLEs in the CLB. We group the CLB input pins into N
non-disjoint subsets of size rj, 0 < j < N-1 under the
assumption that the input pins of each subset are logically
equivalent. Subset Sj contains the CLB input pins that can
be routed to BLE input pin j. Based on this assumption,
BLE j can select its inputs from Sj and Sj only, and there are
rj = |Sj| inputs available for BLE j. It is important to note
that these sets of input pins are non-disjoint, i.e., most CLB
input pins will belong to multiple subsets.
 The tool that we used to generate the sparse crossbar
topology for the intra-cluster routing tries to balance the
fanout of each CLB input pins to approximately p(kN) [15].
Thus, all CLB input pins are approximately equivalent in
terms of critical path delay and their general connectivity.

3.2. Baseline Routing Algorithm

The Baseline router expands the RRG with extra vertices
and edges to represent the topology of the intra-cluster
routing for each CLB. Pathfinder now routes nets to BLE
input pins, rather than CLB input pins, and must therefore
be augmented with information about which BLE is the
sink of each net. Beyond that, all input pins of the same
BLE are treated as equivalent.

One drawback is that the RRG becomes significantly
larger: the search space for legal and high quality routes
grows, and the larger data structure may stress the memory
subsystem of the computer that runs the router. VPR’s
implementation of PathFinder is otherwise unmodified.

3.3. Routing with Selective RRG Expansion (SERRGE)

In the baseline router, the RRG requires the usage of
memory to store both the FPGA architectural parameters
and data about the route that PathFinder is presently
computing. The physical FPGA parameters are stored
statically, while the temporary routing data is dynamic.

For the static routing resources, any optimization must
alter the way that VPR represents the physical layout of the
FPGA. This would require a major retooling of VPR, and
has been left open for future exploration. Instead, we try to
reduce the overhead of dynamic memory resources
required by VPR’s implementation of PathFinder.

To reduce the memory footprint of the RRG, we
modified VPR’s implementation of PathFinder to perform
Selective RRG Expansion (SERRGE). SERRGE features a
custom memory manager and garbage collector that are
specific to the RRG and other associated data structures
used by VPR’s implementation of PathFinder.

VPR’s PathFinder implementation routes one sink at a
time; nets with fanout have multiple sinks. PathFinder’s
wave expansion step finds a path from the source to an
input pin j of the CLB that contains the sink. Upon finding
a CLB input pin, SERRGE then expands the RRG to
include the neighborhood of the CLB input pin, i.e. the
LUT input pins driven by the CLB input pin. This
expansion facilitates negotiation with the LUT input pins
as future nets are routed. As long as the selected CLB input
pin yields a quality route, SERRGE does not expand the
RRG to include the entire sparse crossbar topology.

We also introduced a garbage collector that
periodically inspects the size of the RRG; if the
dynamically-allocated RRG grows more than 30% larger
than its original size (i.e., the RRG that represents the
global routing resources, but no intra-cluster routing), then
the garbage collector is invoked to delete all non-essential
data from the dynamically expanded RRG, expansion
maps, and trace-back arrays. In practical terms, this
ensures that the dynamically generated RRG is never more
than 1.3x larger than the RRG used for FPGAs with fully-
populate intra-cluster routing crossbars (i.e., the RRG used
in VPR 5.0, which does not support sparse crossbars).

3.4. Routing with Partial Pre-Routing (PPR)

Routing with Partial Pre-Routing (PPR) is a two-step
process that is conceptually simpler than SERRGE,
although theoretically more constrained. The PPR stage
performs intra-CLB routing first, followed by a global
routing step, which is constrained by the PPR result.

The PPR step is applied to each CLB in the FPGA that
contains at least one sink. PPR routes nets from CLB input
pins to BLE inputs, from BLE output pins to CLB output
pins, and from BLE output pins to BLE input pins through
the intra-cluster routing’s local feedbacks.

PPR models this problem as a multi-commodity flow,
where the set of sources are the CLB input pins, the sinks
are the BLE input pins, and the intra-cluster routing wires
are intermediate vertices in the RRG. The demand
represents the number of CLB input pins from which each
BLE can select its inputs, and is essentially a function of the
intra-cluster routing crossbar. We invoke PathFinder to
route the nets locally within the CLB.

In the degenerate case where no nets in a CLB have
fanout, then the problem becomes a single commodity flow
that can be solved in polynomial time, e.g., using a network
flow algorithm; we have not implemented this optimization
thus far, as PPR already runs efficiently (Section 5.2).

After PPR, PathFinder is invoked to perform global
routing, i.e., from input pads to CLBs, between CLBs, and
from CLBs to output pads. This step is conceptually similar
to FPGA routing with full crossbar intra-cluster routing;
however, the PPR solution at each CLB imposes additional
constraints. With full crossbar intra-cluster routing, all CLB
input pins are equivalent, as each CLB input pin connects to
each BLE input pin within the CLB. PPR, in contrast,
connects specific CLB input pins to specific BLE input
pins. Therefore, all k < K CLB input pins that connect to
the same BLE input are equivalent; that is, to say, the k nets
that drive the k inputs of the LUT within the BLE can be
routed to the k CLB input pins in any order; however, none
of the other CLB input pins connect to that specific BLE, as
a result of running PPR as a preprocessing step.

Routing with PPR partitions the RRG into smaller
disjoint graphs, which are routed individually. If we assume
that all CLBs have the same intra-cluster routing crossbar
topology, then PPR can generate one RRG up-front and re-
use it for local routing within all CLBs, followed by a
second RRG for the inter-CLB router. Since the lifetimes
of both RRGs are disjoint, the memory requirement of PPR
should not exceed that of a router for an FPGA with fully-
populated intra-cluster routing crossbars.

4. EXPERIMENTAL SETUP

The purpose of our experiments is to evaluate the
performance and memory consumption of routing with
SERRGE (Section 3.3) and PPR (Section 3.4) in
comparison to the baseline router (Section 3.5).

4.1. VPR 5.0

We began this work when VPR 5.0 [17] was the most up-
to-date version and we have implemented our routing
approaches in that framework. VPR 5.0 did not support
sparse intra-cluster routing; we added the required features,
as discussed in Section 2. We used a tool described by
Lemieux and Lewis [15] to generate routable sparse
crossbars with a user-specified population density.

We used ABC [2] for logic synthesis and technology
mapping, T-VPack1 for packing, and VPR 5.0 for
placement and routing. We modified the architectural
configuration system for VPR 5.0 to introduce sparse intra-
cluster routing in the form of the B matrix (see Section 2).
We modified VPR’s implementation of PathFinder to
accommodate sparse intra-cluster routing crossbars as
described in Sections 3.2-3.4. We attempted to retain VPR
5.0’s timing-driven features as much as possible
throughout our implementation.

1 T-VPack has since been deprecated as part of the Verilog-to-Routing

(VTR) flow; packing is now integrated into VPR 6.0.

The Beta release of VPR 6.0 [16] featured sparse
intra-cluster routing, but did not include a timing-driven
router; that feature was added to the official release of
VPR 6.0 early in 2012, when the implementation work
outlined here was mostly complete. VPR 6.0’s router
appears to be similar to routing with PPR (Section 3.4),
however, we have not compared against it directly.

4.2. Experimental Parameters

For the FPGA architectural configuration, we took four of
the VPR architecture files from the iFAR repository [10,
11]. We considered architectures with LUT sizes ranging
from 4-7. Table 1 lists the baseline parameters for the
architectures we considered.
 We considered intra-cluster routing crossbar population
densities of 40%, 50%, 75%, and 100% in our experiments.
We vary several of the architectural parameters, including
N (the number of LUTs per cluster) and K (LUT size). As
suggested in ref. [1], we set the number of inputs pins per
CLB to I = ½K(N+1). The I/O pad capacity was set to 8.
 VPR repeatedly routes each benchmark using a binary
search to identify the smallest channel width, Wmin, for
which a legal route can be found. VPR also allows the user
to specify a chosen channel width (W), and VPR will try its
best to find a legal route, but may fail. We took that latter
approach in our experiments, and set W = 1.4Wmin.
 PathFinder takes an iterative approach to routing, and
terminates after a user-specified number of iterations. We
set the maximum number of iterations allowed to 100; if
PathFinder cannot find a successful route after 100
iterations, then we assume that it has failed.

4.3. Timing and Area Models

Our timing model was similar to VPR 5.0. We added
models to account for delays inside of the CLBs. The
timing graph is generated such that every CLB or LUT
input pin becomes a timing node. The connectivity
between pins is represented by timing edges, and delays
are marked on edges, rather than nodes.

The area model sums the aggregate areas of the
number of minimum-width transistors required to place
and route a circuit on an FPGA. We did not modify the
counting method used in VPR, but we did add extensions
to account for the intra-cluster routing area, which now
depends on the population density of the internal crossbar.
We employed the basic techniques that were used in VPR
to estimate the silicon area occupied by each MUX and
wire in the CLB. We assume that a minimum width
transistor takes 1 unit of area. A double-width transistor
takes twice the diffusion width, but the same spacing, so
we assume it takes 1.5x the area of a minimum-width
transistor.

Table 1. FPGA architectural parameters taken from configuration
files in the iFAR repository [10, 11]. 65nm CMOS (BPTM) was
assumed for all architectures.

K N W I Fcin Fcout CLB Area
4 10 96 22 0.2 0.1 3956.25
5 10 96 28 0.15 0.1 5496.54
6 10 96 33 0.15 0.1 8069.46
7 10 104 39 0.15 0.1 13065.9

Buffer sizes are calculated based on the drive strength

requirements and depend on the fan-out of the buffer. VPR
uses 4x the minimum size, which we have adopted for
general buffers. We sized the CLB input buffers using the
approach used by Lemieux et al. [14], where the drive
strength is at least 7x and at most 25x the minimum size.

We model an FPGA with single-driver wires; each
wire segment begins with a multiplexer followed by a
driver. We attempt to judiciously select the multiplexer
size depending on the number of inputs. One-level
multiplexers are used when there are 4 or fewer inputs, and
more levels are used when the number of multiplexer
inputs increases.

4.4. Benchmarks

We selected 10 of the largest IWLS benchmarks [17]
for use in our experiments; Table 2 summarizes them.

VPR generates a custom FPGA that is sized for each
benchmark. The second column of Table 4 lists the
dimensions of the FPGA generated for each benchmark
(e.g., an MxN array of CLBs). The third and fourth
columns list the number of nets and CLBs used in each
benchmark for an FPGA architecture with parameters
N=8, K=6, and I=27, i.e., each CLB contains eight 6-
LUTs and has 27 input pins.

5. EXPERIMENTAL RESULTS

All experiments here compare SERRGE (Section 3.3) and
PPR (Section 3.4) against the baseline router (Section 3.2),
and against one another. Since we model FPGAs with
sparse intra-cluster routing crossbars, we cannot compare
directly against VPR 5.0’s implementation of PathFinder,
except for the special case of a fully-populated crossbar.

Table 2. Benchmark summary.

 All experiments are run three times per benchmark,
using different random number seeds for placement; each
placed circuit is then routed, and measurements are taken
from the results of the routing: e.g., routability, runtime,
critical path delay, etc. The results are then averaged across
the ten IWLS benchmarks, unless stated otherwise.
 We limited PathFinder to 100 routing iterations. Our
routability experiments (Section 5.1) report the percentage
of nets that were routed legally. Our other experiments—
runtime (Section 5.2), memory consumption (Section 5.3),
and critical path delay (Section 5.4)—only include results
for benchmarks that routed successfully. For example, we
do not include the critical path delay of a benchmark that
failed to route in our averaged results.

5.1. Routability

Figs. 2 and 3 report the percentage of nets routed without
any sharing violations after 100 iterations of PathFinder,
targeting an FPGA with sparse intra-cluster routing
crossbars with a population density of p=50%.

In Fig. 2, the CLB size is fixed at N=8 BLEs, and the
LUT sizes vary from K=4 to 7; in Fig. 3, the LUT size is
fixed at K=6, and the number of BLEs per CLB varies
from N=4 to 10.

SERRGE and PPR complete a greater percentage of
their routes (after 100 iterations of PathFinder) than the
Baseline router; the results for the baseline router degrade
significantly for 6- and 7-LUTs, and for CLBs with 8 or 10
BLEs. In most cases, SERRGE routes 1-2% more nets
successfully than PPR. With more routing iterations,
Baseline could potentially obtain improved routability, as
it would have more time to explore a larger search.
SERRGE and PPR converge faster because they restrict
the search space that is explored.

Figure 2. Percentage of nets routed successfully on FPGAs after 100
routing iterations, with LUT sizes ranging from 4 to 7. Here N = 8, p
= 50%, and I = 18, 23, 27, and 32 respectively.

80%$

85%$

90%$

95%$

100%$

4$ 5$ 6$ 7$

Baseline$ SERRGE$ PPR$

92% 92% 90%

80%

99%

97%
97%

95%
97%

95% 96%

94%

LUT Size (K)

Percentage of Nets Routed Successfully

Benchmark	 Array	 size	 Nets	 	 CLBs	
ac_ctrl	 48x48	 5097	 5008	
aes_core	 33x33	 5800	 2518	
des_area	 16x16	 1569	 695	
mem_ctrl	 27x27	 4464	 3158	
pci_bridge32	 74x74	 8016	 7815	
spi	 13x13	 923	 712	
systemcaes	 21x21	 2509	 2173	
systemcdes	 12x12	 1068	 706	
usb_funct	 40x40	 5154	 4429	
wb_conmax	 47x47	 10430	 6297	

Figure 3. Percentage of nets routed successfully on FPGAs after 100
routing iterations, with various CLB sizes N = 4, 6, 8, and 10. Here
K=6, p = 50%, and I = 15, 21, 27, and 33 respectively.

5.2. Runtime

Our second experiment compares the runtimes of the
routing algorithms as a function of intra-cluster routing
crossbar population density (p). As shown in Fig. 4, the
runtime of all three routing algorithms increases
monotonically with p: the baseline has the largest runtime,
as expected; SERRGE is in the middle; and PPR runs the
fastest, and shows the greatest robustness to variations in p.

For p = 100%, it makes sense to compare against the
VPR 5.0 PathFinder implementation, which only works for
fully populated intra-cluster routing crossbars, rather than
the Baseline router (Section 3.2). Fig. 5 reports the result
of this comparison, varying the LUT size (K). PPR and
VPR 5.0’s router achieve comparable runtimes, while
SERRGE runs considerably slower.

Fig. 6 reports the runtime of the intra-cluster routing
phase of PPR as a function of p; the reported runtimes
increase monotonically with p; however, even in the worst
case (p = 100%), the runtimes of the intra-cluster routing
phase of PPR are on the order of tens of seconds, while the
overall runtime of PPR plus global routing is on the order
of hundreds of seconds (Fig. 5). Thus, the runtime of PPR
is quite robust to variations in p.

5.3. Memory Consumption

Fig. 7 reports the static and dynamic memory consumption
of the Baseline router, SERRGE, and PPR for FPGAs with
intra-cluster routing crossbars with population densities of
p = 40% and 100%. The dynamic memory consumption
reported in Fig. 7 is the maximum amount of allocated data
(in megabytes) taken over the runtime of the router. These
results are averaged over all of the benchmarks.

Figure 4. Average runtime of the routers with varying population
densities. In this experiment, N=8, K=6, and I=27.

Figure 5. Average runtime of PPR, SERRGE, and the VPR 5.0 router
for FPGAs with intra-cluster routing crossbar population densities of
p=100%. Here N=8, I=27, and K=4, 5, 6, and 7.

Figure 6. Intra-cluster routing runtime for PPR for different
population densities. Here K=6, N=8, and I=27.

SERRGE and PPR use considerably less static and

dynamic memory than the Baseline router, while PPR uses
marginally less memory than SERRGE. It is important to
note that the memory overhead of SERRGE is managed
explicitly by the threshold used by the garbage collector,
and can be tuned up or down.

80%$

85%$

90%$

95%$

100%$

4$ 6$ 8$ 10$

Baseline$ SERRGE$ PPR$

98% 98%

90%

85%

98%

96%
97% 97%

97%

95%
96%

95%

Number of BLEs per cluster (N)

Percentage of Nets Routed Successfully

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

40%" 50%" 75%" 100%"

Baseline

SERRGE

PPR

Se
co

nd
s

Average Runtime

Intra-cluster routing crossbar population density (p)

0"
100"
200"
300"
400"
500"
600"
700"
800"
900"

1000"

4" 5" 6" 7"

VPR"5.0" SERRGE" PPR"

Average Runtime

Se
co

nd
s

LUT size (K)

0"

4"

8"

12"

16"

sp
i$

sys
tem

cd
es$

de
s_a
rea
$

sys
tem

ca
es$

me
m_
ctr
l$

ac
_c
trl
$

us
b_
fun
ct$

ae
s_c
ore
$

pc
i_b
rid
ge
32
$

wb
_c
on
ma
x$

40%" 50%" 75%" 100%"

Intra-cluster Routing Runtime for PPR

Se
co

nd
s

Figure 7. Average static and dynamic memory consumption of the
three routers for FPGAs with sparse intra-cluster routing crossbars
with population densities p=40% and p=100%. Here K=6, N=8, and
I=27.

5.4. Critical Path Delay

Aside from routability, critical path delay is an important
metric by which to evaluate a router. Fig. 8 reports the
average critical path delay obtained by the Baseline router,
SERRGE, and PPR as a function of intra-cluster routing
crossbar population density, p.

In Fig. 8, the largest reported variation between routers
is 0.55ns (p = 75%), which is not particularly significant.
The general trend suggests that the Baseline Router
achieves critical path delays that are around 0.5ns slower
than SERRGE or PPR; however, there is also a lot of
variance in quality between SERRGE and PPR: SERRGE
is better in two cases (p = 40% and 100%), worse in one
case (p = 75%), and both PPR and SERRGE are equal in
the last case (p = 50%). We conservatively conclude that
the three algorithms are comparable to one another in terms
of critical path delay. This could be further explored using
experimental noise-reduction strategies [20]; we leave this
particular issue open for future work.

Figure 8. Average critical path delay of the three routers for FPGAs
with sparse intra-cluster routing crossbars with population densities
p=40%, 50%, 75%, and 100%. Here K=6, N=8, and I=27.

6. RELATED WORK

Lemieux et al. [15] introduced the idea of sparse crossbars
in 2000, and fully evaluated their use as intra-cluster
routing one year later [14]. Later work by Feng and
Kaptanoglu [7] use entropy counting to design input
crossbars that lead to interconnect topologies with greater
routability.

Lemieux and Lewis [14] suggested that routability
could be improved by adding spare CLB input pins. The
goal of this work is comparable, however, we improve
routability through the introduction of effective CAD
algorithms, without requiring any architectural changes.

Chin and Wilton [6] developed techniques to reduce
the memory requirements of routing algorithms, which
influenced the development of SERRGE significantly.
Their work did not attempt to model sparse crossbar
topologies within the intra-cluster routing of a CLB; thus,
their work does not address the problem of RRG
expansion, which occurred in our Baseline router (Section
3.2). Similarly, other routers that have been published over
the past 20 years (e.g., refs. [4, 5, 12]) are certainly
relevant to this work, but address different issues.

The PathFinder routing algorithm [19] has been at the
core of this work, due to its implementation in VPR and its
enduring legacy. It is important to recall that neither
SERRGE nor PPR has attempted to replace PathFinder,
and, they both use it as a subroutine. Their objectives were
simply to avoid expanding the RRG, and, in doing so, they
restrict the search space provided to PathFinder when it is
called, in order to achieve faster convergence and reduce
memory overhead.

7. CONCLUSION

The SERRGE and PPR routing algorithms were introduced
to cope with the runtime and memory overhead associated
with introducing sparse intra-cluster routing crossbar
information into an FPGA’s RRG. The Baseline router,
which extends the RRG with intra-cluster routing topology
information for each CLB, runs slowly and consumes an
inordinate amount of memory.
 SERRGE is considerably more complex to implement
than PPR, as it is essentially an application-specific
dynamic memory management and garbage collection
framework that has been specialized to meet the needs of
the RRG and the PathFinder routing algorithm. Although
we did not discuss details, significant modifications were
made to several of VPR 5.0’s internal data structures in
order to facilitate these new features.
 In contrast, PPR is much simpler, as it computes routes
within each CLB up-front, and then computes a global
route that obeys those constraints imposed by the pre-
computed intra-CLB routes. Thus, our implementation and
debugging effort for PPR was far less than for SERRGE.

0"

5"

10"

15"

20"

25"

30"

Baseline" SERRGE" PPR" Baseline" SERRGE" PPR"

p=40%" p=100%"

Sta8c" Dynamic"

RRG Size

M
B

!12!!

!13!!

!14!!

40%! 50%! 75%! 100%!

Baseline! SERRGE! PPR!

Intra-cluster routing crossbar population density (p)

Average Critical Path Delay

ns

13.30

13.60
13.40

13.20

12.80

13.10

13.00

12.90

13.30

13.10
12.85

13.00

 PPR routes faster than SERRGE and requires less
memory; in its favor, SERRGE achieved routability
improvements of 1-2% for different intra-cluster routing
crossbar population densities in comparison with PPR. Both
SERRGE and PPR restrict the search space explored by
PathFinder as it routes a circuit through the RRG. In
particular PPR fixes all intra-cluster routes prior to global
routing, which can lead to global failures if demand for a
specific subset of global wires is particularly high.
 We believe that it should be possible to combat this
limitation by invoking a SERRGE-inspired recovery step,
which would facilitate re-negotiation of intra-CLB routing
resources, when PPR fails; a detailed investigation of this
enhancement is left open for future work.

8. REFERENCES

[1] E. Ahmed, and J. Rose, “The effect of LUT and cluster size
on deep submicron FPGA performance and density,” IEEE
Trans. VLSI, vol. 12, no. 3, pp. 288-298, Mar. 2003. DOI=
http://dx.doi.org/10.1109/TVLSI.2004.824300

[2] Berkeley Logic Synthesis and Verification Group. “ABC: A
system for sequential synthesis and verification.: Dec. 2005
release.” URL= http://www.eecs.berkeley.edu/~alanmi/abc

[3] V. Betz, and J. Rose, “Automatic generation of FPGA
routing architectures from high-level descriptions,” in Proc.
ACM/SIGDA Int. Symp. FPGAs, Feb. 2000, pp. 175-184.
DOI= http://doi.acm.org/10.1145/329166.329203

[4] S. Brown, J. Rose, and Z. G. Vranesic, “A detailed router for
field programmable gate arrays,” IEEE Trans. on Computer-
Aided Design, vol. 11, no. 5, pp. 620-628, May 1992. DOI=
http://dx.doi.org/10.1109/43.127623

[5] Y. W. Chang, K. Zhu, and D. F. Wong, “Timing-driven
routing for symmetrical array-based FPGAs,” ACM Trans.
Design Automation of Electronic Systems, vol. 5, no. 3, pp.
433-450, Jul. 2000, DOI=
http:/doi.acm.org/0.1145/348019.348101

[6] S. Y. L. Chin, and S. J. E. Wilton, “Static and dynamic
memory footprint reduction for fpga routing algorithms,”
ACM Trans. Reconfigurable Technol. Syst., vol. 1, no. 4, pp.
1–20, Jan. 2009. DOI=
http://doi.acm.org/10.1145/1462586.1462587

[7] W. Feng, and S. Kaptanoglu, “Designing Efficient Input
Interconnect Blocks for LUT Clusters Using Counting and
Entropy,” ACM Trans. Reconfigurable Technol. Syst., vol. 1,
no. 1, pp. 1-28, Mar. 2008. DOI=
http://doi.acm.org/10.1145/1331897.1331902

[8] IWLS 2005 Benchmarks. URL=
http://iwls.org/iwls2005/benchmarks.html

[9] J. Rose, J. Luu, C. Yu, O. Densmore, J. Geoders, A.
Sommerville, K. B. Kent, P. Jamieson, and J. Anderson,
"The VTR project: architecture and CAD for FPGAs from
Verilog to routing," in Proc. ACM/SIGDA Int. Symp.

FPGAs, Feb. 2012, pp. 77-86. DOI=
http://doi.acm.org/10.1145/2145694.2145708

[10] I. Kuon, and J. Rose, “Area and delay trade-offs in the
circuit and architecture design of FPGAs,” in Proc.
ACM/SIGDA Int. Symp. FPGAs Feb., 2008, pp. 149-158.
DOI= http://doi.acm.org/10.1145/1344671.1344695

[11] I. Kuon, and J. Rose, “Automated transistor sizing for FPGA
architecture exploration,” in Proc. ACM/IEEE Design
Automation Conference, June 2008, pp. 792-795. DOI=
http://doi.acm.org/10.1145/1391469.1391671

[12] Y. S. Lee, and C. H. Wu, “A performance and routability-
driven router for FPGAs considering path delay.” In Proc.
ACM/IEEE Design Automation Conference, June 1995, pp.
557–561. DOI=
http://dx.doi.org/10.1109/DAC.1995.250009

[13] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Direction and
single-driver wires in FPGA interconnect,” in Proc. IEEE
Int. Conf. Field-Programmable Technology, Dec. 2004, pp.
41-48. DOI= http://dx.doi.org/10.1109/FPT.2004.1393249

[14] G. Lemieux, and D. Lewis, “Using sparse crossbars within
LUT clusters,” in Proc. ACM/SIGDA Int. Symp. FPGAs,
Feb. 2001, pp. 59-68. DOI=
http://doi.acm.org/10.1145/360276.360299

[15] G. Lemieux, P. Leventis, and D. Lewis, “Generating highly-
routable sparse crossbars for PLDs,” In Proc. ACM/SIGDA
Int. Symp. FPGAs, Feb. 2000, pp. 155-164. DOI=
http://doi.acm.org/10.1145/329166.329199

[16] J. Luu, J. Anderson, and J. Rose, “Architecture description
and packing for logic blocks with hierarchy, modes and
complex interconnect,” in Proc. ACM/SIGDA Int. Symp.
FPGAs, Feb.-Mar. 2011, pp. 227-236. DOI=
http://doi.acm.org/10.1145/1950413.1950457

[17] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M.
Fang, and J. Rose, “VPR 5.0: FPGA CAD and architecture
exploration tools with single-driver routing, heterogeneity
and process scaling,” in Proc. ACM/SIGDA Int. Symp.
FPGAs, Feb. 2009, pp. 133-142. DOI=
http://doi.acm.org/10.1145/1508128.1508150

[18] A. Marquardt, V. Betz, and J. Rose, “Using cluster-based
logic blocks and timing-driven packing to improve FPGA
speed and density,” in Proc. ACM/SIGDA Int. Symp.
FPGAs, Feb. 1999, pp. 37-46. DOI=
http://doi.acm.org/10.1145/296399.296426

[19] L. McMurchie, and C. Ebeling, “Pathfinder: a negotiation-
based performance-driven router for FPGAs,” in Proc.
ACM/SIGDA Int. Symp. FPGAs, Feb. 1995, pp. 111-117.
DOI= http://doi.acm.org/10.1145/201310.201328

[20] R. Rubin and A. DeHon, “Timing-driven Pathfinder
pathology and remediation: quantifying and reducing delay
noise in VPR-Pathfinder,” in Proc. ACM/SIGDA Int. Symp.
FPGAs, Feb. 2011, pp. 173-176. DOI=
http://dx.doi.org/10.1145/1950413.1950447

