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ABSTRACT 
In floating-point datapaths synthesized on FPGAs, the shifters 
that perform mantissa alignment and normalization consume a 
disproportionate number of LUTs. Shifters are implemented using 
several rows of small multiplexers; unfortunately, multiplexer-
based logic structures map poorly onto LUTs. FPGAs, 
meanwhile, contain a large number of multiplexers in the 
programmable routing network; these multiplexer are placed 
under static control of the FPGA’s configuration bitstream. In this 
work, we modify some of the routing multiplexers in the intra-
cluster routing network of a CLB in an FPGA to implement 
shifters for floating-point mantissa alignment and normalization; 
the number of CLBs required for these operations is reduced by 
67%. If shifting is not required, the routing multiplexers that have 
been modified can be configured to operate as normal routing 
multiplexers, so no functionality is sacrificed. The area overhead 
incurred by these modifications is small, and there is no need to 
modify every routing multiplexer in the FPGA. Experiments show 
that there is no negative impact in terms of clock frequency or 
routability for benchmarks that do not use the dynamic 
multiplexers.  

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – gate 
arrays. 

General Terms 
Design, Performance. 

Keywords 
Field Programmable Gate Array (FPGA), Floating-point, 
Mantissa Alignment, Normalization. 

 

1. INTRODUCTION 
There is considerable interest in using FPGAs to accelerate 
scientific applications that are dominated by floating-point 
computations. As FPGAs have abundant spatial parallelism, the 
best strategy to optimize a floating-point datapath for an FPGA is 
to minimize the size of each operator, as doing so maximizes the 
number of operators that can be synthesized onto a device of fixed 
size; this, in turn, maximizes throughput. Recent work on 
floating-point datapath compilation for FPGAs has identified the 
wide shifts required for mantissa alignment and normalization as 
significant sources of area overhead [16, 17]. For IEEE single-
precision floating-point addition, mantissa alignment requires a 
right shift from 0-24 bits on a 24-bit mantissa (which includes the 
“hidden ‘1’” in the most significant position); and normalization 
requires a left shift from 0-27 bits on a 27-bit mantissa that has 
been extended with three additional bits (“guard,” “round,” and 
“sticky,”) which are used for rounding.  

Shifters are generally implemented using several layers of 
multiplexers. In this paper, we consider FPGAs with 6-input 
lookup tables (6-LUTs), which can implement a 4:1 multiplexer 
in a single layer of logic level; since a 4:1 multiplexer has two 
control bits, it maps perfectly onto a 6-LUT.  The 24- and 27-bit 
shifters required for mantissa alignment and normalization can be 
implemented with three layers of 6-LUTs: two layers of 4:1 
multiplexers and one layer of 2:1 multiplexers. The 24- and 27-bit 
shifters require 72 and 81 6-LUTs respectively. 

 A typical single-precision floating-point adder requires 350 to 
550 6-LUTs, depending on various implementation choices (e.g., 
support for all IEEE rounding modes, vs. support for just one). 
Regardless, of the details, the two shifters consume 153 6-LUTs, 
which is a significant portion of the overall area of the operator.  

1.1 Static vs. Dynamic Multiplexing in FPGAs 
Multiplexer-based logic maps inefficiently onto LUTs [24], and 
shifters are no exception. With that in mind, it is interesting to 
note that FPGAs contain many multiplexers in their routing 
networks; however, these multiplexers are not accessible to the 
user, as they are placed under static control of the FPGA’s 
configuration bitstream. In principle, we would like to leverage 
some of these multiplexers to implement the shifters required for 
mantissa alignment and normalization in floating-point addition; 
this paper describes architectural mechanisms to accomplish this 
goal, along with the supporting CAD tools.  
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Figure 1. A multiplexer in a traditional FPGA’s routing 
network is placed under static control of the configuration 
bitstream (a); an extension that allows the user to configure 
the multiplexer to have static or dynamic control (b). 
 

As a motivating example, consider the 8:1 multiplexer shown in 
Figure 1(a), which drives one input of a LUT; the other LUT 
inputs are driven by similar multiplexers, which are not shown. 
Three FPGA configuration bits drive the multiplexer’s selection 
inputs. The purpose of this multiplexer is to provide some 
flexibility to the FPGA CAD tools—in particular, the router—
when synthesizing a circuit onto the FPGA. In this case, there are 
8 physical wires within the FPGA that can connect to this LUT 
input, via the multiplexer. One signal must route to that particular 
LUT input, and the router is given 8 possible wires to use. Once 
the route is complete, the configuration bits are set to select the 
chosen wire. This configuration is static, i.e., it does not change 
until the FPGA is reprogrammed. As there is no possibility to 
dynamically drive the selection inputs of this multiplexer, there is 
no possibility for the user to utilize it as an actual 8:1 multiplexer. 
As it is not architecturally visible, the typical user—who is not an 
FPGA architect—will be completely unaware of its existence.  

Figure 1(b) illustrates a Static-Dynamic Multiplexer (SD-MUX), 
which can be configured for either static or dynamic control. A 
2:1 multiplexer now drives the configuration inputs of the 8:1 
multiplexer. The 2:1 multiplexer can select either the control bits 
or a set of wires that are available to the user to provide dynamic 
control. An extra configuration bit drives the selection input of the 
2:1 multiplexer, thus allowing the user to configure the 8:1 
multiplexer to provide either static or dynamic control. This basic 
idea easily generalizes to a multiplexer with any number of 
inputs, as long as a sufficient number of control bits are provided. 

When the SD-MUX is configured to provide static control, one 
signal can be routed to any of the 8 multiplexer inputs, and the 
configuration bits are set accordingly, as shown in Figure 2(a); as 
noted earlier, this provides flexibility to the router, as there is 
fierce competition for routing resources. When the SD-MUX is 
configured as a dynamic multiplexer, as shown in Figure 2(b), 8 
signals are routed to the 8 multiplexer inputs in pre-specified 
order; e.g., if the user logic expects the multiplexer to select 
signal x when the selection bits are 010, then x must be routed to 
multiplexer input 010 in order to preserve this functionality; thus, 
the flexibility afforded to the router in the static case is sacrificed. 

If we assume that the multiplexers in the routing network are 27:1 
or larger, then 24 of them can implement mantissa alignment, and 
27 can implement normalization. If we ignore the other LUT 
inputs, and configure the LUT to implement the identity function, 
then these two shifters can be implemented using 51 LUTs: a 
savings of 66.7% over the LUT-based implementation. This paper 
provides a solution that realizes this best-case savings. 

 
Figure 2. A static multiplexer provides flexibility to the 
router: in this case, 8 inputs are available to route one signal 
(a); a dynamic multiplexer offers no flexibility to the router, 
as all multiplexer inputs are used, and routes must be 
computed for the dynamic control signals as well. 

 
1.2 Fundamental Challenges 
The benefit of the SD-MUX is evident for circuits that require a 
significant amount of multiplexing; however, the introduction of 
dynamic multiplexers into an FPGA fabric comes at a non-
negligible cost, and creates new challenges for physical design 
tools. The following issues must be addressed in order to justify 
the inclusion of dynamic multiplexers in an FPGA fabric: 

(1) Given that FPGA routing networks consume as much as 90% 
of on-chip area [7], is the area overhead of replacing static 
multiplexers with SD-MUXes justifiable?  

(2) When the SD-MUX is configured for dynamic control, how 
can the router overcome the lack of flexibility arising from 
the fact that 8 input signals must be routed to 8 multiplexer 
inputs in a pre-specified order, as shown in Figure 2(b)? 
How is routability achieved in the general case?  

(3) How are the dynamic control bits generated, and how are 
they routed into SD-MUX, as noted in Figure 2(b)? 

The answer to question (1) is that SD-MUXes can be introduced 
sparingly. Realistic user circuits may contain a significant amount 
of multiplexer-based logic that benefits from the presence of 
dynamic multiplexers; however, they also contain other logic that 
maps better onto existing FPGA logic and arithmetic resources, 
such as LUTs, carry chains, and DSP blocks. As an example, 
floating-point operators require a large number of LUTs for 
shifters, but also include components that would not benefit from 
dynamic multiplexers, such as fixed-point adders and multipliers 
and leading zero counters. Thus, there is no need to replace more 
than a handful of static multiplexers with SD-muxes.    

The answer to questions (2) and (3) is solved through CAD 
algorithms. As shown in Figure 2(b), SD-MUXes configured as 
dynamic multiplexers impose significantly more constraints on 
the router than static multiplexers. To handle these constraints, the 
CAD tools extract macro-cells, which are subcircuits comprised 
of the user logic that will use the dynamic multiplexers, plus the 
immediately preceding logic layer as well. The macro-cells are 
placed-and-routed separately from the remainder of the circuit. 
This ensures that the router can satisfy all of the constraints 
imposed by the dynamic multiplexers without having the macro-
cells compete with the remainder of the circuit for limited routing 
resources in congested areas. Placement then proceeds as normal, 
with some additional provisions to handle the macro-cells: the 
placer can move the entire macro-cell around within the FPGA, 
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but cannot change the placement within the macro-cell. Once 
placement completes, routing resources within each macro-cell 
are reserved; unused routing resources within the perimeter of the 
macro-cell are not reserved, as their usage does not affect the 
macro-cell’s functionality. The remainder of the circuit is then 
routed as normal, with the restriction that the reserved routing 
resources within each macro-cell are not perturbed, thereby 
ensuring its correct functionality.  

1.3  Paper Goals and Organization 
The remainder of this paper focuses on the architectural design 
choices to enable the SD-MUXes, the supporting CAD toolflow, 
and the experimental evaluation thereof. In particular, it is of 
great importance to ensure than the introduction of SD-MUXes 
does not significantly impair the performance of industrial-scale 
circuits that do not use the dynamic multiplexing functionality; 
fortunately, no adverse affects were observed in our experiments.  

Section 2 describes the architectural modification that are 
necessary to integrate SD-MUXes into an FPGA, including the 
key design choices and trade-offs involved. Section 3 describes 
the CAD flow in greater detail. Section 4 presents our 
experimental evaluation, including an analysis of the benefits that 
SD-MUXes offer floating-point datapath circuits. Section 5 
summarizes related work, and Section 6 concludes the paper.   

2. ARCHICTECTURAL MODIFICATIONS 
TO INTEGRATE SD-MUXES INTO FPGAS 
This section describes the necessary architectural enhancements 
to FPGAs to integrate SD-MUXes into the routing fabric. Starting 
with an overview a typical FPGA architecture (Section 2.1), we 
consider two locations in the FPGA to introduce the SD-MUXes 
(Sections 2.2 and 2.3). Lastly, we introduce the macro-cell and 
describe how a standard FPGA CAD flow can be modified to 
achieve routability (Section 2.4).   

2.1 FPGA Architecture Overview 
This paper targets an FPGA architecture based on the Versatile 
Place and Route (VPR) tool, which is publicly available from the 
University of Toronto [20, 21]. The user specifies several 
architectural parameters in a configuration file. VPR generates an 
FPGA architecture based on these parameters. For each LUT, 
VPR generates a Basic Logic Element (BLE), depicted in Figure 
3(a), which includes a bypassable flip-flop. The BLE can be 
configured to implement either combinational or sequential logic.  

BLEs are grouped into clusters called Configurable Logic Blocks 
(CLBs), with fast Intra-Cluster Routing, as shown in Figure 3(b). 
A Connection Block (C Block) interfaces the CLB with the global 
routing segments on either side. Figure 3(c) shows a floorplan of 
an island-style FPGA, which includes Switch Blocks (S Blocks) at 
the intersection points between horizontal and vertical routing 
channels, as well as I/O pads.  

The user specifies several parameters that VPR uses to generate 
the logic and routing architecture: 
K: the LUT size (i.e., a K-LUT); 
N: the number of LUTs per CLB; 
I: the number of CLB inputs; 
W: the number of segments per routing channel; and 
Fcin and Fcout: C Block connectivity parameters 

 
Figure 3. A Basic Logic Element (BLE) (a); a Configurable 
Logic Block (CLB) contains several BLEs, with fast intra-
cluster routing; the Connection Block (C Block) interfaces the 
intra-cluster routing inside the CLB with the global routing 
network (b); the floorplan of a generic island-style FPGA (c).  
 
As shown in Figure 3(b), each input multiplexer in the C Block 
selects one of W×Fcin wires in the adjacent routing channel on the 
left, and each BLE drives W×Fcout segments in the adjacent 
routing on the right. Most FPGAs use single driver routing [18], 
so the C Block output is a conceptual description of the routing 
topology (i.e., which BLE outputs drive which segments in the 
channel). The multiplexers shown on the right-hand side of Figure 
3(b) are actually implemented in the S Blocks, which are shown 
(without detail) in Figure 3(c). Figure 3(b) depicts inputs coming 
in from the left hand side of the CLB and outputs leaving to the 
right; in actuality, inputs and outputs may enter and exit from all 
four sides of the CLB, and the user may specify the percentage of 
inputs and outputs that enter and exit on each side.  

Given all of these architectural parameters, VPR generates the 
interconnect topology algorithmically. A number of architectural 
parameters, such as those that describe the switch box, have been 
omitted from this discussion for brevity.  
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The intra-cluster routing depicted in Figure 3(b) is a crossbar that 
connects I inputs and N local feedbacks to the K×N LUT inputs in 
the CLB. VPR 5.0 implements intra-cluster routing as a full 
crossbar, which provides a connection between every CLB input 
and LUT input. Full crossbars are costly in terms of area and 
power, but guarantee routability: i.e., any combination of signals 
routed to CLB inputs can be routed to any desired combination of 
LUT inputs. Highly routable sparse crossbar topologies for intra-
cluster routing have also been investigated in recent years [7, 19].  

Ahmed and Rose determined that the ideal number of CLB inputs 
is I = K×(N+1)/2, which is less than the total number of LUT 
inputs, K×N. This suffices because many signals fan-out to 
multiple LUT inputs within a CLB after the FPGA has been 
configured. As each CLB input (other than LUT feedbacks) is 
driven by a W×Fcin:1 multiplexer, reducing the number of CLB 
inputs reduces the overall cost of the C Block, at the expense of 
some flexibility. In other words, N independent K-input logic 
functions cannot be packed into a CLB due to I/O limitations, 
despite the fact that the CLB has sufficient LUT capacity.  

Recall that the goal of this paper is to replace static multiplexers 
in the routing network with SD-MUXes. In Figure 3(b), there are 
two locations where this is possible: the C Block (input), and 
intra-cluster routing, as discussed in the next two subsections.  

2.2 Integrating SD-MUXes into the C Block 
Example 1. To illustrate the integration of an SD-MUX into a C 
Block, let us consider a conditional swap, which has three inputs, 
I0, I1 and c, and two outputs, J0 and J1. The operation is: 

 J0 = c ? I1 : I0       ,       J1 = c ? I0 : I1  (1) 

Figure 4 depicts a portion of the C Block that has been modified 
with two SD-MUXes to implement the conditional swap. A static 
multiplexer provides the control bit, while two SD-MUXES 
compute J0 and J1. In this particular example, W =8 segments per 
channel and Fcin = 0.5, i.e., each C Block multiplexer connects to 
4 wires in the channel. Each of the three 4:1 multiplexers in the C 
Block are implemented using three 2:1 multiplexers; two of the 
2:1 multiplexers have been replaced with SD-MUXes in Figure 4.  

The C Block in Figure 4 imposes routing constraints that must be 
satisfied in order to deliver input signals I0 and I1 in the correct 
order to the SD-MUX inputs. In particular, I0 and I1 must be 
routed on routing segments w6 and w7; the order is irrelevant, i.e., 
either I0 can be routed on w6 and I1 on w7, or vice-versa; similarly, 
I0 and I1 must be routed on w4 and w5 as well. The condition bit, c, 
has greater flexibility: it can be routed on w0, w1, w2, or w3.  

The placer and router must satisfy these constraints. Let F0 and F1 
be K-input logic functions that compute conditional swap inputs I0 
and I1. F0 and F1 must be synthesized on LUTs whose outputs 
collectively drive a subset of the wires that satisfy the 
aforementioned constraints. Moreover, this assumes that such a 
combination of LUTs actually exists. Although it may be possible 
to satisfy this constraint for a 3-input conditional swap operation, 
it will be much more difficult to satisfy for a 24- or 27-bit shifter.  

Example 2. Consider a 4-bit left shift with rotation. The inputs are 
I0…I3 and the outputs are J0…J3; two control bits c0 and c1 specify 
the shift amount (0-3 bit positions). Once again, we assume that 
W = 8 and Fcin = 0.5, and the C Block contains 4:1 multiplexers. 
As the shifter has four data inputs rather than two, each of the 
four data inputs, I0 … I3 must connect to exactly one input of each 
C Block multiplexer in a pre-determined pattern.  

 

Figure 4. A C Block modified to implement a conditional swap 
by introducing two SD-MUXes. The requirements to deliver 
the correct signals to the SD-MUX inputs impose stringent 
routing constraints.   
 

Figure 5(a) depicts a portion of the C Block that produces the 
lower-order data outputs, J0 and J1; however, the interconnection 
topology does not allow the design to be satisfied due to conflicts 
on the routing segments. For example, the multiplexer that 
produces J0 requires I0 to be routed on segment w4, while the 
multiplexer that produces J1 requires I1 to be routed on the same 
segment concurrently. Similar conflicts occur on segments w5, w6, 
and w7. In contrast, Figure 5(b) depicts an interconnect topology 
that eliminates the routing conflicts; of course, this topology only 
satisfies a 4-bit left shift with rotation, and would not necessarily 
be helpful for some other type of multiplexer-based circuit. 

As mentioned earlier, dynamic multiplexers impose strict 
ordering constraints on the signals that are connected to their 
inputs. The examples shown in Figures 4 and 5 demonstrate that 
these constraints are propagated into the global routing network 
when SD-MUXes are integrated into the C Block. The ability to 
implement very simple multiplexing circuits, as shown in Figures 
4 and 5, is dependent on the interconnect topology between the 
CLBs and the routing network; this interconnect topology 
depends on parameters W, Fcin and Fcout, and the algorithm [4] 
that generates the routing network from these parameters.  

Although it may be possible to modify the routing network 
generation algorithm to favor certain interconnect topologies, it is 
difficult to determine whether the basic idea will generalize to 
larger structures. For example, in a 27-bit shifter, input bit I0 will 
fan out to 27 outputs, J0 … J26. This means that a single routing 
segment or a subset of segments driven by the same BLE must 
individually or collectively fan-out to 27 pre-specified C Block 
SD-MUX inputs, all in close quarters. Similarly I1 will need to 
fan-out to 26 pre-specified C Block SD-MUX inputs, etc. 
Moreover, this must be done with parameters that are 
representative of commercial FPGAs, e.g., N = 10, W = 300, Fcin 
= 0.15, and Fcout = 1/N = 0.1. The likelihood of success in this 
case is too low to be considered realistic; consequently, we 
conclude that the C Block is not a particularly promising location 
to integrate SD-MUXes into the routing fabric.  
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Figure 5. A conflict in the interconnect topology makes it 
impossible to implement a 4-bit rotator using SD-MUXes in 
the C Block (a); changing the interconnect topology can 
eliminate the conflict (b).  
 

2.3 Integrating SD-MUXes into Intra-Cluster 
Routing 

Alternatively, we can introduce SD-MUXes into the intra-cluster 
routing instead of the C Block. The primary advantage of this 
approach is that it eliminates the routing constraints that arise due 
to the interconnection topology between the routing segments and 
the C Block. Instead, the interconnection topology constraints are 
internal within the intra-cluster routing. Signals that drive a 
specific SD-MUX input for dynamic multiplexing, as shown in 
Figure 6, are routed to pre-selected CLB inputs. Each pre-selected 
CLB input connects to one of the SD-MUX inputs: some to the 
data inputs, and others to the selection inputs.  

Figure 6 shows an example of a 4:1 SD-MUX integrated into the 
intra-cluster routing; a significant portion of the intra-cluster 
routing is omitted from Figure 6 to conserve space. Two CLB 
inputs provide dynamic control (they may also drive other 
multiplexers, which are not depicted in the figure); control signals 
c0 and c1 must be routed to these two inputs. The other four CLB 
inputs drive the data inputs of the SD-MUX. The input signals are 
routed to these four CLB inputs in a specific order, e.g., the SD-
MUX selects input I0 if c1c0 = 00. Thus, the connection topology 
between CLB inputs and SD-MUX inputs determines which 
signals must be routed to each pre-selected CLB input. 

  
Figure 6. Integrating an SD-MUX into intra-cluster routing 
imposes a strict ordering on the signals that are routed to the 
CLB inputs.   

 
Figure 7. Integration of SD-MUXes into the intra-cluster 
routing. The interconnect topology may force both SD-
MUXes to implement the same logic function when configured 
to implement dynamic control (a); rearranging the topology 
enables the SD-MUXes to implement different functions (b).   
 
In Figure 6, any 4-input multiplexer can be realized by permuting 
either the control or the data bits; however, additional restrictions 
are imposed when we consider multiple-output functions because 
each CLB input may connect to multiple SD-MUX inputs.  
Example 3. Let us reconsider the conditional swap operation from 
Example 1; this time, we want to implement it using SD-MUXes 
in the intra-cluster routing rather than the C Block. Figure 7(a) 
shows an initial attempt. Due to the interconnection topology 
within the intra-cluster routing, both SD-MUXes conditionally 
select the same input bit, i.e., they both compute logic function J0.  
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Figure 8. Intra-cluster routing with SD-MUXes modified to 
support a 4-bit left shift.   
 

By swapping the order of I0 and I1 at the CLB inputs, then this 
intra-cluster routing topology would compute J1, rather than J0; 
however, by changing the topology, as shown in Figure 7(b), the 
two SD-MUXes compute logic functions J0 and J1, respectively. 
In this case, swapping the order of I0 and I1 at the inputs would 
likewise swap the order of J0 and J1 at the outputs.  

Example 4: Figure 8 illustrates intra-cluster routing with SD-
MUXes that can implement a 4-bit left shifter (bits shifted in are 
set to zero). The basic interconnection pattern shown here easily 
generalizes to a larger shifter sizes. In this case, the SD-MUXes 
implement all of the shifting functionality; the LUTs are 
configured to pass the SD-MUX outputs through unmodified. 

In Figure 8, many of the SD-MUX inputs in are ‘0’ bits. It is not 
immediately clear how these bits should be handled. It would be 
unrealistic to extend some of the SD-MUXes to account for a 
large number of ‘0’ bits, e.g., in a K-bit shifter, the SD-MUX that 
computes least significant output bit J0 requires K-1 ‘0’ bits, the 
SD-MUX that computes J1 requires K-2 ‘0’ bits, etc.; the area 
overhead required to support larger shifters would be prohibitive.  

Another issue is that the routing network may invert signals en 
route. The LUT sink is usually reprogrammed to compensate if 
some of its inputs arrive with the wrong polarity. SD-MUXes, 
however, are not programmable in this respect. One possibility is 
to add programmable inversion at the shifter inputs; however, this 
incurs significant area overhead. Another option is to reprogram 
the previous layer of LUTs that generate the shifter inputs to 
compute the complement of its logic function; however, this logic 
layer may have a large fan-out, where some fan-out bits are 
inverted and others are not, rendering this approach ineffective.  

We can solve both the ‘0’ SD-MUX input bit problem and the 
inversion problem by using LUTs in conjunction with the SD-
MUXes. Each SD-MUX output drives a LUT input; we can then 
route the control bits to the remaining LUT inputs. The LUT is 
then programmed to invert the SD-MUX output if the selected 
input arrives in inverted form. The LUT is also programmed to 
output a ‘0’ for the appropriate control bit combinations (e.g., c1c0 
= {01, 10, 11} for J0 in Figure 8), which eliminates the need to 
route ‘0’ bits to the SD-MUX inputs.  

The CLBs in modern high performance FPGAs contain 6-LUTs; 
this limits the number of control bits that can be supported using 
this approach to 5 or less, which, in turn, limits the maximize SD-
MUX size to 32:1. This suffices for the 24- and 27-bit shifters 
used for single-precision floating-point mantissa alignment and 
normalization. Figure 9 illustrates the preceding discussion for the 
second least significant bit, J1 of a 27-bit shifter. 

 
Figure 9. A LUT in conjunction with an SD-MUX solves the 
problems of inverted input bits and generates ‘0’ outputs 
when appropriate. This example is the second least significant 
output bit, J1, of a 27-bit left shifter. Four truth tables are 
possible, depending on whether I0 and I1 are inverted. 
Programmable inversion is necessary for the five control bits. 
 

CLB parameters also limit the size of the SD-MUXes that can be 
introduced. The intra cluster routing has a total of I+N inputs and 
N×K outputs. The inputs are the I CLB inputs provided by the C 
Block plus N LUT feedbacks from within the CLB. The cluster 
contains N K-LUTs; each LUT input is an output of the intra-
cluster routing. A typical modern high-performance FPGA has N 
= 8, K = 6, and I = K×(N+1)/2 = 27, using the formula provided 
by Ahmed and Rose [1]. To support a 27-bit shifter, we need to 
increase I to 32, to account for the control signals.   
In VPR 5.0, the intra-cluster routing is a full crossbar. Given these 
parameter values, the intra-cluster routing would be composed of 
48 40:1 multiplexers. Modern FPGAs, however, use sparsely 
populated crossbars [7, 19]. Depending on the population density 
of the sparse crossbar, the multiplexers may be smaller than 27:1. 
In this case, we would either need to limit the shift amount in 
accordance with the multiplexer size, or introduce SD-MUXes 
that are larger than the pre-existing static multiplexers; this latter 
option is unfavorable, because it introduces asymmetry in terms 
of delays: i.e., the delay through a statically configured SD-MUX 
is greater than the delay through a standard static multiplexer, 
which could affect performance and complicate routing.  

The interconnection topology (i.e., which CLB inputs connect to 
exactly which SD-MUX inputs) has a significant impact on our 
ability to implement shifters in the intra-cluster routing; this was 
illustrated quite clearly by Figure 7. Figure 8 illustrates the 
general interconnect topology pattern required for a left shifter 
(which easily generalizes to more than 4 inputs), and a left shifter 
can implement a right shifter by reversing the order of the inputs. 
Shifters that perform rotation (e.g., Figure 5) require a different 
topology as they do not shift-in zeroes. To summarize, the 
topology must account for ordering constraints on SD-MUX 
inputs in order to ensure correctness.  
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Lastly, we do not advocate the introduction of SD-MUXes into 
every CLB, as the vast majority of CLBs in a given FPGA will 
not be configured to implement dynamic multiplexing circuits in 
most realistic designs. CLBs containing SD-MUXes are a new 
form of heterogeneity, similar in principle to the introduction of 
DSP blocks and block RAMs in past FPGAs. As a rough estimate, 
we suggest at most 10% of the CLBs in an FPGA should be 
enhanced with SD-MUXes, and that those that are enhanced 
should be laid out in columns within the FPGA; the column-based 
layout echoes the way that DSP blocks and block RAMs are 
currently laid out in FPGAs, and therefore makes intuitive sense.  

2.4 Ensuring Routability with Macro-Cells 
Consider a 27-bit shifter implemented with SD-MUXes integrated 
into the intra-cluster routing. In accordance with prior notation, let 
I0 … I26 and J0 … J26 denote the shifter inputs and outputs, and let 
c0 … c4 denote the control bits. This is a total of 32 inputs 
(including control bits) and 27 outputs. Eight CLBs, CLB0 … 
CLB7 realize the shifter. LUT Li computes shifter input Ii, LUT Si 
computes shifter output Ji, and LUT Ci computes control bit ci.  

Figure 10 depicts the interconnection pattern for the 27-bit shifter. 
The structure depicted in Figure 10 is called a macro-cell, because 
the LUTs and CLBs are pre-placed and routed. Without loss of 
generality, if the placer (generally an iterative improvement 
algorithm) randomly moves L5 to a new CLB, the likelihood is 
quite small that a legal route will be found that delivers shifter 
input I5 to the pre-specified CLB inputs in CLB5, CLB6, and CLB7. 
By fixing the locations of the LUTs relative to one another in the 
macro-cell, routability is achieved.  

3. CAD SUPPORT FOR MACRO-CELLS 
We used VPR 5.0 [20] for architectural simulation, placement, 
and routing, T-VPack for packing [22], and ABC for logic 
synthesis and technology mapping [3]. 

 
Figure 10. A macro-cell for a 27-bit shifter. 

 

3.1 Programming Model, Assumptions, and 
Technology Mapping 

We assume that the programmer will add annotations to the HDL 
code to specify when to configure the programmable macro-cell 
as a shifter, similar to how DSP blocks and carry chains are used. 
The technology mapper explicitly binds the annotated shifters to 
macro-cells rather than mapping them to LUTs. Large shifters are 
decomposed into smaller ones if macro-cell capacity is exceeded. 
Next, we extract the layer of LUTs that precedes each shifter, e.g., 
LUTs L0 … L23 in Figure 10. The structure of the macro-cell 
effectively pre-packs, pre-places, and pre-routes these subcircuits. 

3.2 Macro-cell Placement and Routing 
VPR’s router, which is based on PathFinder [23], assumes that 
CLB intra-cluster routing is a full crossbar. Any path from the 
source to a CLB input can route a net: the crossbar connects all 
CLB inputs to all LUT inputs. We modified VPR to allow the 
user to specify specific CLB inputs pins as targets for certain 
sinks. VPR can find a legal route for a macro-cell, establishing a 
path from the LUT source that computes each net to all of its pre-
specified inputs in the second macro-cell layer. VPR successfully 
routed 24- and 27-bit shifters in macro-cells using this approach. 

Macro-cells are placed-and-routed offline, prior to the rest of the 
circuit. Placement of the shifter onto SD-MUXes within the 
macro-cell is deterministic. Placement of the LUT layer preceding 
the shifter is more flexible: any placement that successfully routes 
all nets within the macro-cell suffices. We try to pack the LUTs 
tightly into a small number of CLBs in the vicinity of the shifter.  

3.3 Global Placement and Routing 
Extensive modifications were made to VPR’s placer [21] in order 
to handle macro-cells. The input is a netlist, which may or may 
not contain macro-cells, and an architectural description of the 
FPGA in which certain columns have been annotated to indicate 
CLBs that have been enhanced with SD-MUXes.  

Each shifter in the netlist, along with the layer of preceding LUTs, 
is placed onto a macro-cell. Each macro-cell is routed up-front. 
SD-MUXes in the remaining (unused) macro-cells are configured 
as normal CLBs, similar to how shadow clusters are used [11]. 
The placer considers all other CLBs to be functionally equivalent. 

VPR’s placer uses simulated annealing. We implemented two 
placement strategies. In the first, we place shifters onto macro-
cells and fix their placement; the placer moves normal soft logic 
clusters around, but does not perturb the placement of the shifters 
onto macro-cells. The second option relaxes this constraint, and 
moves both soft logic clusters around the FPGA and may also 
move any shifter onto an unused macro-cell.  

Macro-cells configured as shifters are similar to DSP blocks from 
the perspective of the CAD tools. The difference is that unused 
logic and routing resources within each macro-cell, after it has 
been placed-and-routed, remain available to the global placer and 
router and can be used by the rest of the circuit.  

4. EXPERIMENTAL RESULTS 
Our experimental goals are twofold. Firstly, we wish to quantify 
reduction in LUT count that can be achieved by synthesizing 
shifters onto SD-MUX enabled macro-cells. Secondly, we wish to 
ensure that the inclusion of macro-cells does not adversely affect 
routability for industrial-scale benchmarks.  
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4.1 Floating-Point Operators 
We consider a set of single-precision multi-operand floating-point 
adders that have already been optimized for area. These operators 
are similar to those produced by Altera’s floating-point datapath 
compiler [16, 17], which removes redundant normalizations. We 
used designs published by Verma et al. [25], which were slightly 
smaller than those produced by Altera’s compiler. We used the 
smallest design approach, which implemented the internal fixed-
point multi-operand addition using a tree of 3-input adders.  

For a K-input adder, we denormalize K-1 mantissas using shifters; 
the mantissa corresponding the largest exponent is not shifted. 
Normalization is only applied once, at the output of the operator.  

For 2, 4, 8, and 16-input adders, Figure 11 reports that the area 
savings (in terms of Altera’s ALMs) obtained by the macro-cell 
range from 25% to 32%. Assuming that the number of LUTs and 
CLBs in an FPGA are fixed, this means that 33-40% more 
operators can be packed into an area of fixed size when macro-
cells are used to implement shifters.  

We did not measure the effect of the macro-cells on critical path 
delay or pipeline depth of the adders. The throughput of floating-
point data paths is driven mostly by spatial parallelism; reducing 
the area of an operator increases the number of operators that can 
be synthesized on a fixed area device. The area savings reported 
in Figure 11, thus, translate indirectly into increased throughput 
for parallel floating-point data paths that use these operators. 

4.2 Experimental Setup: VPR 
We modeled an FPGA enhanced with macro-cells using VPR 5.0 
[20]. We did not use VPR 6.0, which is now part of the Verilog-
To-Routing (VTR) flow, for these studies because it did not have 
timing models in-place at the time this work was performed. As 
our baseline, we took one of the VPR architecture files from the 
iFAR repository [14, 15]. Table 1 lists the baseline parameters for 
our architecture. CLB inputs and outputs are evenly distributed 
around all four sides of the CLB.  

VPR explicitly models a C Block, but does not model the intra-
cluster routing; as it is a full crossbar, only its delay is modeled. 
We do not model SD-MUXes explicitly. Our experiments strive 
to show that macro-cells, which reserve a non-trivial quantity of 
routing resources in localized areas, do not adversely affect the 
ability to route large-scale circuits that contain shifters.  

Macro-cells are organized as vertical columns when they are 
introduced into the FPGA. The motivation is to mimic the layout 
of modern FPGAs. For example, logic clusters are generally laid 
out as columns; so are DSP blocks, block RAMs, etc. Only a 
small proportion of CLBs in the FPGA contain SD-MUXes. 

For each experiment, we placed each benchmark once and routed 
it three times using different random number seeds. The delay for 
each benchmark is the average delay of the three runs. This 
reduces the noise in our delay results as different random number 
seeds can yield significantly different routing results.   

4.3 Benchmarks 
We selected the ten largest IWLS 2005 benchmarks [10], which 
are described in Table 2, to evaluate the impact of the macro-cell 
on large-scale applications. Using VPR, we synthetically added 
macro-cells (shifters) to these benchmarks; our goal is to ascertain 
whether these shifters, when pre-placed and routed onto macr-
cells, adversely affect area, delay, and routability.  

 
Figure 11. The area savings obtained by macro-cell based 
implementations of 24- and 27-bit shifters used for mantissa 
alignment and normalization on four optimized multi-
operand single-precision floating-point adders.  
 

Table 1. FPGA architectural parameters 

Parameter Value Parameter Value 
LUT Size 6 Fc input 0.15 
Cluster Size 8 Fc output 0.1 
Channel Width 96 Technology* 65nm CMOS 
Cluster Inputs 36 Tile Area**  18940 
* Berkeley predictive models ** Min-width transistors 

 

Table 2. Ten largest IWLS 2005 benchmarks 
Benchmark Description 
ac97_ctrl Interface to external AC 97 audio codec 
aes_core Advanced Encryption Standard (AES) 
des_perf 16-cycle pipelined DES/3-DES Core 
ethernet 10/100 Mbps IEEE 802.3/802.3u MAC 
mem_ctrl Embedded memory controller 
pci_bridge32 Bridge interface to PCI local bus 
systemcaes Area-optimized AES implementation 
usb_func USB 2.0 compliant core 
vga_lcd Embedded VGA/LCD controller 
wb_conmax Wishbone Interconnect Matrix IP Core 

 

We modified each benchmark’s netlist to include 20, 40, 60, 80, 
and 100 shifters, which are connected at arbitrarily chosen points 
to ensure that they are not completely disjoint from the remaining 
logic. In VPR, we pre-allocated macro-cell columns and pre-
placed the shifters and preceding layers of logic onto them. We 
pre-routed the macro-cells, and marked the routing resources used 
as unavailable. Our primary concern was that locking down these 
resources up-front would adversely affect the quality of the routes 
obtained for the remainder of the circuit; fortunately, practically 
no degradation was observed. 

VPR generates a custom FPGA for each benchmark, based on its 
demand for logic and routing resources. Each benchmark is 
repeatedly placed and routed, varying the channel width each 
time; VPR converges onto the minimum channel width (Wmin) for 
which a legal route can be found. The average Wmin obtained by 
VPR across all benchmarks (with no macro-cells) here is 84.4.  

Figure 12 reports the area of each benchmark with a varying 
number of shifters. The area is reported in terms of minimum-
width transistors; this accounts for the fact that CLBs that have 
been augmented with SD-MUXes are larger than regular CLBs.  
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Figure 12. Area of the 10 circuits synthesized using VPR 5.0. 

4.4 Routability 
Figure. 13 reports the critical path delay of the IWLS benchmarks 
with a varying number of macro-cells; we observe practically no 
impact on critical path delay from the inclusion of as many as 100 
shifters per benchmark. As noted in Section 3.3, we considered 
two different placement strategies: a constrained strategy in 
which the logic placed onto macro-cells is fixed a-priori, and an 
unconstrained  strategy in which the placer can move the macro-
cell logic (the shifter, and logic layer preceding it) onto any 
macro-cell. The results reported in Figure. 13 are for the 
constrained strategy; we observed that the unconstrained strategy 
produced essentially identical results, where the differences in 
delays for each data point are in the range of tens of pico-seconds. 

Figure. 14 shows that introducing macro-cells may adversely 
affect Wmin, as each macro-cell requires some routing resources. 
For many benchmarks, Wmin steadily increases when the number 
of macro-cells ranges from 20 to 80, but decreases rapidly from 
80 to 100. The reason for this observation is that VPR 
automatically generates an FPGA that is sized to a specific 
application; based on the number of CLBs used and I/O pads 
required, VPR generates the smallest square FPGA that can 
provide sufficient resources. VPR then repeatedly places and 
routes the circuit to determine Wmin.  

Many of the IWLS benchmarks are I/O bound, so CLB utilization 
is relatively sparse, and there is relatively little congestion in the 
routing network. Each macro-cell that is added increases CLB 
utilization, and introduces congestion, which increases Wmin. If we 
assume a fixed-size FPGA, eventually, the inclusion of more 
macro-cells will cause utilization to exceed 100%. VPR then 
generates a larger FPGA, with much lower utilization; 
consequently, the benchmark circuit routes much easier, and Wmin 
is reduced. This is precisely what occurred, for example, for 
benchmarks aes_core and des_perf (and a few others) between 80 
and 100 macro-cells in Figure 14. It is important to recall that 
these benchmarks are synthetic. A floating-point operator, in 
contrast, would contain shifters and use the available macro-cells. 
Moreover, Wmin as reported in Figure 14 is much smaller than the 
routing channel width of commercially available FPGAs.  

These experiments demonstrate that macro-cells are quite useful 
for benchmarks that contain shifters, while their presence will not 
adversely affect other benchmarks that do not contain shifters.  

 

Figure 13. Introducing as many as 100 macro-cells into the 
benchmarks does not increase the critical path delay. 

 

Figure 14. Introducing macro-cells into the benchmarks does 
have some affect on channel width; however, the dimensions 
of the FPGA change as well, as the number of macro-cells 
changes each benchmark’s demand for logic resources. 

5. RELATED WORK 
The goal of this work is to reduce the cost of mantissa alignment 
and normalization in floating-point operations. One alternative is 
to integrate floating-point units as hard blocks [2, 5, 9]; however, 
applications that are not floating-point intensive will be unable to 
use these blocks. To date, FPGA vendors do not sell device 
families with dedicated blocks for floating-point applications. 
Beauchamp et al. [2] advocate integrating hard shifters or 4:1 
multiplexors in parallel with FPGA logic; however, when the 
shifters are not used, the nearby routing resource are wasted; and 
when the 4:1 multiplexors are used, significant routing resources 
are still required to form large shifters.  
Shifters and multiplexers can be synthesized onto multipliers in 
the DSP blocks [8, 12], and Xilinx has added 17-bit barrel shifters 
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to their DSP48E1 blocks [26]; however, a DSP block used for 
shifting, cannot perform other operations. Benchmarks that 
require multiplication and shifting can still benefit from FPGAs 
containing DSP blocks and macro-cells.   

Floating-point datapath compilers use arithmetic transformations 
to synthesize floating-point operations efficiently on FPGAs [6, 
16, 17]; reducing the cost of normalization is one of their goals. 
These compilers achieve better performance and logic density 
than using 2-input operators, but they sacrifice IEEE compliance. 
Our approach is amenable to IEEE-compliant operators. 

A patent by Kaviani (Xilinx) [13] exposes the selection bits of C 
block multiplexers to the programmer; the idea is similar to 
Xilinx Virtex FPGAs, which do not have intra-cluster routing. No 
CAD tools are described, so the affect on routability is unknown.  

6. CONCLUSION 
The macro-cells introduced in this paper can implement 27-bit 
shifters for single-precision floating-point mantissa alignment and 
normalization. The macro-cells reduce the area of floating-point 
addition clusters by up to 32%, which increases the number of 
operators that can be synthesized into a fixed-area device. This 
aligns well with the strategy employed by Altera’s floating-point 
datapath compiler [16, 17]. Our experiments show that macro-
cells do not adversely affect routability for benchmarks that do 
not contain shifters. Future work will look to integrate macro-
cells with FPGAs that contain sparse intra-cluster routing, and to 
see whether it is possible to extend them into the C Block. 
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