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ABSTRACT 

Modern FPGAs employ sparse crossbars in their intra-
cluster routing. Modeling these crossbars enlarges the 
routing resource graph (RRG), a data structure used by 
most FPGA routers, while enlarging the search space for 
finding legal routes. We introduce two scalable routing 
heuristics for FPGAs with sparse intra-cluster routing 
crossbars: SElective RRG Expansion (SERRGE), which 
compresses the RRG, and dynamically decompresses it 
during routing, and Partial Pre-Routing (PPR), which 
locally routes all nets in each cluster, and routes global nets 
afterwards. Our experiments show that: (1) PPR and 
SERRGE converge faster than a traditional router using a 
fully-expanded RRG; (2) they both achieve better 
routability than the traditional router, given a limited 
runtime budget, with SERRGE achieving 1-2% better 
routability than PPR, on average; and (3) PPR uses far less 
memory and runs much faster than SERRGE, making it 
ideal for high capacity FPGAs.  

1. INTRODUCTION 

FPGA routing is the process by which paths through the 
FPGA routing fabric are selected to establish connections 
between logic elements and the I/O pads. To establish a 
connection, the router must find a sequence of unused 
resources along a path from the source to the sink.  
 The Routing Resource Graph (RRG) is a data structure 
that represents the routing resources of an FPGA. Routing a 
circuit is equivalent to finding a set of disjoint paths in the 
RRG that satisfy timing constraints; this problem is NP-
hard [19]. The most successful FPGA routing heuristic is 
the PathFinder algorithm [19], which iteratively tries to 
eliminate congestion while minimizing the delay of the 
critical paths.  
 The academic Versatile Place and Route (VPR) tool 
[17] employs an implementation of PathFinder. VPR 
models a cluster-based architecture, in which LUTs are 
grouped into Configurable Logic Blocks (CLBs); 
connections between LUTs in a CLB use fast intra-cluster 
routing, which is implemented as a crossbar.  

  
 Most early cluster-based FPGAs used a full crossbar for 
intra-cluster routing; however, the area overhead of a full 
crossbar is significant. Modern cluster-based FPGAs now 
employ sparse crossbars for intra-cluster routing. In the 
past, a router could simply route all nets to CLB input pins, 
as a full crossbar ensures the existence of paths from each 
CLB input pin and local feedback to each LUT input pin; 
however sparse crossbars do not provide this guarantee, so 
the router must now consider the sparse crossbar topology 
at each CLB. Naïvely, one could expand the RRG to 
include the sparse crossbar for each CLB, as routing would 
remain a disjoint path problem; however, doing so enlarges 
the search space for finding legal and high quality routes, 
and the expanded RRG consumes more memory.  
 This paper introduces and compares two new routing 
algorithms for FPGAs with sparse intra-cluster routing 
crossbars. SElective RRG Expansion (SERRGE) executes 
PathFinder on a compressed RRG; SERRGE decompresses 
regions of the RRG where PathFinder is actively exploring 
and negotiating new routes. Partial Pre-Routing (PPR) first 
runs PathFinder at every CLB to route the intra-cluster 
portion of all nets, and then runs PathFinder globally to 
complete the inter-cluster portion of the routes. PPR’s 
advantages are its simplicity and the fact that it never 
expands the RRG; its limitation is that it cannot re-negotiate 
intra-CLB routes that collectively cause congestion in the 
global routing network.  
 We observed that running PathFinder on a fully 
expanded RRG is not competitive with either SERRGE or 
PPT in terms of runtime or memory usage; PPR is faster 
and uses less memory than SERRGE and produces 
comparable results in terms of critical path delay, except for 
very sparse crossbars, e.g., 40% population density. Based 
on these experiments, we believe that PPR should be used 
in most cases, and that SERRGE should be employed as a 
backup, primarily when PPR either fails to route the circuit 
or fails to meet timing constraints. 

2. BACKGROUND AND TERMINOLOGY 

This section briefly reviews the FPGA architecture 
employed by VPR [17], as shown in Fig. 1.  



 
Fig. 1. Basic Logic Element (BLE) (a); a Configurable Logic Block 
(CLB) contains several BLEs, with fast local interconnect provided 
by the Input Interconnect Block (IIB); the Connection Block (C 
Block) inputs and outputs interface the CLB with the global routing 
network (b); the floorplan of a generic island-style FPGA (c).  

 
 
 The basic unit of computation in an FPGA is a K-input 
LookUp Table (K-LUT). A Basic Logic Element (BLE) is a 
K-LUT coupled with a bypassable flip-flop, as shown in 
Fig. 1(a).  
 Fig. 1(b) shows the CLB interface to the adjacent 
routing channel. The Connection Block (C Block) connects 
each CLB input pin to a subset of the wires in the adjacent 
routing channel; the intra-cluster routing connects the CLB 
input pins and local feedbacks (one per BLE) to the BLE 
inputs.  
 Fig. 1(c) shows the FPGA floorplan. Switch Blocks (S 
Blocks) are programmable intersections between horizontal 
and vertical routing channels. The multiplexers, shown on 
the right-hand side of Fig. 1(b), are implemented in the S 
Blocks, which are shown (without detail) in Fig. 1(c). Fig. 
1(b) depicts inputs coming in from the left hand side of the 
CLB and outputs leaving to the right; in actuality, inputs 
and outputs may enter and exit from all four sides.   
 VPR’s architecture configuration file specifies several 
parameters that VPR uses to generate the logic and routing 
architecture of an FPGA under exploration: 

 K:  the LUT size (i.e., a K-LUT); 
 N:  the number of LUTs per CLB; 
 I:  the number of CLB input pins; 
 W:  the number of segments per routing channel; and 
 Fcin and Fcout:    C Block connectivity parameters 

 
Each C Block input multiplexer in Fig. 1(b) selects one 

of W×Fcin wires, and each BLE drives W×Fcout segments in 
the adjacent routing channels. Most FPGAs use single 
driver routing [13], so the C Block output is a conceptual 
description of the routing topology. 

We model the intra-cluster routing as a 2-dimensional 
binary matrix B, with I+N columns and KN rows. Each 
column corresponds to an input (a CLB input pin or a local 
feedback from a BLE in the cluster), and each row 
corresponds to a BLE input. B(i, j) = 1 if a signal can route 
from input i to output j, and 0 otherwise. It is important to 
note that B simply models the input-to-output connectivity 
of the crossbar, but does not model its internal architecture.  

As an example, we model a CLB with N=2, K=2 (e.g., 
it contains two 2-LUTs); the four BLE inputs are denoted 
b00, b01, b10, and b11. The CLB has three input pins, I0, I1, 
and I2, and two local feedbacks from the BLEs, O0 and O1: 

 
In this example, there is a connection from CLB input pin 
I0 to LUT input pins b00 and b01, but not b10 and b11; also, 
the local feedbacks are not used. 

We used a tool developed by Lemieux et al. [15] to 
generate routable sparse crossbars with a user-provided 
density function p. The tool generates matrix B such that 
each row, column, and the entire matrix all have a 
population percentage of approximately p, i.e.: 

𝐵 𝑖, 𝑗 = 𝑝 𝐼 + 𝑁   ± 1! ,  (1) 

𝐵 𝑖, 𝑗 = 𝑝𝑘𝑁   ± 1! , and  (2) 

𝐵 𝑖, 𝑗 = 𝑝𝑘(𝐼 + 𝑁)   ± 1!,! .  (3) 

3. FPGA ROUTING ALGORITHMS 

The first step of most routers is to allocate the RRG. In 
VPR’s implementation of PathFinder, RRG vertices 
represent wires and pins internal to the FPGA, and edges 
represent the switches that connect them. Here, we describe 
the assumptions that underlie VPR’s router, along with two 
heuristic variations that reduce the RRG’s memory 
footprint. These variations restrict the search space explored 
by the router, while speeding up convergence.   
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3.1. CLB Input Pins 

VPR 5 (and its predecessors) assumes that the intra-cluster 
routing is a full crossbar; all CLB input pins are equivalent 
and there is no need to model the intra-cluster routing. A 
legal route is obtained by routing all circuit nets to CLB 
input pins, as the full crossbar guarantees trivially-found 
routes from CLB input pins to LUT input pins.  
 When the intra-cluster routing becomes sparse, CLB 
input pins are no longer equivalent; some may be 
equivalent, depending on the crossbar topology. Recall that 
I is the number of CLB input pins, and that N is the number 
of BLEs in the CLB. We group the CLB input pins into N 
non-disjoint subsets of size rj, 0 < j < N-1 under the 
assumption that the input pins of each subset are logically 
equivalent. Subset Sj contains the CLB input pins that can 
be routed to BLE input pin j. Based on this assumption, 
BLE j can select its inputs from Sj and Sj only, and there are 
rj = |Sj| inputs available for BLE j. It is important to note 
that these sets of input pins are non-disjoint, i.e., most CLB 
input pins will belong to multiple subsets. 
 The tool that we used to generate the sparse crossbar 
topology for the intra-cluster routing tries to balance the 
fanout of each CLB input pins to approximately p(kN) [15]. 
Thus, all CLB input pins are approximately equivalent in 
terms of critical path delay and their general connectivity.  

3.2. Baseline Routing Algorithm 

The Baseline router expands the RRG with extra vertices 
and edges to represent the topology of the intra-cluster 
routing for each CLB. Pathfinder now routes nets to BLE 
input pins, rather than CLB input pins, and must therefore 
be augmented with information about which BLE is the 
sink of each net. Beyond that, all input pins of the same 
BLE are treated as equivalent.  

One drawback is that the RRG becomes significantly 
larger: the search space for legal and high quality routes 
grows, and the larger data structure may stress the memory 
subsystem of the computer that runs the router. VPR’s 
implementation of PathFinder is otherwise unmodified. 

3.3. Routing with Selective RRG Expansion (SERRGE) 

In the baseline router, the RRG requires the usage of 
memory to store both the FPGA architectural parameters 
and data about the route that PathFinder is presently 
computing. The physical FPGA parameters are stored 
statically, while the temporary routing data is dynamic.  

For the static routing resources, any optimization must 
alter the way that VPR represents the physical layout of the 
FPGA. This would require a major retooling of VPR, and 
has been left open for future exploration. Instead, we try to 
reduce the overhead of dynamic memory resources 
required by VPR’s implementation of PathFinder.  

To reduce the memory footprint of the RRG, we 
modified VPR’s implementation of PathFinder to perform 
Selective RRG Expansion (SERRGE). SERRGE features a 
custom memory manager and garbage collector that are 
specific to the RRG and other associated data structures 
used by VPR’s implementation of PathFinder.  

VPR’s PathFinder implementation routes one sink at a 
time; nets with fanout have multiple sinks. PathFinder’s 
wave expansion step finds a path from the source to an 
input pin j of the CLB that contains the sink. Upon finding 
a CLB input pin, SERRGE then expands the RRG to 
include the neighborhood of the CLB input pin, i.e. the 
LUT input pins driven by the CLB input pin. This 
expansion facilitates negotiation with the LUT input pins 
as future nets are routed. As long as the selected CLB input 
pin yields a quality route, SERRGE does not expand the 
RRG to include the entire sparse crossbar topology. 

We also introduced a garbage collector that 
periodically inspects the size of the RRG; if the 
dynamically-allocated RRG grows more than 30% larger 
than its original size (i.e., the RRG that represents the 
global routing resources, but no intra-cluster routing), then 
the garbage collector is invoked to delete all non-essential 
data from the dynamically expanded RRG, expansion 
maps, and trace-back arrays. In practical terms, this 
ensures that the dynamically generated RRG is never more 
than 1.3x larger than the RRG used for FPGAs with fully-
populate intra-cluster routing crossbars (i.e., the RRG used 
in VPR 5.0, which does not support sparse crossbars).  

3.4. Routing with Partial Pre-Routing (PPR) 

Routing with Partial Pre-Routing (PPR) is a two-step 
process that is conceptually simpler than SERRGE, 
although theoretically more constrained. The PPR stage 
performs intra-CLB routing first, followed by a global 
routing step, which is constrained by the PPR result.  

The PPR step is applied to each CLB in the FPGA that 
contains at least one sink. PPR routes nets from CLB input 
pins to BLE inputs, from BLE output pins to CLB output 
pins, and from BLE output pins to BLE input pins through 
the intra-cluster routing’s local feedbacks.  

PPR models this problem as a multi-commodity flow, 
where the set of sources are the CLB input pins, the sinks 
are the BLE input pins, and the intra-cluster routing wires 
are intermediate vertices in the RRG. The demand 
represents the number of CLB input pins from which each 
BLE can select its inputs, and is essentially a function of the 
intra-cluster routing crossbar. We invoke PathFinder to 
route the nets locally within the CLB.  

In the degenerate case where no nets in a CLB have 
fanout, then the problem becomes a single commodity flow 
that can be solved in polynomial time, e.g., using a network 
flow algorithm; we have not implemented this optimization 
thus far, as PPR already runs efficiently (Section 5.2). 



After PPR, PathFinder is invoked to perform global 
routing, i.e., from input pads to CLBs, between CLBs, and 
from CLBs to output pads. This step is conceptually similar 
to FPGA routing with full crossbar intra-cluster routing; 
however, the PPR solution at each CLB imposes additional 
constraints. With full crossbar intra-cluster routing, all CLB 
input pins are equivalent, as each CLB input pin connects to 
each BLE input pin within the CLB. PPR, in contrast, 
connects specific CLB input pins to specific BLE input 
pins. Therefore, all k < K CLB input pins that connect to 
the same BLE input are equivalent; that is, to say, the k nets 
that drive the k inputs of the LUT within the BLE can be 
routed to the k CLB input pins in any order; however, none 
of the other CLB input pins connect to that specific BLE, as 
a result of running PPR as a preprocessing step.  

Routing with PPR partitions the RRG into smaller 
disjoint graphs, which are routed individually. If we assume 
that all CLBs have the same intra-cluster routing crossbar 
topology, then PPR can generate one RRG up-front and re-
use it for local routing within all CLBs, followed by a 
second RRG for the inter-CLB router. Since the lifetimes 
of both RRGs are disjoint, the memory requirement of PPR 
should not exceed that of a router for an FPGA with fully-
populated intra-cluster routing crossbars. 

4. EXPERIMENTAL SETUP 

The purpose of our experiments is to evaluate the 
performance and memory consumption of routing with 
SERRGE (Section 3.3) and PPR (Section 3.4) in 
comparison to the baseline router (Section 3.5).  

4.1. VPR 5.0 

We began this work when VPR 5.0 [17] was the most up-
to-date version and we have implemented our routing 
approaches in that framework. VPR 5.0 did not support 
sparse intra-cluster routing; we added the required features, 
as discussed in Section 2. We used a tool described by 
Lemieux and Lewis [15] to generate routable sparse 
crossbars with a user-specified population density. 

We used ABC [2] for logic synthesis and technology 
mapping, T-VPack1 for packing, and VPR 5.0 for 
placement and routing. We modified the architectural 
configuration system for VPR 5.0 to introduce sparse intra-
cluster routing in the form of the B matrix (see Section 2). 
We modified VPR’s implementation of PathFinder to 
accommodate sparse intra-cluster routing crossbars as 
described in Sections 3.2-3.4. We attempted to retain VPR 
5.0’s timing-driven features as much as possible 
throughout our implementation. 

                                                             
1 T-VPack has since been deprecated as part of the Verilog-to-Routing 

(VTR) flow; packing is now integrated into VPR 6.0. 

The Beta release of VPR 6.0 [16] featured sparse 
intra-cluster routing, but did not include a timing-driven 
router; that feature was added to the official release of 
VPR 6.0 early in 2012, when the implementation work 
outlined here was mostly complete. VPR 6.0’s router 
appears to be similar to routing with PPR (Section 3.4), 
however, we have not compared against it directly.  

4.2. Experimental Parameters 

For the FPGA architectural configuration, we took four of 
the VPR architecture files from the iFAR repository [10, 
11]. We considered architectures with LUT sizes ranging 
from 4-7. Table 1 lists the baseline parameters for the 
architectures we considered. 
 We considered intra-cluster routing crossbar population 
densities of 40%, 50%, 75%, and 100% in our experiments. 
We vary several of the architectural parameters, including 
N (the number of LUTs per cluster) and K (LUT size). As 
suggested in ref. [1], we set the number of inputs pins per 
CLB to I = ½K(N+1). The I/O pad capacity was set to 8. 
 VPR repeatedly routes each benchmark using a binary 
search to identify the smallest channel width, Wmin, for 
which a legal route can be found. VPR also allows the user 
to specify a chosen channel width (W), and VPR will try its 
best to find a legal route, but may fail. We took that latter 
approach in our experiments, and set W = 1.4Wmin.  
 PathFinder takes an iterative approach to routing, and 
terminates after a user-specified number of iterations. We 
set the maximum number of iterations allowed to 100; if 
PathFinder cannot find a successful route after 100 
iterations, then we assume that it has failed. 

4.3. Timing and Area Models 

Our timing model was similar to VPR 5.0. We added 
models to account for delays inside of the CLBs. The 
timing graph is generated such that every CLB or LUT 
input pin becomes a timing node. The connectivity 
between pins is represented by timing edges, and delays 
are marked on edges, rather than nodes.  

The area model sums the aggregate areas of the 
number of minimum-width transistors required to place 
and route a circuit on an FPGA. We did not modify the 
counting method used in VPR, but we did add extensions 
to account for the intra-cluster routing area, which now 
depends on the population density of the internal crossbar. 
We employed the basic techniques that were used in VPR 
to estimate the silicon area occupied by each MUX and 
wire in the CLB. We assume that a minimum width 
transistor takes 1 unit of area.  A double-width transistor 
takes twice the diffusion width, but the same spacing, so 
we assume it takes 1.5x the area of a minimum-width 
transistor. 
 



Table 1. FPGA architectural parameters taken from configuration 
files in the iFAR repository [10, 11]. 65nm CMOS (BPTM) was 
assumed for all architectures. 

K N W I Fcin Fcout  CLB Area 
4 10 96 22 0.2 0.1 3956.25 
5 10 96 28 0.15 0.1 5496.54 
6 10 96 33 0.15 0.1 8069.46 
7 10 104 39 0.15 0.1 13065.9 
  
Buffer sizes are calculated based on the drive strength 

requirements and depend on the fan-out of the buffer. VPR 
uses 4x the minimum size, which we have adopted for 
general buffers. We sized the CLB input buffers using the 
approach used by Lemieux et al. [14], where the drive 
strength is at least 7x and at most 25x the minimum size. 

We model an FPGA with single-driver wires; each 
wire segment begins with a multiplexer followed by a 
driver. We attempt to judiciously select the multiplexer 
size depending on the number of inputs. One-level 
multiplexers are used when there are 4 or fewer inputs, and 
more levels are used when the number of multiplexer 
inputs increases. 

4.4. Benchmarks 

We selected 10 of the largest IWLS benchmarks [17] 
for use in our experiments; Table 2 summarizes them. 

VPR generates a custom FPGA that is sized for each 
benchmark. The second column of Table 4 lists the 
dimensions of the FPGA generated for each benchmark 
(e.g., an MxN array of CLBs). The third and fourth 
columns list the number of nets and CLBs used in each 
benchmark for an FPGA architecture with parameters 
N=8, K=6, and I=27, i.e., each CLB contains eight 6-
LUTs and has 27 input pins.  

5. EXPERIMENTAL RESULTS 

All experiments here compare SERRGE (Section 3.3) and 
PPR (Section 3.4) against the baseline router (Section 3.2), 
and against one another. Since we model FPGAs with 
sparse intra-cluster routing crossbars, we cannot compare 
directly against VPR 5.0’s implementation of PathFinder, 
except for the special case of a fully-populated crossbar. 
   

Table 2. Benchmark summary. 

 All experiments are run three times per benchmark, 
using different random number seeds for placement; each 
placed circuit is then routed, and measurements are taken 
from the results of the routing: e.g., routability, runtime, 
critical path delay, etc. The results are then averaged across 
the ten IWLS benchmarks, unless stated otherwise. 
 We limited PathFinder to 100 routing iterations. Our 
routability experiments (Section 5.1) report the percentage 
of nets that were routed legally. Our other experiments—
runtime (Section 5.2), memory consumption (Section 5.3), 
and critical path delay (Section 5.4)—only include results 
for benchmarks that routed successfully. For example, we 
do not include the critical path delay of a benchmark that 
failed to route in our averaged results. 

5.1. Routability 

Figs. 2 and 3 report the percentage of nets routed without 
any sharing violations after 100 iterations of PathFinder, 
targeting an FPGA with sparse intra-cluster routing 
crossbars with a population density of p=50%.   

In Fig. 2, the CLB size is fixed at N=8 BLEs, and the 
LUT sizes vary from K=4 to 7; in Fig. 3, the LUT size is 
fixed at K=6, and the number of BLEs per CLB varies 
from N=4 to 10.  

SERRGE and PPR complete a greater percentage of 
their routes (after 100 iterations of PathFinder) than the 
Baseline router; the results for the baseline router degrade 
significantly for 6- and 7-LUTs, and for CLBs with 8 or 10 
BLEs. In most cases, SERRGE routes 1-2% more nets 
successfully than PPR. With more routing iterations, 
Baseline could potentially obtain improved routability, as 
it would have more time to explore a larger search. 
SERRGE and PPR converge faster because they restrict 
the search space that is explored.  

  

Figure 2. Percentage of nets routed successfully on FPGAs after 100 
routing iterations, with LUT sizes ranging from 4 to 7. Here N = 8, p 
= 50%, and I = 18, 23, 27, and 32 respectively.  
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Figure 3. Percentage of nets routed successfully on FPGAs after 100 
routing iterations, with various CLB sizes N = 4, 6, 8, and 10. Here 
K=6, p = 50%, and I = 15, 21, 27, and 33 respectively. 

5.2. Runtime 

Our second experiment compares the runtimes of the 
routing algorithms as a function of intra-cluster routing 
crossbar population density (p). As shown in Fig. 4, the 
runtime of all three routing algorithms increases 
monotonically with p: the baseline has the largest runtime, 
as expected; SERRGE is in the middle; and PPR runs the 
fastest, and shows the greatest robustness to variations in p.  

For p = 100%, it makes sense to compare against the 
VPR 5.0 PathFinder implementation, which only works for 
fully populated intra-cluster routing crossbars, rather than 
the Baseline router (Section 3.2). Fig. 5 reports the result 
of this comparison, varying the LUT size (K). PPR and 
VPR 5.0’s router achieve comparable runtimes, while 
SERRGE runs considerably slower.  

Fig. 6 reports the runtime of the intra-cluster routing 
phase of PPR as a function of p; the reported runtimes 
increase monotonically with p; however, even in the worst 
case (p = 100%), the runtimes of the intra-cluster routing 
phase of PPR are on the order of tens of seconds, while the 
overall runtime of PPR plus global routing is on the order 
of hundreds of seconds (Fig. 5). Thus, the runtime of PPR 
is quite robust to variations in p. 

5.3. Memory Consumption 

Fig. 7 reports the static and dynamic memory consumption 
of the Baseline router, SERRGE, and PPR for FPGAs with 
intra-cluster routing crossbars with population densities of 
p = 40% and 100%. The dynamic memory consumption 
reported in Fig. 7 is the maximum amount of allocated data 
(in megabytes) taken over the runtime of the router. These 
results are averaged over all of the benchmarks. 

 
 

 
Figure 4. Average runtime of the routers with varying population 
densities. In this experiment, N=8, K=6, and I=27. 

 
Figure 5. Average runtime of PPR, SERRGE, and the VPR 5.0 router 
for FPGAs with intra-cluster routing crossbar population densities of 
p=100%. Here N=8, I=27, and K=4, 5, 6, and 7. 

 
Figure 6. Intra-cluster routing runtime for PPR for different 
population densities. Here K=6, N=8, and I=27. 

 
SERRGE and PPR use considerably less static and 

dynamic memory than the Baseline router, while PPR uses 
marginally less memory than SERRGE. It is important to 
note that the memory overhead of SERRGE is managed 
explicitly by the threshold used by the garbage collector, 
and can be tuned up or down.   
 

80%$

85%$

90%$

95%$

100%$

4$ 6$ 8$ 10$

Baseline$ SERRGE$ PPR$

98% 98%

90%

85%

98%

96%
97% 97%

97%

95%
96%

95%

Number of BLEs per cluster (N)

Percentage of Nets Routed Successfully

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

40%" 50%" 75%" 100%"

Baseline

SERRGE

PPR

Se
co

nd
s

Average Runtime

Intra-cluster routing crossbar population density (p)

0"
100"
200"
300"
400"
500"
600"
700"
800"
900"

1000"

4" 5" 6" 7"

VPR"5.0" SERRGE" PPR"

Average Runtime

Se
co

nd
s

LUT size (K)

0"

4"

8"

12"

16"

sp
i$

sys
tem

cd
es$

de
s_a
rea
$

sys
tem

ca
es$

me
m_
ctr
l$

ac
_c
trl
$

us
b_
fun
ct$

ae
s_c
ore
$

pc
i_b
rid
ge
32
$

wb
_c
on
ma
x$

40%" 50%" 75%" 100%"

Intra-cluster Routing Runtime for PPR

Se
co

nd
s



 
Figure 7. Average static and dynamic memory consumption of the 
three routers for FPGAs with sparse intra-cluster routing crossbars 
with population densities p=40% and p=100%. Here K=6, N=8, and 
I=27. 

5.4. Critical Path Delay 

Aside from routability, critical path delay is an important 
metric by which to evaluate a router. Fig. 8 reports the 
average critical path delay obtained by the Baseline router, 
SERRGE, and PPR as a function of intra-cluster routing 
crossbar population density, p.  

In Fig. 8, the largest reported variation between routers 
is 0.55ns (p = 75%), which is not particularly significant. 
The general trend suggests that the Baseline Router 
achieves critical path delays that are around 0.5ns slower 
than SERRGE or PPR; however, there is also a lot of 
variance in quality between SERRGE and PPR: SERRGE 
is better in two cases (p = 40% and 100%), worse in one 
case (p = 75%), and both PPR and SERRGE are equal in 
the last case (p = 50%). We conservatively conclude that 
the three algorithms are comparable to one another in terms 
of critical path delay. This could be further explored using 
experimental noise-reduction strategies [20]; we leave this 
particular issue open for future work. 

 
 

 
Figure 8. Average critical path delay of the three routers for FPGAs 
with sparse intra-cluster routing crossbars with population densities 
p=40%, 50%, 75%, and 100%. Here K=6, N=8, and I=27. 

6. RELATED WORK 

Lemieux et al. [15] introduced the idea of sparse crossbars 
in 2000, and fully evaluated their use as intra-cluster 
routing one year later [14]. Later work by Feng and 
Kaptanoglu [7] use entropy counting to design input 
crossbars that lead to interconnect topologies with greater 
routability.  

Lemieux and Lewis [14] suggested that routability 
could be improved by adding spare CLB input pins. The 
goal of this work is comparable, however, we improve 
routability through the introduction of effective CAD 
algorithms, without requiring any architectural changes.  

Chin and Wilton [6] developed techniques to reduce 
the memory requirements of routing algorithms, which 
influenced the development of SERRGE significantly. 
Their work did not attempt to model sparse crossbar 
topologies within the intra-cluster routing of a CLB; thus, 
their work does not address the problem of RRG 
expansion, which occurred in our Baseline router (Section 
3.2). Similarly, other routers that have been published over 
the past 20 years (e.g., refs. [4, 5, 12]) are certainly 
relevant to this work, but address different issues. 

The PathFinder routing algorithm [19] has been at the 
core of this work, due to its implementation in VPR and its 
enduring legacy. It is important to recall that neither 
SERRGE nor PPR has attempted to replace PathFinder, 
and, they both use it as a subroutine. Their objectives were 
simply to avoid expanding the RRG, and, in doing so, they 
restrict the search space provided to PathFinder when it is 
called, in order to achieve faster convergence and reduce 
memory overhead. 

7. CONCLUSION 

The SERRGE and PPR routing algorithms were introduced 
to cope with the runtime and memory overhead associated 
with introducing sparse intra-cluster routing crossbar 
information into an FPGA’s RRG. The Baseline router, 
which extends the RRG with intra-cluster routing topology 
information for each CLB, runs slowly and consumes an 
inordinate amount of memory.  
 SERRGE is considerably more complex to implement 
than PPR, as it is essentially an application-specific 
dynamic memory management and garbage collection 
framework that has been specialized to meet the needs of 
the RRG and the PathFinder routing algorithm. Although 
we did not discuss details, significant modifications were 
made to several of VPR 5.0’s internal data structures in 
order to facilitate these new features. 
 In contrast, PPR is much simpler, as it computes routes 
within each CLB up-front, and then computes a global 
route that obeys those constraints imposed by the pre-
computed intra-CLB routes. Thus, our implementation and 
debugging effort for PPR was far less than for SERRGE. 
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 PPR routes faster than SERRGE and requires less 
memory; in its favor, SERRGE achieved routability 
improvements of 1-2% for different intra-cluster routing 
crossbar population densities in comparison with PPR. Both 
SERRGE and PPR restrict the search space explored by 
PathFinder as it routes a circuit through the RRG. In 
particular PPR fixes all intra-cluster routes prior to global 
routing, which can lead to global failures if demand for a 
specific subset of global wires is particularly high.  
 We believe that it should be possible to combat this 
limitation by invoking a SERRGE-inspired recovery step, 
which would facilitate re-negotiation of intra-CLB routing 
resources, when PPR fails; a detailed investigation of this 
enhancement is left open for future work.     
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