

Reducing the Cost of Floating-Point Mantissa Alignment
and Normalization in FPGAs

Yehdhih Ould Mohammed Moctar1 Nithin George2
Hadi Parandeh-Afshar2 Paolo Ienne2 Guy G. F. Lemieux3 Philip Brisk1

1Department of Computer Science

and Engineering
University of California, Riverside

{moctar, philip}@cs.ucr.edu

2School of Computer and
Communication Sciences

École Polytechnqiue Fédérale de
Lausanne (EPFL)

3Department of Electrical and

Computer Engineering
University of British Columbia

lemieux@ece.ubc.ca
{nithin.george, hadi.parandehafshar, paolo.ienne}@epfl.ch

ABSTRACT
In floating-point datapaths synthesized on FPGAs, the shifters
that perform mantissa alignment and normalization consume a
disproportionate number of LUTs. Shifters are implemented using
several rows of small multiplexers; unfortunately, multiplexer-
based logic structures map poorly onto LUTs. FPGAs,
meanwhile, contain a large number of multiplexers in the
programmable routing network; these multiplexer are placed
under static control of the FPGA’s configuration bitstream. In this
work, we modify some of the routing multiplexers in the intra-
cluster routing network of a CLB in an FPGA to implement
shifters for floating-point mantissa alignment and normalization;
the number of CLBs required for these operations is reduced by
67%. If shifting is not required, the routing multiplexers that have
been modified can be configured to operate as normal routing
multiplexers, so no functionality is sacrificed. The area overhead
incurred by these modifications is small, and there is no need to
modify every routing multiplexer in the FPGA. Experiments show
that there is no negative impact in terms of clock frequency or
routability for benchmarks that do not use the dynamic
multiplexers.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – gate
arrays.

General Terms
Design, Performance.

Keywords
Field Programmable Gate Array (FPGA), Floating-point,
Mantissa Alignment, Normalization.

1. INTRODUCTION
There is considerable interest in using FPGAs to accelerate
scientific applications that are dominated by floating-point
computations. As FPGAs have abundant spatial parallelism, the
best strategy to optimize a floating-point datapath for an FPGA is
to minimize the size of each operator, as doing so maximizes the
number of operators that can be synthesized onto a device of fixed
size; this, in turn, maximizes throughput. Recent work on
floating-point datapath compilation for FPGAs has identified the
wide shifts required for mantissa alignment and normalization as
significant sources of area overhead [16, 17]. For IEEE single-
precision floating-point addition, mantissa alignment requires a
right shift from 0-24 bits on a 24-bit mantissa (which includes the
“hidden ‘1’” in the most significant position); and normalization
requires a left shift from 0-27 bits on a 27-bit mantissa that has
been extended with three additional bits (“guard,” “round,” and
“sticky,”) which are used for rounding.

Shifters are generally implemented using several layers of
multiplexers. In this paper, we consider FPGAs with 6-input
lookup tables (6-LUTs), which can implement a 4:1 multiplexer
in a single layer of logic level; since a 4:1 multiplexer has two
control bits, it maps perfectly onto a 6-LUT. The 24- and 27-bit
shifters required for mantissa alignment and normalization can be
implemented with three layers of 6-LUTs: two layers of 4:1
multiplexers and one layer of 2:1 multiplexers. The 24- and 27-bit
shifters require 72 and 81 6-LUTs respectively.

 A typical single-precision floating-point adder requires 350 to
550 6-LUTs, depending on various implementation choices (e.g.,
support for all IEEE rounding modes, vs. support for just one).
Regardless, of the details, the two shifters consume 153 6-LUTs,
which is a significant portion of the overall area of the operator.

1.1 Static vs. Dynamic Multiplexing in FPGAs
Multiplexer-based logic maps inefficiently onto LUTs [24], and
shifters are no exception. With that in mind, it is interesting to
note that FPGAs contain many multiplexers in their routing
networks; however, these multiplexers are not accessible to the
user, as they are placed under static control of the FPGA’s
configuration bitstream. In principle, we would like to leverage
some of these multiplexers to implement the shifters required for
mantissa alignment and normalization in floating-point addition;
this paper describes architectural mechanisms to accomplish this
goal, along with the supporting CAD tools.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’12, February 22-24, 2012, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-1155-7/12/02…$10.00.

Figure 1. A multiplexer in a traditional FPGA’s routing
network is placed under static control of the configuration
bitstream (a); an extension that allows the user to configure
the multiplexer to have static or dynamic control (b).

As a motivating example, consider the 8:1 multiplexer shown in
Figure 1(a), which drives one input of a LUT; the other LUT
inputs are driven by similar multiplexers, which are not shown.
Three FPGA configuration bits drive the multiplexer’s selection
inputs. The purpose of this multiplexer is to provide some
flexibility to the FPGA CAD tools—in particular, the router—
when synthesizing a circuit onto the FPGA. In this case, there are
8 physical wires within the FPGA that can connect to this LUT
input, via the multiplexer. One signal must route to that particular
LUT input, and the router is given 8 possible wires to use. Once
the route is complete, the configuration bits are set to select the
chosen wire. This configuration is static, i.e., it does not change
until the FPGA is reprogrammed. As there is no possibility to
dynamically drive the selection inputs of this multiplexer, there is
no possibility for the user to utilize it as an actual 8:1 multiplexer.
As it is not architecturally visible, the typical user—who is not an
FPGA architect—will be completely unaware of its existence.

Figure 1(b) illustrates a Static-Dynamic Multiplexer (SD-MUX),
which can be configured for either static or dynamic control. A
2:1 multiplexer now drives the configuration inputs of the 8:1
multiplexer. The 2:1 multiplexer can select either the control bits
or a set of wires that are available to the user to provide dynamic
control. An extra configuration bit drives the selection input of the
2:1 multiplexer, thus allowing the user to configure the 8:1
multiplexer to provide either static or dynamic control. This basic
idea easily generalizes to a multiplexer with any number of
inputs, as long as a sufficient number of control bits are provided.

When the SD-MUX is configured to provide static control, one
signal can be routed to any of the 8 multiplexer inputs, and the
configuration bits are set accordingly, as shown in Figure 2(a); as
noted earlier, this provides flexibility to the router, as there is
fierce competition for routing resources. When the SD-MUX is
configured as a dynamic multiplexer, as shown in Figure 2(b), 8
signals are routed to the 8 multiplexer inputs in pre-specified
order; e.g., if the user logic expects the multiplexer to select
signal x when the selection bits are 010, then x must be routed to
multiplexer input 010 in order to preserve this functionality; thus,
the flexibility afforded to the router in the static case is sacrificed.

If we assume that the multiplexers in the routing network are 27:1
or larger, then 24 of them can implement mantissa alignment, and
27 can implement normalization. If we ignore the other LUT
inputs, and configure the LUT to implement the identity function,
then these two shifters can be implemented using 51 LUTs: a
savings of 66.7% over the LUT-based implementation. This paper
provides a solution that realizes this best-case savings.

Figure 2. A static multiplexer provides flexibility to the
router: in this case, 8 inputs are available to route one signal
(a); a dynamic multiplexer offers no flexibility to the router,
as all multiplexer inputs are used, and routes must be
computed for the dynamic control signals as well.

1.2 Fundamental Challenges
The benefit of the SD-MUX is evident for circuits that require a
significant amount of multiplexing; however, the introduction of
dynamic multiplexers into an FPGA fabric comes at a non-
negligible cost, and creates new challenges for physical design
tools. The following issues must be addressed in order to justify
the inclusion of dynamic multiplexers in an FPGA fabric:

(1) Given that FPGA routing networks consume as much as 90%
of on-chip area [7], is the area overhead of replacing static
multiplexers with SD-MUXes justifiable?

(2) When the SD-MUX is configured for dynamic control, how
can the router overcome the lack of flexibility arising from
the fact that 8 input signals must be routed to 8 multiplexer
inputs in a pre-specified order, as shown in Figure 2(b)?
How is routability achieved in the general case?

(3) How are the dynamic control bits generated, and how are
they routed into SD-MUX, as noted in Figure 2(b)?

The answer to question (1) is that SD-MUXes can be introduced
sparingly. Realistic user circuits may contain a significant amount
of multiplexer-based logic that benefits from the presence of
dynamic multiplexers; however, they also contain other logic that
maps better onto existing FPGA logic and arithmetic resources,
such as LUTs, carry chains, and DSP blocks. As an example,
floating-point operators require a large number of LUTs for
shifters, but also include components that would not benefit from
dynamic multiplexers, such as fixed-point adders and multipliers
and leading zero counters. Thus, there is no need to replace more
than a handful of static multiplexers with SD-muxes.

The answer to questions (2) and (3) is solved through CAD
algorithms. As shown in Figure 2(b), SD-MUXes configured as
dynamic multiplexers impose significantly more constraints on
the router than static multiplexers. To handle these constraints, the
CAD tools extract macro-cells, which are subcircuits comprised
of the user logic that will use the dynamic multiplexers, plus the
immediately preceding logic layer as well. The macro-cells are
placed-and-routed separately from the remainder of the circuit.
This ensures that the router can satisfy all of the constraints
imposed by the dynamic multiplexers without having the macro-
cells compete with the remainder of the circuit for limited routing
resources in congested areas. Placement then proceeds as normal,
with some additional provisions to handle the macro-cells: the
placer can move the entire macro-cell around within the FPGA,

LUT

Configuration bits

3

LUT

3 3

(a) (b)

Dynamic control bits

3

New configuration bit
switches between static
and dynamic control

LUT

3

LUT

3 3

(a) (b)

3

Under static control, one
signal can route to any of
the 8 multiplexer inputs.

Under dynamic control, 8 signals must route to the
8 multiplexer inputs in the correct order.

How are the
dynamic control
signals generated
and how are they
routed into the
dynamic multiplexer?

111 ... 000011 0 1 1

but cannot change the placement within the macro-cell. Once
placement completes, routing resources within each macro-cell
are reserved; unused routing resources within the perimeter of the
macro-cell are not reserved, as their usage does not affect the
macro-cell’s functionality. The remainder of the circuit is then
routed as normal, with the restriction that the reserved routing
resources within each macro-cell are not perturbed, thereby
ensuring its correct functionality.

1.3 Paper Goals and Organization
The remainder of this paper focuses on the architectural design
choices to enable the SD-MUXes, the supporting CAD toolflow,
and the experimental evaluation thereof. In particular, it is of
great importance to ensure than the introduction of SD-MUXes
does not significantly impair the performance of industrial-scale
circuits that do not use the dynamic multiplexing functionality;
fortunately, no adverse affects were observed in our experiments.

Section 2 describes the architectural modification that are
necessary to integrate SD-MUXes into an FPGA, including the
key design choices and trade-offs involved. Section 3 describes
the CAD flow in greater detail. Section 4 presents our
experimental evaluation, including an analysis of the benefits that
SD-MUXes offer floating-point datapath circuits. Section 5
summarizes related work, and Section 6 concludes the paper.

2. ARCHICTECTURAL MODIFICATIONS
TO INTEGRATE SD-MUXES INTO FPGAS
This section describes the necessary architectural enhancements
to FPGAs to integrate SD-MUXes into the routing fabric. Starting
with an overview a typical FPGA architecture (Section 2.1), we
consider two locations in the FPGA to introduce the SD-MUXes
(Sections 2.2 and 2.3). Lastly, we introduce the macro-cell and
describe how a standard FPGA CAD flow can be modified to
achieve routability (Section 2.4).

2.1 FPGA Architecture Overview
This paper targets an FPGA architecture based on the Versatile
Place and Route (VPR) tool, which is publicly available from the
University of Toronto [20, 21]. The user specifies several
architectural parameters in a configuration file. VPR generates an
FPGA architecture based on these parameters. For each LUT,
VPR generates a Basic Logic Element (BLE), depicted in Figure
3(a), which includes a bypassable flip-flop. The BLE can be
configured to implement either combinational or sequential logic.

BLEs are grouped into clusters called Configurable Logic Blocks
(CLBs), with fast Intra-Cluster Routing, as shown in Figure 3(b).
A Connection Block (C Block) interfaces the CLB with the global
routing segments on either side. Figure 3(c) shows a floorplan of
an island-style FPGA, which includes Switch Blocks (S Blocks) at
the intersection points between horizontal and vertical routing
channels, as well as I/O pads.

The user specifies several parameters that VPR uses to generate
the logic and routing architecture:
K: the LUT size (i.e., a K-LUT);
N: the number of LUTs per CLB;
I: the number of CLB inputs;
W: the number of segments per routing channel; and
Fcin and Fcout: C Block connectivity parameters

Figure 3. A Basic Logic Element (BLE) (a); a Configurable
Logic Block (CLB) contains several BLEs, with fast intra-
cluster routing; the Connection Block (C Block) interfaces the
intra-cluster routing inside the CLB with the global routing
network (b); the floorplan of a generic island-style FPGA (c).

As shown in Figure 3(b), each input multiplexer in the C Block
selects one of W×Fcin wires in the adjacent routing channel on the
left, and each BLE drives W×Fcout segments in the adjacent
routing on the right. Most FPGAs use single driver routing [18],
so the C Block output is a conceptual description of the routing
topology (i.e., which BLE outputs drive which segments in the
channel). The multiplexers shown on the right-hand side of Figure
3(b) are actually implemented in the S Blocks, which are shown
(without detail) in Figure 3(c). Figure 3(b) depicts inputs coming
in from the left hand side of the CLB and outputs leaving to the
right; in actuality, inputs and outputs may enter and exit from all
four sides of the CLB, and the user may specify the percentage of
inputs and outputs that enter and exit on each side.

Given all of these architectural parameters, VPR generates the
interconnect topology algorithmically. A number of architectural
parameters, such as those that describe the switch box, have been
omitted from this discussion for brevity.

W routing segments

Isolation
Buffers

W×Fcin:1 multiplexer

Intra-
Cluster
Routing

BLE
K

BLE
K

...

......

N local feedbacks

Each CLB has N BLEs (K-LUTs)

Configurable Logic Block (CLB)

I = Number of of CLB inputs

C Block
(inputs)

...

W routing segments

Each BLE connects to W×Fcout
segments in the routing channel

C Block (outputs)

...

DFFK-LUT
K

Clock

BLE output

Configuration bit

(a)

(b)

(c)

I/O Pads

CLB

Switch Block
(S Block)

Connection Block
(C Block)

The intra-cluster routing depicted in Figure 3(b) is a crossbar that
connects I inputs and N local feedbacks to the K×N LUT inputs in
the CLB. VPR 5.0 implements intra-cluster routing as a full
crossbar, which provides a connection between every CLB input
and LUT input. Full crossbars are costly in terms of area and
power, but guarantee routability: i.e., any combination of signals
routed to CLB inputs can be routed to any desired combination of
LUT inputs. Highly routable sparse crossbar topologies for intra-
cluster routing have also been investigated in recent years [7, 19].

Ahmed and Rose determined that the ideal number of CLB inputs
is I = K×(N+1)/2, which is less than the total number of LUT
inputs, K×N. This suffices because many signals fan-out to
multiple LUT inputs within a CLB after the FPGA has been
configured. As each CLB input (other than LUT feedbacks) is
driven by a W×Fcin:1 multiplexer, reducing the number of CLB
inputs reduces the overall cost of the C Block, at the expense of
some flexibility. In other words, N independent K-input logic
functions cannot be packed into a CLB due to I/O limitations,
despite the fact that the CLB has sufficient LUT capacity.

Recall that the goal of this paper is to replace static multiplexers
in the routing network with SD-MUXes. In Figure 3(b), there are
two locations where this is possible: the C Block (input), and
intra-cluster routing, as discussed in the next two subsections.

2.2 Integrating SD-MUXes into the C Block
Example 1. To illustrate the integration of an SD-MUX into a C
Block, let us consider a conditional swap, which has three inputs,
I0, I1 and c, and two outputs, J0 and J1. The operation is:

 J0 = c ? I1 : I0 , J1 = c ? I0 : I1 (1)

Figure 4 depicts a portion of the C Block that has been modified
with two SD-MUXes to implement the conditional swap. A static
multiplexer provides the control bit, while two SD-MUXES
compute J0 and J1. In this particular example, W =8 segments per
channel and Fcin = 0.5, i.e., each C Block multiplexer connects to
4 wires in the channel. Each of the three 4:1 multiplexers in the C
Block are implemented using three 2:1 multiplexers; two of the
2:1 multiplexers have been replaced with SD-MUXes in Figure 4.

The C Block in Figure 4 imposes routing constraints that must be
satisfied in order to deliver input signals I0 and I1 in the correct
order to the SD-MUX inputs. In particular, I0 and I1 must be
routed on routing segments w6 and w7; the order is irrelevant, i.e.,
either I0 can be routed on w6 and I1 on w7, or vice-versa; similarly,
I0 and I1 must be routed on w4 and w5 as well. The condition bit, c,
has greater flexibility: it can be routed on w0, w1, w2, or w3.

The placer and router must satisfy these constraints. Let F0 and F1
be K-input logic functions that compute conditional swap inputs I0
and I1. F0 and F1 must be synthesized on LUTs whose outputs
collectively drive a subset of the wires that satisfy the
aforementioned constraints. Moreover, this assumes that such a
combination of LUTs actually exists. Although it may be possible
to satisfy this constraint for a 3-input conditional swap operation,
it will be much more difficult to satisfy for a 24- or 27-bit shifter.

Example 2. Consider a 4-bit left shift with rotation. The inputs are
I0…I3 and the outputs are J0…J3; two control bits c0 and c1 specify
the shift amount (0-3 bit positions). Once again, we assume that
W = 8 and Fcin = 0.5, and the C Block contains 4:1 multiplexers.
As the shifter has four data inputs rather than two, each of the
four data inputs, I0 … I3 must connect to exactly one input of each
C Block multiplexer in a pre-determined pattern.

Figure 4. A C Block modified to implement a conditional swap
by introducing two SD-MUXes. The requirements to deliver
the correct signals to the SD-MUX inputs impose stringent
routing constraints.

Figure 5(a) depicts a portion of the C Block that produces the
lower-order data outputs, J0 and J1; however, the interconnection
topology does not allow the design to be satisfied due to conflicts
on the routing segments. For example, the multiplexer that
produces J0 requires I0 to be routed on segment w4, while the
multiplexer that produces J1 requires I1 to be routed on the same
segment concurrently. Similar conflicts occur on segments w5, w6,
and w7. In contrast, Figure 5(b) depicts an interconnect topology
that eliminates the routing conflicts; of course, this topology only
satisfies a 4-bit left shift with rotation, and would not necessarily
be helpful for some other type of multiplexer-based circuit.

As mentioned earlier, dynamic multiplexers impose strict
ordering constraints on the signals that are connected to their
inputs. The examples shown in Figures 4 and 5 demonstrate that
these constraints are propagated into the global routing network
when SD-MUXes are integrated into the C Block. The ability to
implement very simple multiplexing circuits, as shown in Figures
4 and 5, is dependent on the interconnect topology between the
CLBs and the routing network; this interconnect topology
depends on parameters W, Fcin and Fcout, and the algorithm [4]
that generates the routing network from these parameters.

Although it may be possible to modify the routing network
generation algorithm to favor certain interconnect topologies, it is
difficult to determine whether the basic idea will generalize to
larger structures. For example, in a 27-bit shifter, input bit I0 will
fan out to 27 outputs, J0 … J26. This means that a single routing
segment or a subset of segments driven by the same BLE must
individually or collectively fan-out to 27 pre-specified C Block
SD-MUX inputs, all in close quarters. Similarly I1 will need to
fan-out to 26 pre-specified C Block SD-MUX inputs, etc.
Moreover, this must be done with parameters that are
representative of commercial FPGAs, e.g., N = 10, W = 300, Fcin
= 0.15, and Fcout = 1/N = 0.1. The likelihood of success in this
case is too low to be considered realistic; consequently, we
conclude that the C Block is not a particularly promising location
to integrate SD-MUXes into the routing fabric.

I0

1 0

I1 I0I1

J1 J0 c

1 0

I0

I0
I1

I1

I0 and I1 must be routed on these two pairs of segments

w0
w1
w2
w3
w4
w5
w6
w7

Figure 5. A conflict in the interconnect topology makes it
impossible to implement a 4-bit rotator using SD-MUXes in
the C Block (a); changing the interconnect topology can
eliminate the conflict (b).

2.3 Integrating SD-MUXes into Intra-Cluster
Routing

Alternatively, we can introduce SD-MUXes into the intra-cluster
routing instead of the C Block. The primary advantage of this
approach is that it eliminates the routing constraints that arise due
to the interconnection topology between the routing segments and
the C Block. Instead, the interconnection topology constraints are
internal within the intra-cluster routing. Signals that drive a
specific SD-MUX input for dynamic multiplexing, as shown in
Figure 6, are routed to pre-selected CLB inputs. Each pre-selected
CLB input connects to one of the SD-MUX inputs: some to the
data inputs, and others to the selection inputs.

Figure 6 shows an example of a 4:1 SD-MUX integrated into the
intra-cluster routing; a significant portion of the intra-cluster
routing is omitted from Figure 6 to conserve space. Two CLB
inputs provide dynamic control (they may also drive other
multiplexers, which are not depicted in the figure); control signals
c0 and c1 must be routed to these two inputs. The other four CLB
inputs drive the data inputs of the SD-MUX. The input signals are
routed to these four CLB inputs in a specific order, e.g., the SD-
MUX selects input I0 if c1c0 = 00. Thus, the connection topology
between CLB inputs and SD-MUX inputs determines which
signals must be routed to each pre-selected CLB input.

Figure 6. Integrating an SD-MUX into intra-cluster routing
imposes a strict ordering on the signals that are routed to the
CLB inputs.

Figure 7. Integration of SD-MUXes into the intra-cluster
routing. The interconnect topology may force both SD-
MUXes to implement the same logic function when configured
to implement dynamic control (a); rearranging the topology
enables the SD-MUXes to implement different functions (b).

In Figure 6, any 4-input multiplexer can be realized by permuting
either the control or the data bits; however, additional restrictions
are imposed when we consider multiple-output functions because
each CLB input may connect to multiple SD-MUX inputs.
Example 3. Let us reconsider the conditional swap operation from
Example 1; this time, we want to implement it using SD-MUXes
in the intra-cluster routing rather than the C Block. Figure 7(a)
shows an initial attempt. Due to the interconnection topology
within the intra-cluster routing, both SD-MUXes conditionally
select the same input bit, i.e., they both compute logic function J0.

I2

I2

1 0

I3 I1I0

J1 J0

c1

1 0

Routing conflicts prevent the shifter functionality from being realized.

w0
w1
w2
w3
w4
w5
w6
w7

1 0 1 0 1 0 1 0

c0

I1 I2 I0I3

(a)

1 0

I3 I1I0

J1 J0

c1

1 0

Changing the interconnect topology eliminates the routing conflicts.

w0
w1
w2
w3
w4
w5
w6
w7

1 0 1 0 1 0 1 0

c0

I1 I2 I0I3

(b)

W×Fcin

I3

11 10 01 00

I2 I1 I0 c1 c0 C Block

Intra-cluster
routing

LUT

...

2

2 1

(b)

J0

1 0

C Block

W×Fcin

1 0

J0

I1 I0 c

Intra-cluster
routing

(a)

LUT LUT

... ...

J1

1 0

C Block

W×Fcin

1 0

J0

I1 I0 c

Intra-cluster
routing

LUT LUT

... ...

Figure 8. Intra-cluster routing with SD-MUXes modified to
support a 4-bit left shift.

By swapping the order of I0 and I1 at the CLB inputs, then this
intra-cluster routing topology would compute J1, rather than J0;
however, by changing the topology, as shown in Figure 7(b), the
two SD-MUXes compute logic functions J0 and J1, respectively.
In this case, swapping the order of I0 and I1 at the inputs would
likewise swap the order of J0 and J1 at the outputs.

Example 4: Figure 8 illustrates intra-cluster routing with SD-
MUXes that can implement a 4-bit left shifter (bits shifted in are
set to zero). The basic interconnection pattern shown here easily
generalizes to a larger shifter sizes. In this case, the SD-MUXes
implement all of the shifting functionality; the LUTs are
configured to pass the SD-MUX outputs through unmodified.

In Figure 8, many of the SD-MUX inputs in are ‘0’ bits. It is not
immediately clear how these bits should be handled. It would be
unrealistic to extend some of the SD-MUXes to account for a
large number of ‘0’ bits, e.g., in a K-bit shifter, the SD-MUX that
computes least significant output bit J0 requires K-1 ‘0’ bits, the
SD-MUX that computes J1 requires K-2 ‘0’ bits, etc.; the area
overhead required to support larger shifters would be prohibitive.

Another issue is that the routing network may invert signals en
route. The LUT sink is usually reprogrammed to compensate if
some of its inputs arrive with the wrong polarity. SD-MUXes,
however, are not programmable in this respect. One possibility is
to add programmable inversion at the shifter inputs; however, this
incurs significant area overhead. Another option is to reprogram
the previous layer of LUTs that generate the shifter inputs to
compute the complement of its logic function; however, this logic
layer may have a large fan-out, where some fan-out bits are
inverted and others are not, rendering this approach ineffective.

We can solve both the ‘0’ SD-MUX input bit problem and the
inversion problem by using LUTs in conjunction with the SD-
MUXes. Each SD-MUX output drives a LUT input; we can then
route the control bits to the remaining LUT inputs. The LUT is
then programmed to invert the SD-MUX output if the selected
input arrives in inverted form. The LUT is also programmed to
output a ‘0’ for the appropriate control bit combinations (e.g., c1c0
= {01, 10, 11} for J0 in Figure 8), which eliminates the need to
route ‘0’ bits to the SD-MUX inputs.

The CLBs in modern high performance FPGAs contain 6-LUTs;
this limits the number of control bits that can be supported using
this approach to 5 or less, which, in turn, limits the maximize SD-
MUX size to 32:1. This suffices for the 24- and 27-bit shifters
used for single-precision floating-point mantissa alignment and
normalization. Figure 9 illustrates the preceding discussion for the
second least significant bit, J1 of a 27-bit shifter.

Figure 9. A LUT in conjunction with an SD-MUX solves the
problems of inverted input bits and generates ‘0’ outputs
when appropriate. This example is the second least significant
output bit, J1, of a 27-bit left shifter. Four truth tables are
possible, depending on whether I0 and I1 are inverted.
Programmable inversion is necessary for the five control bits.

CLB parameters also limit the size of the SD-MUXes that can be
introduced. The intra cluster routing has a total of I+N inputs and
N×K outputs. The inputs are the I CLB inputs provided by the C
Block plus N LUT feedbacks from within the CLB. The cluster
contains N K-LUTs; each LUT input is an output of the intra-
cluster routing. A typical modern high-performance FPGA has N
= 8, K = 6, and I = K×(N+1)/2 = 27, using the formula provided
by Ahmed and Rose [1]. To support a 27-bit shifter, we need to
increase I to 32, to account for the control signals.
In VPR 5.0, the intra-cluster routing is a full crossbar. Given these
parameter values, the intra-cluster routing would be composed of
48 40:1 multiplexers. Modern FPGAs, however, use sparsely
populated crossbars [7, 19]. Depending on the population density
of the sparse crossbar, the multiplexers may be smaller than 27:1.
In this case, we would either need to limit the shift amount in
accordance with the multiplexer size, or introduce SD-MUXes
that are larger than the pre-existing static multiplexers; this latter
option is unfavorable, because it introduces asymmetry in terms
of delays: i.e., the delay through a statically configured SD-MUX
is greater than the delay through a standard static multiplexer,
which could affect performance and complicate routing.

The interconnection topology (i.e., which CLB inputs connect to
exactly which SD-MUX inputs) has a significant impact on our
ability to implement shifters in the intra-cluster routing; this was
illustrated quite clearly by Figure 7. Figure 8 illustrates the
general interconnect topology pattern required for a left shifter
(which easily generalizes to more than 4 inputs), and a left shifter
can implement a right shifter by reversing the order of the inputs.
Shifters that perform rotation (e.g., Figure 5) require a different
topology as they do not shift-in zeroes. To summarize, the
topology must account for ordering constraints on SD-MUX
inputs in order to ensure correctness.

0 0 0

11 10 01 00
2

11 10 01 00
2

11 10 01 00
2

11 10 01 00
2

0 00

W×Fcin

I3

2

I2 I1 I0 c0c1

LUT LUT LUT LUT

............J3 J2 J1 J0

5

5

I0 c0c2

6-LUT

c3c4c5

25

I1

0000000001...

J1

Unused

W×Fcin

J1*

Programmable Inversion

I0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not Inverted I0 InvertedI0 InvertedI0 InvertedI0 InvertedI0 InvertedI0 InvertedI0 Inverted
I1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not Inverted I1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not InvertedI1 Not Inverted
c4 c3 c2 c1 c0 J1* J1 c4 c3 c2 c1 c0 J1* J1

0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1
-- -- -- -- -- -- 0 -- -- -- -- -- -- 0

I0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not InvertedI0 Not Inverted I0 InvertedI0 InvertedI0 InvertedI0 InvertedI0 InvertedI0 InvertedI0 Inverted
I1 InvertedI1 InvertedI1 InvertedI1 InvertedI1 InvertedI1 InvertedI1 Inverted I1 InvertedI1 InvertedI1 InvertedI1 InvertedI1 InvertedI1 InvertedI1 Inverted
c4 c3 c2 c1 c0 J1* J1 c4 c3 c2 c1 c0 J1* J1

0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 0 0 1 1 0
-- -- -- -- -- -- 0 -- -- -- -- -- -- 0

5

Lastly, we do not advocate the introduction of SD-MUXes into
every CLB, as the vast majority of CLBs in a given FPGA will
not be configured to implement dynamic multiplexing circuits in
most realistic designs. CLBs containing SD-MUXes are a new
form of heterogeneity, similar in principle to the introduction of
DSP blocks and block RAMs in past FPGAs. As a rough estimate,
we suggest at most 10% of the CLBs in an FPGA should be
enhanced with SD-MUXes, and that those that are enhanced
should be laid out in columns within the FPGA; the column-based
layout echoes the way that DSP blocks and block RAMs are
currently laid out in FPGAs, and therefore makes intuitive sense.

2.4 Ensuring Routability with Macro-Cells
Consider a 27-bit shifter implemented with SD-MUXes integrated
into the intra-cluster routing. In accordance with prior notation, let
I0 … I26 and J0 … J26 denote the shifter inputs and outputs, and let
c0 … c4 denote the control bits. This is a total of 32 inputs
(including control bits) and 27 outputs. Eight CLBs, CLB0 …
CLB7 realize the shifter. LUT Li computes shifter input Ii, LUT Si
computes shifter output Ji, and LUT Ci computes control bit ci.

Figure 10 depicts the interconnection pattern for the 27-bit shifter.
The structure depicted in Figure 10 is called a macro-cell, because
the LUTs and CLBs are pre-placed and routed. Without loss of
generality, if the placer (generally an iterative improvement
algorithm) randomly moves L5 to a new CLB, the likelihood is
quite small that a legal route will be found that delivers shifter
input I5 to the pre-specified CLB inputs in CLB5, CLB6, and CLB7.
By fixing the locations of the LUTs relative to one another in the
macro-cell, routability is achieved.

3. CAD SUPPORT FOR MACRO-CELLS
We used VPR 5.0 [20] for architectural simulation, placement,
and routing, T-VPack for packing [22], and ABC for logic
synthesis and technology mapping [3].

Figure 10. A macro-cell for a 27-bit shifter.

3.1 Programming Model, Assumptions, and
Technology Mapping

We assume that the programmer will add annotations to the HDL
code to specify when to configure the programmable macro-cell
as a shifter, similar to how DSP blocks and carry chains are used.
The technology mapper explicitly binds the annotated shifters to
macro-cells rather than mapping them to LUTs. Large shifters are
decomposed into smaller ones if macro-cell capacity is exceeded.
Next, we extract the layer of LUTs that precedes each shifter, e.g.,
LUTs L0 … L23 in Figure 10. The structure of the macro-cell
effectively pre-packs, pre-places, and pre-routes these subcircuits.

3.2 Macro-cell Placement and Routing
VPR’s router, which is based on PathFinder [23], assumes that
CLB intra-cluster routing is a full crossbar. Any path from the
source to a CLB input can route a net: the crossbar connects all
CLB inputs to all LUT inputs. We modified VPR to allow the
user to specify specific CLB inputs pins as targets for certain
sinks. VPR can find a legal route for a macro-cell, establishing a
path from the LUT source that computes each net to all of its pre-
specified inputs in the second macro-cell layer. VPR successfully
routed 24- and 27-bit shifters in macro-cells using this approach.

Macro-cells are placed-and-routed offline, prior to the rest of the
circuit. Placement of the shifter onto SD-MUXes within the
macro-cell is deterministic. Placement of the LUT layer preceding
the shifter is more flexible: any placement that successfully routes
all nets within the macro-cell suffices. We try to pack the LUTs
tightly into a small number of CLBs in the vicinity of the shifter.

3.3 Global Placement and Routing
Extensive modifications were made to VPR’s placer [21] in order
to handle macro-cells. The input is a netlist, which may or may
not contain macro-cells, and an architectural description of the
FPGA in which certain columns have been annotated to indicate
CLBs that have been enhanced with SD-MUXes.

Each shifter in the netlist, along with the layer of preceding LUTs,
is placed onto a macro-cell. Each macro-cell is routed up-front.
SD-MUXes in the remaining (unused) macro-cells are configured
as normal CLBs, similar to how shadow clusters are used [11].
The placer considers all other CLBs to be functionally equivalent.

VPR’s placer uses simulated annealing. We implemented two
placement strategies. In the first, we place shifters onto macro-
cells and fix their placement; the placer moves normal soft logic
clusters around, but does not perturb the placement of the shifters
onto macro-cells. The second option relaxes this constraint, and
moves both soft logic clusters around the FPGA and may also
move any shifter onto an unused macro-cell.

Macro-cells configured as shifters are similar to DSP blocks from
the perspective of the CAD tools. The difference is that unused
logic and routing resources within each macro-cell, after it has
been placed-and-routed, remain available to the global placer and
router and can be used by the rest of the circuit.

4. EXPERIMENTAL RESULTS
Our experimental goals are twofold. Firstly, we wish to quantify
reduction in LUT count that can be achieved by synthesizing
shifters onto SD-MUX enabled macro-cells. Secondly, we wish to
ensure that the inclusion of macro-cells does not adversely affect
routability for industrial-scale benchmarks.

Normal CLBs SD-MUX Enhanced CLBs

C0 C1 C2 C3

C4 L0 L1 L2

CLB0

L3 L4 L5 L6

L7 L8 L9 L10

CLB1

L11 L12 L13 L14

L15 L16 L17 L18

CLB2

L19 L20 L21 L22

L23 L24 L25 L26

CLB3

S0 S1 S2

CLB4

S3 S4 S5 S6

S7 S8 S9 S10

CLB5

S11 S12 S13 S14

S15 S16 S17 S18

CLB6

S19 S20 S21 S22

S23 S24 S25 S26

CLB7

c0 ... c4, I0 ... I3

I4 ... I10

I11 ... I18

I19 ... I26

4.1 Floating-Point Operators
We consider a set of single-precision multi-operand floating-point
adders that have already been optimized for area. These operators
are similar to those produced by Altera’s floating-point datapath
compiler [16, 17], which removes redundant normalizations. We
used designs published by Verma et al. [25], which were slightly
smaller than those produced by Altera’s compiler. We used the
smallest design approach, which implemented the internal fixed-
point multi-operand addition using a tree of 3-input adders.

For a K-input adder, we denormalize K-1 mantissas using shifters;
the mantissa corresponding the largest exponent is not shifted.
Normalization is only applied once, at the output of the operator.

For 2, 4, 8, and 16-input adders, Figure 11 reports that the area
savings (in terms of Altera’s ALMs) obtained by the macro-cell
range from 25% to 32%. Assuming that the number of LUTs and
CLBs in an FPGA are fixed, this means that 33-40% more
operators can be packed into an area of fixed size when macro-
cells are used to implement shifters.

We did not measure the effect of the macro-cells on critical path
delay or pipeline depth of the adders. The throughput of floating-
point data paths is driven mostly by spatial parallelism; reducing
the area of an operator increases the number of operators that can
be synthesized on a fixed area device. The area savings reported
in Figure 11, thus, translate indirectly into increased throughput
for parallel floating-point data paths that use these operators.

4.2 Experimental Setup: VPR
We modeled an FPGA enhanced with macro-cells using VPR 5.0
[20]. We did not use VPR 6.0, which is now part of the Verilog-
To-Routing (VTR) flow, for these studies because it did not have
timing models in-place at the time this work was performed. As
our baseline, we took one of the VPR architecture files from the
iFAR repository [14, 15]. Table 1 lists the baseline parameters for
our architecture. CLB inputs and outputs are evenly distributed
around all four sides of the CLB.

VPR explicitly models a C Block, but does not model the intra-
cluster routing; as it is a full crossbar, only its delay is modeled.
We do not model SD-MUXes explicitly. Our experiments strive
to show that macro-cells, which reserve a non-trivial quantity of
routing resources in localized areas, do not adversely affect the
ability to route large-scale circuits that contain shifters.

Macro-cells are organized as vertical columns when they are
introduced into the FPGA. The motivation is to mimic the layout
of modern FPGAs. For example, logic clusters are generally laid
out as columns; so are DSP blocks, block RAMs, etc. Only a
small proportion of CLBs in the FPGA contain SD-MUXes.

For each experiment, we placed each benchmark once and routed
it three times using different random number seeds. The delay for
each benchmark is the average delay of the three runs. This
reduces the noise in our delay results as different random number
seeds can yield significantly different routing results.

4.3 Benchmarks
We selected the ten largest IWLS 2005 benchmarks [10], which
are described in Table 2, to evaluate the impact of the macro-cell
on large-scale applications. Using VPR, we synthetically added
macro-cells (shifters) to these benchmarks; our goal is to ascertain
whether these shifters, when pre-placed and routed onto macr-
cells, adversely affect area, delay, and routability.

Figure 11. The area savings obtained by macro-cell based
implementations of 24- and 27-bit shifters used for mantissa
alignment and normalization on four optimized multi-
operand single-precision floating-point adders.

Table 1. FPGA architectural parameters

Parameter Value Parameter Value
LUT Size 6 Fc input 0.15
Cluster Size 8 Fc output 0.1
Channel Width 96 Technology* 65nm CMOS
Cluster Inputs 36 Tile Area** 18940
* Berkeley predictive models ** Min-width transistors

Table 2. Ten largest IWLS 2005 benchmarks
Benchmark Description
ac97_ctrl Interface to external AC 97 audio codec
aes_core Advanced Encryption Standard (AES)
des_perf 16-cycle pipelined DES/3-DES Core
ethernet 10/100 Mbps IEEE 802.3/802.3u MAC
mem_ctrl Embedded memory controller
pci_bridge32 Bridge interface to PCI local bus
systemcaes Area-optimized AES implementation
usb_func USB 2.0 compliant core
vga_lcd Embedded VGA/LCD controller
wb_conmax Wishbone Interconnect Matrix IP Core

We modified each benchmark’s netlist to include 20, 40, 60, 80,
and 100 shifters, which are connected at arbitrarily chosen points
to ensure that they are not completely disjoint from the remaining
logic. In VPR, we pre-allocated macro-cell columns and pre-
placed the shifters and preceding layers of logic onto them. We
pre-routed the macro-cells, and marked the routing resources used
as unavailable. Our primary concern was that locking down these
resources up-front would adversely affect the quality of the routes
obtained for the remainder of the circuit; fortunately, practically
no degradation was observed.

VPR generates a custom FPGA for each benchmark, based on its
demand for logic and routing resources. Each benchmark is
repeatedly placed and routed, varying the channel width each
time; VPR converges onto the minimum channel width (Wmin) for
which a legal route can be found. The average Wmin obtained by
VPR across all benchmarks (with no macro-cells) here is 84.4.

Figure 12 reports the area of each benchmark with a varying
number of shifters. The area is reported in terms of minimum-
width transistors; this accounts for the fact that CLBs that have
been augmented with SD-MUXes are larger than regular CLBs.

0

1000

2000

3000

2 4 8 16

-25% -29%
-32%

-30%

Floating-point Adder Area

LUT-based shifter

Macro-Cells

Number of operands

A
re

a
(A

LM
s)

Figure 12. Area of the 10 circuits synthesized using VPR 5.0.

4.4 Routability
Figure. 13 reports the critical path delay of the IWLS benchmarks
with a varying number of macro-cells; we observe practically no
impact on critical path delay from the inclusion of as many as 100
shifters per benchmark. As noted in Section 3.3, we considered
two different placement strategies: a constrained strategy in
which the logic placed onto macro-cells is fixed a-priori, and an
unconstrained strategy in which the placer can move the macro-
cell logic (the shifter, and logic layer preceding it) onto any
macro-cell. The results reported in Figure. 13 are for the
constrained strategy; we observed that the unconstrained strategy
produced essentially identical results, where the differences in
delays for each data point are in the range of tens of pico-seconds.

Figure. 14 shows that introducing macro-cells may adversely
affect Wmin, as each macro-cell requires some routing resources.
For many benchmarks, Wmin steadily increases when the number
of macro-cells ranges from 20 to 80, but decreases rapidly from
80 to 100. The reason for this observation is that VPR
automatically generates an FPGA that is sized to a specific
application; based on the number of CLBs used and I/O pads
required, VPR generates the smallest square FPGA that can
provide sufficient resources. VPR then repeatedly places and
routes the circuit to determine Wmin.

Many of the IWLS benchmarks are I/O bound, so CLB utilization
is relatively sparse, and there is relatively little congestion in the
routing network. Each macro-cell that is added increases CLB
utilization, and introduces congestion, which increases Wmin. If we
assume a fixed-size FPGA, eventually, the inclusion of more
macro-cells will cause utilization to exceed 100%. VPR then
generates a larger FPGA, with much lower utilization;
consequently, the benchmark circuit routes much easier, and Wmin
is reduced. This is precisely what occurred, for example, for
benchmarks aes_core and des_perf (and a few others) between 80
and 100 macro-cells in Figure 14. It is important to recall that
these benchmarks are synthetic. A floating-point operator, in
contrast, would contain shifters and use the available macro-cells.
Moreover, Wmin as reported in Figure 14 is much smaller than the
routing channel width of commercially available FPGAs.

These experiments demonstrate that macro-cells are quite useful
for benchmarks that contain shifters, while their presence will not
adversely affect other benchmarks that do not contain shifters.

Figure 13. Introducing as many as 100 macro-cells into the
benchmarks does not increase the critical path delay.

Figure 14. Introducing macro-cells into the benchmarks does
have some affect on channel width; however, the dimensions
of the FPGA change as well, as the number of macro-cells
changes each benchmark’s demand for logic resources.

5. RELATED WORK
The goal of this work is to reduce the cost of mantissa alignment
and normalization in floating-point operations. One alternative is
to integrate floating-point units as hard blocks [2, 5, 9]; however,
applications that are not floating-point intensive will be unable to
use these blocks. To date, FPGA vendors do not sell device
families with dedicated blocks for floating-point applications.
Beauchamp et al. [2] advocate integrating hard shifters or 4:1
multiplexors in parallel with FPGA logic; however, when the
shifters are not used, the nearby routing resource are wasted; and
when the 4:1 multiplexors are used, significant routing resources
are still required to form large shifters.
Shifters and multiplexers can be synthesized onto multipliers in
the DSP blocks [8, 12], and Xilinx has added 17-bit barrel shifters

Number of macro-cells

L
o

gi
c

A
re

a
(M

il
li

o
n

s
o

f
m

in
im

u
m

-w
id

th
 t

ra
n

si
st

o
rs

)

Circuit Area

ac97_ctrl

aes_core

des_perf

ethernet pci_bridge

mem_ctrl

usb_func

system_cae

wb_conmax

vga_lcd

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

!" #!" $!" %!" &!" '!!"

Number of macro-cells

C
ri

ti
ca

l
P

at
h

 D
e

la
y
 (

n
s)

Relationship between the number of
macro-cells and critical path delay

ac97_ctrl

aes_core

des_perf

ethernet pci_bridge

mem_ctrl

usb_func

system_cae

wb_conmax

vga_lcd

!"##$

%"##$

&#"##$

&'"##$

&("##$

&!"##$

&%"##$

#$ '#$ (#$!#$ %#$ &##$

!"#

!$#

%"#

%$#

&"#

&$#

'"#

'$#

(""#

"#)"# *"# !"# &"# (""#
Number of macro-cells

ac97_ctrl

aes_core

des_perf

ethernet pci_bridge

mem_ctrl

usb_func

system_cae

wb_conmax

vga_lcd

M
in

im
u

m
 C

h
a
n

n
e

l
W

id
th

 (
W

m
in

)
Relationship between the number of

macro-cells and minimum channel width

to their DSP48E1 blocks [26]; however, a DSP block used for
shifting, cannot perform other operations. Benchmarks that
require multiplication and shifting can still benefit from FPGAs
containing DSP blocks and macro-cells.

Floating-point datapath compilers use arithmetic transformations
to synthesize floating-point operations efficiently on FPGAs [6,
16, 17]; reducing the cost of normalization is one of their goals.
These compilers achieve better performance and logic density
than using 2-input operators, but they sacrifice IEEE compliance.
Our approach is amenable to IEEE-compliant operators.

A patent by Kaviani (Xilinx) [13] exposes the selection bits of C
block multiplexers to the programmer; the idea is similar to
Xilinx Virtex FPGAs, which do not have intra-cluster routing. No
CAD tools are described, so the affect on routability is unknown.

6. CONCLUSION
The macro-cells introduced in this paper can implement 27-bit
shifters for single-precision floating-point mantissa alignment and
normalization. The macro-cells reduce the area of floating-point
addition clusters by up to 32%, which increases the number of
operators that can be synthesized into a fixed-area device. This
aligns well with the strategy employed by Altera’s floating-point
datapath compiler [16, 17]. Our experiments show that macro-
cells do not adversely affect routability for benchmarks that do
not contain shifters. Future work will look to integrate macro-
cells with FPGAs that contain sparse intra-cluster routing, and to
see whether it is possible to extend them into the C Block.

REFERENCES
[1] Ahmed, E., and Rose, J. The effect of LUT and cluster size on deep-

submicron FPGA performance and density. IEEE Trans. VLSI, vol.
12, no. 3, March, 2003, pp. 288-298. DOI=
http://dx.doi.org/10.1109/TVLSI.2004.824300

[2] Beauchamp, M. J., Hauck, S., Underwood, K. D., and Hemmert, K.
S. Architectural modifications to enhance the floating-point
performance of FPGAs. IEEE Trans. VLSI, vol. 16, no. 2, Feb. 2008,
pp. 177-187. DOI= http://dx.doi.org/10.1109/TVLSI.2007.912041

[3] Berkeley Logic Synthesis and Verification Group. “ABC: A system
for sequential synthesis and verification.: December 2005 release.
URL= http://www.eecs.berkeley.edu/~alanmi/abc

[4] Betz, V., and Rose, J., “Automatic generation of FPGA routing
architectures from high-level descriptions,” ACM/SIGDA Int.
Symp. FPGAs (FPGA ’00), pp. 175-184, Feb. 10-11, 2000, DOI=
http://doi.acm.org/10.1145/329166.329203

[5] Chong, Y. and Parameswaran, S., “Flexible multi-mode embedded
floating-point unit for field programmable gate arrays,”
ACM/SIGDA Int. Symp. FPGAs (FPGA ’09), pp. 171-180, Feb. 22-
24, 2009, DOI= http://doi.acm.org/10.1145/1508128.1508155

[6] de Dinechin, F., Klein, C., and Pasca, B., “Generating high-
performance custom floating-point pipelines,” Int. Conf. Field
Programmable Logic and Applications (FPL ’09), Aug. 31- Sept. 2,
2009. DOI=http://dx.doi.org/10.1109/FPL.2009.527255/

[7] Feng, W. and Kaptanoglu, S. Designing Efficient Input Interconnect
Blocks for LUT Clusters Using Counting and Entropy. ACM Trans.
Reconfigurable Technol. Syst., vol. 1, no. 1, Mar. 2008, pp. 1-28.
DOI= http://doi.acm.org/10.1145/1331897.1331902

[8] Gigliotti, P., “Implementing barrel shifters using multipliers,” XAPP
– Application Note: Virtex II Family, pp. 1-4, Aug., 2004. URL=
http://www.xilinx.com/support/documentation/application_notes/xap
p195.pdf

[9] Ho, C. H., et al., Floating-point FPGA: architecture and modeling.
IEEE Trans. VLSI, vol. 17, no. 12, Dec. 2009, pp. 1709-1718. DOI=
http://dx.doi.org/10.1109/TVLSI.2008.2006616

[10] IWLS 2005 benchmarks. URL=
http://iwls.org/iwls2005/benchmarks.html

[11] Jamieson, P., and Rose, J., “Enhancing the area-efficiency of FPGAs
with hard circuits using shadow clusters,” IEEE Trans. CAD, vol.
18, no. 12, Dec. 2010, pp. 1696-1709. DOI =
http://dx.doi.org/10.1109/TVLSI.2009.2026651

[12] Jamieson, P., and Rose, J., "Mapping multiplexers onto hard
multipliers in FPGAs,” 3rd Int. IEEE Northeast Workshop on
Circuits & Systems (IEEE-NEWCAS ’05), pp. 323-326, June 19-22,
2005. DOI= http://dx.doi.org/10.1109/NEWCAS.2005.1496692

[13] Kaviani, A., FPGA with improved structure for implementing large
multiplexors. U.S. patent, no. US 6,556,042 B1, Apr. 29, 2003.

[14] I. Kuon and J. Rose, “Area and delay trade-offs in the circuit and
architecture design of FPGAs,” ACM/SIGDA Int. Symp. FPGAs
(FPGA ’08), pp. 149-158, Feb. 24-26, 2008, DOI=
http://doi.acm.org/10.1145/1344671.1344695

[15] I. Kuon and J. Rose, “Automated transistor sizing for FPGA
architecture exploration,” ACM/IEEE Design Automation
Conference (DAC ’08), pp. 792-795, June 8-13, 2008, DOI=
http://doi.acm.org/10.1145/1391469.1391671

[16] Langhammer, M., "Floating point datapath synthesis for FPGAs,"
Int. Conf. Field Programmable Logic and Applications, (FPL ’08),
pp.355-360, Sept. 8-10, 2008. DOI=
http://dx.doi.org/10.1109/FPL.2008.4629963

[17] Langhammer, M., and Vancourt, T., “FPGA floating point datapath
compiler,” IEEE Symp. 17th IEEE Symp. Field-programamble
Custom Computing Machines (FCCM ’09), April 5-7, 2009. DOI =
http://dx.doi.org/10.1109/FCCM.2009.54

[18] Lemieux, G. Lee, E. Tom, M., and Yu, A. “Directional and single-
driver wires in FPGA interconnect,” IEEE International Conference
on Field-Programmable Technology (FPT ’04), pp. 41-48, Dec. 6-8,
2004, DOI: http://dx.doi.org/10.1109/FPT.2004.1393249

[19] Lemieux, G, and Lewis, D. “Using sparse crossbars within LUT
clusters,” ACM/SIGDA Int. Symp. FPGAs (FPGA ’01), pp. 59-68,
Feb. 11-13, 2001, DOI= http://doi.acm.org/10.1145/360276.360299

[20] Luu, J., Kuon, I., Jamieson, P., Campbell, T., Ye, A., Fang, W. M.,
and Rose, J. “VPR 5.0: FPGA CAD and architecture exploration
tools with single-driver routing, heterogeneity and process scaling,”
ACM/SIGDA Int. Symp. FPGAs (FPGA ’09), pp. 133-142, Feb. 22-
24, 2009, DOI= http://doi.acm.org/10.1145/1508128.1508150

[21] Marquardt, A., Betz, V., and Rose, J. “Timing-driven placement for
FPGAs,” ACM/SIGDA Int. Symp. FPGAs (FPGA ’00), pp. 203-
213, Feb. 10-11, 2000, DOI=
http://doi.acm.org/10.1145/329166.329208

[22] Marquardt, A., Betz, V., and Rose, J. “Using cluster-based logic
blocks and timing-driven packing to improve FPGA speed and
density,” ACM/SIGDA Int. Symp. FPGAs (FPGA ’99), pp. 37-46,
Feb. 21-23, 1999, DOI= http://doi.acm.org/10.1145/296399.296426

[23] McMurchie, L., and Ebeling, C. “PathFinder: a negotiation-based
performance-driven router for FPGAs,” ACM/SIGDA Int. Symp.
FPGAs (FPGA ’95), pp. 111-117, Feb. 12-14, 1995, DOI=
http://doi.acm.org/10.1145/201310.201328

[24] Metzgen, P., and Nancekievill, D. Multiplexer restructuring for
FPGA implementation cost reduction. Design Automation Conf.
(DAC ’05) pp. 421-426, June 13-17, 2005, DOI=
http://doi.acm.org/10.1145/1065579.1065692

[25] Verma, A., et al. “Synthesis of floating-point addition clusters on
FPGAs using carry-save arithmetic,” Int. Conf. Field Programmable
Logic and Applications (FPL ’10), pp. 19-24, Aug. 31- Sep. 2, 2010.

[26] Xilinx Corporation. Virtex-6 FPGA DSP48E1 Slice User Guide
UG369 (v1.2), September 16, 2009. URL=
http://www.xilinx.com/support/documentation/user_guides/ug369.p
df

