
Accelerator Compiler for the VENICE Vector Processor

Zhiduo Liu
zhiduol@ece.ubc.ca

Dept. of ECE, UBC
Vancouver, Canada

Aaron Severance
aaronsev@ece.ubc.ca

Dept. of ECE, UBC
Vancouver, Canada

Satnam Singh
s.singh@acm.org

Google & Univ. of Birmingham
Mountain View, USA

Guy G.F. Lemieux
lemieux@ece.ubc.ca

Dept. of ECE, UBC
Vancouver, Canada

ABSTRACT
This paper describes the compiler design for VENICE, a new
soft vector processor (SVP). The compiler is a new back-end
target for Microsoft Accelerator, a high-level data parallel
library for C++ and C#. This allows us to automatically
compile high-level programs into VENICE assembly code,
thus avoiding the process of writing assembly code used by
previous SVPs. Experimental results show the compiler can
generate scalable parallel code with execution times that are
comparable to hand-written VENICE assembly code. On
data-parallel applications, VENICE at 100MHz on an Al-
tera DE3 platform runs at speeds comparable to one core of
a 3.5GHz Intel Xeon W3690 processor, beating it in perfor-
mance on four of six benchmarks by up to 3.2×.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Multi-
processors)]: Array and vector processors; C.3 [Special-
purpose and Application-based Systems]: Real-time
and Embedded systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
vector, SIMD, soft processors, scratchpad memory, FPGA

1. INTRODUCTION
FPGAs offer low power operation and great performance

potential through massive amounts parallelism. Harnessing
the parallelism of FPGAs often requires custom datapath ac-
celerators. C-to-hardware tools assist this process, but still
require a lengthy place-and-route and timing closure process
every time the software is changed. A soft vector processor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

such as VENICE provides an alternative that can acceler-
ate a wide range of tasks that fit the SIMD programming
model. To address the programmability issue of previous
SVPs, this work presents a vectorizing compiler/back-end
code generator based on Microsoft’s Accelerator framework.

The VENICE architecture is chosen as a target SVP for
this work. It is smaller and faster than all previously pub-
lished SVPs. For applications that fit the SIMD program-
ming model, VENICE is often fast enough that application-
specific accelerators are not needed. For example, running
at 100MHz, VENICE can beat the latest 3.5GHz Intel Xeon
W3690 processor on data-parallel benchmarks. As well,
VENICE achieves speedups up to 370× faster than a Nios
II/f running at the same clock speed. The Accelerator com-
piler described in this paper achieves similar performance
levels to manual coding efforts. Compared to past SVPs,
the compiler greatly improves the usability of the system.

2. BACKGROUND AND RELATED WORK
Vector processing has been applied to scientific and en-

gineering workloads for decades. It exploits the data-level
parallelism readily available in applications by performing
the same operation over all elements in a vector or matrix.
It is also well-suited for image and multimedia processing.

Vectorizing Compilers. The VIRAM project [7] im-
plemented a vectorizing compiler and achieved good results,
auto-detecting over 90% of vector operations [8]. It is based
on the PDGCS compiler for Cray supercomputers.

A common concern for soft vector processors is com-
piler support. Although based on VIRAM, early soft vec-
tor processors, VESPA [11, 12] and VIPERS [13, 14], re-
quired hand-written inline assembly code and GNU assem-
bler (gasm) support. VESPA researchers investigated the
autovectorizing capability of gcc, but have not yet used it
successfully [12]. VEGAS [5] uses readable C macros to emit
Nios custom instructions, but programmers must still track
the eight vector address registers used as operands. This re-
sponsibility includes the traditional compiler roles of register
allocation and register spilling.

The multi-core Intel SSE3 target of Accelerator [1] is a
vector based target with shorter vector length. However,
due to a load/store programming model, a fixed number
of registers, and load balancing issues, the SSE3 target is
entirely different in design than the VENICE target.

Intel’s Array Building Blocks (ArBB) [2] is a system for
exposing data parallelism. It combines Intel’s Ct threaded

D
D

R
2

D$

I$ Nios
II/f

CPU

ABS

Accum.

MUL

SHIFT

ROTATE

Align 1

Align 2

ALU

EXTEND

CMOV

Align 3

VENICE Vector EngineInstruction Queue

Scratchpad

Memory

2kB - 2MB

2x clk

Address Logic

Altera Avalon

Fabric

(2nd

pipe

stage)

DMA

Custom Instruction Port

Figure 1: VENICE Architecture

programming model with RapidMind’s object system, which
provides, similar to Accelerator, C++ libraries for array
types and array operations to express data-parallel compu-
tation. RapidMind could target CPUs, Cell, and x86 pro-
cessors; ArBB appears to target only the latter.

VENICE Architecture. A block diagram of VENICE
(Vector Extensions to NIOS Implemented Compactly and
Elegantly) is shown in Figure 1. Based on VEGAS, VENICE
makes the following improvements:

• Instruction-level support for 2D and 3D arrays. These
avoid the need for VEGAS auto-increment modes.

• The vector address register file is removed. Hence,
there is no need to track and spill the vector address
registers. Instead, C pointers are directly used as
operands to vector instructions.

• VENICE uses 3 alignment networks in the pipeline.
This avoids the performance penalty with VEGAS
when operands are misaligned.

• The shared multiplier/shift/rotate structure requires
two cycles operational latency, allowing a general ab-
solute value stage to be added after the integer ALU.
This is followed by a general accumulator.

The native VENICE application programming interface
(API) is similar to inline assembly in C. However, novel C
macros simplify programming and make VENICE instruc-
tions look like C functions without any run time overhead,
e.g. Figure 2 adds the scalar value 42 to a vector.

Each macro dispatches one or more vector assembly in-
structions to the vector engine. Depending upon the oper-
ation, these may be placed in the vector instruction queue,
or the DMA transfer queue, or executed immediately.

The VENICE programming model uses a few basic steps:
1) allocate memory in scratchpad, 2) flush data from cache,
3) DMA transfer from main memory to scratchpad, 4) vector
setup (e.g., set the vector length), 5) perform vector oper-
ations, 6) DMA transfer results from scratchpad to main
memory, 7) deallocate memory in scratchpad.

The basic instruction format is vector(VVWU, FUNC, VD,

VA, VB). The VVWU specifier refers to ‘vector-vector’ opera-
tion (VV) on integer type data (W) that is unsigned (U). The
vector-vector part can instead be scalar-vector (SV), where
the first source operand is a scalar value provided by Nios.
These may be combined with data sizes of bytes (B), half-
words (H) and words (W). A signed operation is designated
by omitting the unsigned specifier (U).

#include "vector.h"
int main()
{

int A[] = {1,2,3,4,5,6,7,8};
const int data_len = sizeof(A);
int *va = (int *) vector_malloc(data_len);
vector_dma_to_vector(va, A, data_len);
vector_wait_for_dma();
vector_set_vl(data_len / sizeof(int));
vector(SVW, VADD, va, 42, va); // vector add
vector_instr_sync();
vector_dma_to_host(A, va, data_len);
vector_wait_for_dma();
vector_free(); // deallocate scratchpad

}

Figure 2: VENICE API Adds Scalar to Vector

#include "Accelerator.h"
#include "VectorTarget.h"
using namespace ParallelArrays;
using namespace MicrosoftTargets;
int main()
{

Target *tgtVector = CreateVectorTarget();
int A[] = {1,2,3,4,5,6,7,8};
IPA a = IPA(A, sizeof(A)/sizeof(int));
IPA d = a + 42;
tgtVector->ToArray(d, A, sizeof(A)/sizeof(int));
tgtVector->Delete();

}

Figure 3: Accelerator Code Adds Scalar to Vector

The vector_malloc(num_bytes) call allocates a chunk of
scratchpad memory. The vector_free() call frees the entire
scratchpad; this reflects the common usage of the scratch-
pad as a temporary buffer. DMA transfers and instruction
synchronization are handled by macros as well. In our expe-
rience, DMA transfers can be double-buffered to hide most
of the memory latency.

Accelerator. The Accelerator system developed by Mi-
crosoft [1, 10] is a domain-specific language aimed at ma-
nipulating arrays with multiple back-end targets, including
GPUs, multicore Intel CPUs, and VHDL [4]. Accelerator
allows easy manipulation of arrays using a rich variety of
element-wise operations. The restricted structure of Accel-
erator programs makes it easy to identify parallelism.

Accelerator data are declared and stored as Parallel Array
(PA) objects. Accelerator does a lazy functional evaluation
of operations with PA objects. That is, expressions and as-
signments involving PA objects are not evaluated instantly,
but instead they are used to build up an expression tree. At
the end of a series of operations, the PA ToArray() method
must be called. This results in the expression tree being op-
timized, translated into native code using a JIT compilation
process, and evaluated.

Figure 3 shows code to add the scalar value 42 to a vector
in Accelerator. The CreateVectorTarget() function indi-
cates that a subsequent ToArray() call will be evaluated
on the vector processor. The IPA type represents an inte-
ger parallel array object. The ToArray() call triggers the
compiler to generate VENICE-compliant code. Except for
creating the proper target, the program is unaware of all
hardware-related details, including whether a VENICE pro-
cessor is being used or its size. To target a different device,
one simply renames the CreateXXXTarget() function.

3. VENICE TARGET IMPLEMENTATION
The ability to manipulate arrays is intrinsic to both Ac-

celerator and VENICE. In many cases, a direct translation

Front-end:
input expression_graph;
convert_to_IR();
mark_and_add_intermediates();
move_bounds_to_leaves();

Back-end:
contant_folding_and_propagation();
combine_operators();
eval_ordering_and_ref_counting();
buffer_counting();
convert_to_LIR();
calc_buffer_size();
assign_buffers_to_input();
allocate_and_init_memory();

loop: transfer_data_to_scratchpad();
set_vector_length();
write_vector_instructions();
transfer_result_to_host();
if(!double_buffering_done) goto loop;
output VENICE_C_code;

Figure 4: Accelerator Compiler Flow

from Accelerator operators to VENICE instructions is pos-
sible. The compiler automatically breaks up large matrices
into a series of smaller data transfers that fit in the scratch-
pad. Also, it uses double-buffering to hide memory latency.

For this work, we do not support JIT. Instead, we use
Accelerator as a source-to-source compiler: it writes out an-
other C program annotated with the VENICE APIs, which
must be recompiled using gcc.

Figure 4 indicates the sequence of code optimizations and
code transformations performed by the compiler. The front-
end performs constant folding and common subexpression
elimination to produce an optimized intermediate represen-
tation (IR). Then, the front-end analyzes all of the memory
transforms and array accesses to produce index bounds for
each leaf node (input array) in the computation.

Back-end Preliminaries. Next, target-specific opti-
mizations are done before code generation. We found it
beneficial to perform our own constant folding in the back-
end in addition to existing front-end optimizations. Next,
certain short sequences of operators are combined into a sin-
gle compound VENICE operation, such as a multiply-add
sequence or any add/subtract followed by absolute value.

Scratchpad Allocation. To load input data from main
memory into the scratchpad, we need to allocate space in
scratchpad memory first. The back-end treats the scratch-
pad as a pseudo-registerfile [6, 9]. This divides the scratch-
pad into as many equal-size registers (vector data buffers)
as needed. However, several techniques are required to limit
the number of registers to maximize their size.

To determine the size of these registers, the compiler first
counts the total number of registers needed by the program.
This is done by first determining an evaluation order for the
subexpressions in each tree using a modified Sethi-Ullman
algorithm [3]. To re-use registers, the back-end keeps a list of
registers acting as input buffers for subsequent calculations,
plus the number of remaining references to each of them.
Whenever the reference count becomes zero, the register is
no longer needed to hold an input array or an intermediate
result, allowing the register to be re-used immediately. The
total number of registers needed is the sum of registers used
to hold leaf (input) data plus temporary intermediate data.
After this step, a linear IR (LIR) is generated with references
to precise register numbers.

One convenience feature in Accelerator is efficient han-
dling of out-of-bounds array indices coming from memory

5 11 2 3 4 5

original parallel array A

a) array returned by

 Rotate(A, [1]);

24

11 12 13 k

21 22 23 k

31 32 33 k

kkkk

b) array returned by

ShiftDefault(B, k, [1,1]);

original parallel array B

Figure 5: Memory Transform Examples

transform operations such as Shift() and Rotate(). In the
front-end, Accelerator propagates the array bounds back to
each leaf node, so the maximum extents are known. The
back-end takes this additional information into account and
allocates extra memory in the scratchpad for these cases.

All scratchpad memory is freed after each ToArray() call.
Data Initialization and Transfer. The initializing

stage copies any user data to the output C file and pre-
pares for memory transforms by padding input arrays with
proper values for any out-of-bounds accesses.

Figure 5 demonstrates how input data padding is done.
Part a) shows a rotation performed on a 1D array. The orig-
inal array is white, with the out-of-bounds elements shaded.
In this case, the last element 5 appears padded before first
element, while the first element 1 appears padded after the
last element. The new array formed by Rotate() is indi-
cated by the bold black bar. Part b) shows a shift on a 2D
array, up and to the left at the same time. Values past the
bounds are initialized with the specified default value of k.
The new array formed by ShiftDefault() is highlighted by
a bold black box.

DMA transfer instructions are generated after memory
allocation and data initialization. In the case where the full
array is large, or doesn’t entirely fit into scratchpad, the
compiler generates code to move data in a double-buffered
fashion by pre-fetching. This allows DMA transactions and
vector computation to overlap. Overlapping the two can
almost completely hide the overhead of the data transfer.

Generation of Vector Instructions. There is nearly
a direct mapping of Accelerator operators to VENICE in-
structions for basic element-wise operations. In a few cases,
we have prewritten library code to support Accelerator op-
erators that are not directly supported by VENICE, such as
divide, modulo and power.

For memory transforms on PA objects, we discussed in
the previous subsection that we handle such operations by
initializing the input data with a padded region outside of
the normal array bounds. We refer to the examples in Fig-
ure 5 again here to demonstrate how memory transforms are
executed. With all data properly initialized, extracting par-
tial data from a 1D array is simply done by adding an offset
to the starting address in the scratchpad memory. For 2D
arrays, the VENICE row stride amounts can be adjusted to
step over any padding elements added at both ends.

Implementation Limitations. VENICE does not sup-
port floating-point operations, so we are unable to sup-
port float, double and quad-float types in Accelerator. The
Boolean type uses 32b integers. Most of the Accelerator
APIs have been implemented in the VENICE back-end; a
few were omitted due to time constraints.

Figure 6: Compiler Speedups

CPU fir 2Dfir life imgblend median motest

Xeon W3690 0.07 0.44 0.53 0.12 9.97 0.24
VENICE 0.07 0.29 0.23 0.33 3.11 0.22
Speedup 1.0 1.5 2.3 0.4 3.2 1.1

Table 1: Runtime (seconds) and Speedup

4. RESULTS
Soft processor results were run on an Altera DE3-150 with

one DDR2-800 SODIMM. Different VENICE instances use
4, 16, and 64 parallel lanes of 32b ALUs, called V4, V16,
and V64, respectively. All processors run at 100MHz, with
the DDR2 memory at half rate; this allows easy estimation
of runtime using scaled clock rates up to 200MHz.

A set of six benchmarks are used to measure the effec-
tiveness of the compiler at scaling to large size SVPs. All
benchmarks use integers because Accelerator does not sup-
port byte or short data types. However, smaller data types
allow greater performance with VENICE because each 32b
ALU can be fractured into four 8b or two 16b ALUs.

Speedups over serial Nios II/f C code for both human
and compiler-generated parallel code are shown in Figure 6.
The compiler outperforms the human in 11 of the 18 cases;
when the human wins, it is only by a small margin, but
the compiler often wins by a much larger margin. This is
because the compiler puts more effort into the process than a
human: 1) it fully unrolls inner loops to reduce overhead; 2)
it carefully calculates the maximum buffer size that fits into
the scratchpad, rather than conservatively rounding down or
guessing; 3) it double-buffers all data transfers; 4) it inlines
all function calls. The fastest, life, achieves 370× speedup
compared to a Nios II/f. However, humans can sometimes
do far better than the compiler; the graph does not show our
human-written motion estimation result which is another
1.5× faster because it uses the VENICE accumulator in a
way that cannot be expressed in the Accelerator language.
Finally, we note that imgblend is memory bandwidth limited
at V16, so it does not benefit from more ALUs at V64.

In Table 1, we compare the VENICE compiler (not hu-
man) results to a single-core 3.5GHz Intel Xeon W3690 pro-
cessor compiled with Visual Studio 2010 with -O2. We ran
each benchmark 1000 times and measured total runtime.
Across the 6 benchmarks, Intel beats VENICE only on img-
blend, which is memory bandwidth limited.

5. CONCLUSIONS
This work has shown that compiler-generated results with

a soft vector processor can achieve significant speedups on
data parallel workloads. Speedups up to 370× versus a Nios
II/f, and speedups up to 3.2× versus a 3.5GHz Intel Xeon
W3690 are demonstrated. Furthermore, compiler-generated
results are comparable to human-coded results.

Currently, Accelerator and VENICE have limited data
type support. Accelerator should add support for bitwise
operations, plus byte and halfword data types. As well,
VENICE should add floating-point data types. In our back-
end, some Accelerator APIs are not yet implemented.

6. ACKNOWLEDGMENTS
We thank NSERC for funding, Altera for hardware dona-

tions, and the Microsoft Accelerator group for their assis-
tance during this project.

7. REFERENCES
[1] Accelerator. http://research.microsoft.com/en-

us/projects/accelerator.
[2] Sophisticated library for vector parallelism.

http://software.intel.com/en-us/articles/intel-array-
building-blocks/.

[3] A. Appel and K. J. Supowit. Generalizations of the
Sethi-Ullman algorithm for register allocation.
Software – Practice and Experience, 17:417–421, 1987.

[4] B. Bond, K. Hammil, L. Litchev, and S. Singh. FPGA
circuit synthesis of accelerator data-parallel programs.
In FCCM, pages 167–170, Charlotte, North Carolina,
USA, 2010.

[5] C. Chou, A. Severance, A. Brant, Z. Liu, S. Sant, and
G. Lemieux. VEGAS: Soft vector processor with
scratchpad memory. In FPGA, pages 15–24, Monterey,
California, USA, 2011.

[6] B. Egger, J. Lee, and H. Shin. Scratchpad memory
management for portable systems with a memory
management unit. In PACT, pages 321–330, Seoul,
Korea, 2006.

[7] C. Kozyrakis. Scalable Vector Media Processors for
Embedded Systems. PhD thesis, University of
California at Berkeley, May 2002. Technical Report
UCB-CSD-02-1183.

[8] C. E. Kozyrakis and D. A. Patterson. Scalable vector
processors for embedded systems. IEEE Micro,
23(6):36–45, 2003.

[9] L. Li, L. Gao, and J. Xue. Memory coloring: A
compiler approach for scratchpad memory
management. In PACT, pages 329–338, Sydney,
Australia, 2005.

[10] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using
data parallelism to program GPUs for general-purpose
uses. In ASPLOS, pages 325–355, San Jose, California,
USA, 2006.

[11] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA:
portable, scalable, and flexible FPGA-based vector
processors. In CASES, pages 61–70. ACM, 2008.

[12] P. Yiannacouras, J. G. Steffan, and J. Rose. Data
parallel FPGA workloads: Software versus hardware.
In FPL, pages 51–58, Progue, Czech Republic, 2009.

[13] J. Yu, C. Eagleston, C. Chou, M. Perreault, and
G. Lemieux. Vector processing as a soft processor
accelerator. ACM TRETS, 2(2):1–34, 2009.

[14] J. Yu, G. Lemieux, and C. Eagleston. Vector
processing as a soft-core CPU accelerator. In FPGA,
pages 222–232, Monterey, California, USA, 2008.

