
REPLACE: AN INCREMENTAL PLACEMENT ALGORITHM FOR FIELD
PROGRAMMABLE GATE ARRAYS

David Leong, Guy G.F. Lemieux†

Department of Electrical and Computer Engineering
 University Of British Columbia

 Vancouver, BC, Canada
dvleong@shaw.ca, lemieux@ece.ubc.ca

ABSTRACT

Recompiling a large circuit after making a few logic changes is
a time-consuming process. We present an incremental
placement algorithm for FPGAs that is focused on extremely
fast runtime for changes which can be localized. It is capable of
handling multiple changes across large regions of an FPGA.
This is especially useful when used with a floorplan where a
modified subcircuit is instantiated several times in the design
hierarchy or where several subcircuits are modified. The
algorithm is simpler and faster than past approaches because its
insertion and legalization steps are based on CPU-efficient
shifting steps which do not continuously evaluate the impact of
each move on costs. Instead, any lost quality is recovered by a
fast, low-temperature anneal at the end. When 35,000 out of
50,000 LUTs are modified, the incremental placement
(including fast anneal) is 7 times faster than VPR’s “fast
placement” from scratch with only 2% quality degradation. The
key concepts utilized in the incremental placement algorithm
include uses of floor-planning constraints, CPU-efficient CLB
shifting, super placement grid and a tuned annealing refinement
process.

1. INTRODUCTION

As FPGA capacity increases, the runtime required to compile
and fit a design also increases. For today’s largest FPGAs, a full
recompile often requires several hours to execute the entire
FPGA CAD flow. This is time-consuming and in many cases is
unnecessary when changes can be localized, even if they are
made in modules that are replicated across the design or if
several updates are done in parallel to different modules. When
only localized changes of a circuit are made, incremental
algorithms can speed up the compilation by operating on only
the changed portion of the design. Ideally, any incremental
recompilation should be as high-quality as compilation from
scratch, even after several generations of incremental updates.
 This paper presents an incremental placement algorithm,
named RePlace, designed to be part of an incremental FPGA
CAD flow. RePlace consists of four key ides: floor-planned

placement of modified CLBs, CPU efficient CLB shifting,
“thinking outside of the box” super placement grid, and a
finely tuned fast annealing process. The algorithm works with
the VPR place-and-route toolset [2]. RePlace is intended to be
used when significant but localized design changes are made. As
a result, we do not intend RePlace to be used in conjunction with
an incremental router because of significant design alterations.
Instead, we expect RePlace to be used after a floorplanning tool.
RePlace accepts as input a list of FPGA CLB instances to place.
It optionally accepts a list of floorplan rectangles, which can be
overlapping, as well as a list of CLBs for each floorplan
rectangle. If a specified floorplan rectangle is too small, then
RePlace dynamically resizes it during placement to make room
for the CLBs that belong inside during the incremental
placement process. The floorplanning information can be
assigned a priori by designers, e.g. as part of a very large chip
floorplan, or it can be computed on the fly from heuristics using
back-annotation from a previous placement.
 The RePlace algorithm starts with an initial high-quality
placement of the “before” circuit state produced by VPR. Then,
RePlace finds a new placement for the “after” circuit state. The
algorithm is kept very simple to maximize the runtime
improvement; while it can likely be “enhanced” in several ways,
we present the most basic algorithm and demonstrate excellent
quality results. The algorithm is based on shifting and annealing
at the CLB level. New or modified CLBs are placed in the
floorplanned regions; the floorplan constraint forces changes to
remain localized. If no space remains in the region, CPU-
efficient shifting expands the floorplanned rectangle, moving
other CLBs beyond the legal array bounds into zones termed the
super-grid. This is followed by compaction, which shifts
remaining whitespace within the legal zone to make space for
these moved CLBs so they can be returned to the legal zone.
RePlace ends with a fast, low-temperature anneal to improve the
final result quality.
 There are no standardized benchmarks available to evaluate
or compare incremental algorithms for FPGAs. To facilitate this,
we developed two sets of benchmarks available for download
along with our source code.1 Each individual benchmark circuit
has a “before” and “after” state to mimic an incremental change.
The first benchmark set, called Single Region or SR, represents
design changes made to one localized portion of an MCNC
circuit. The incremental changes in these circuits are created
using the Perturber tool [13] which makes synthetic changes to a
small, localized region.

† This research has been enabled by the use of WestGrid computing
resources, which are funded in part by the Canada Foundation for
Innovation, Alberta Innovation and Science, BC Advanced Education, and
the participating research institutions. WestGrid equipment is provided by
IBM, Hewlett Packard and SGI. This work was also funded by Altera and
NSERC.

Fig. 1. Incremental placement process. CLBs marked with an “X” are connected by the same net.

This benchmark set has the same depth profile information in
the before and after circuits – in this way, we isolate the ability
of the CAD tool to recreate a good placement with a very similar
but perturbed circuit and avoid including the possibly unknown
effects of altering circuit depth. While a depth change is more
“realistic”, keeping it constant helps better assess “stability” of
the tools.
 The second benchmark set, called Multi-Region or MR,
represents widespread design changes to several localized
regions of very large synthetic circuits. The incremental changes
in these circuits are created using the Un/DoPack CAD flow
[12]. Un/DoPack repeatedly performs a complete place-and-
route to reduce interconnect congestion, each time spreading the
clustering solution of several (10s to 100s) localized regions to
eliminate congestion. The benchmark circuits are taken from a
single iteration of this CAD flow using different levels of effort
for congestion reduction.
 The rest of the paper is organized as follows. Section 2 gives
background and related work in the area of incremental
placement for FPGA and ASIC CAD. Section 3 describes the
RePlace algorithm. Section 4 describes the benchmark
generation process and the experimental methodology. Section 5
compares RePlace to VPR. Finally, Section 6 presents
conclusions and future work..

2. RELATED WORK

Cong and Sarrafzadeh [4] give a high level overview of the
problems associated with incremental CAD, including
placement. They note two separate needs for incremental
placement: to optimize an existing good placement for a new
metric, such as power, or for handling the addition and
removal of logic or nets. RePlace is designed for the latter
situation. Incremental placement algorithms also fall into
both FPGA and standard cell problem domains, as described
below.
 FPGA-based algorithms focus on small-scale changes: they
operate on individual LUTs, and evaluate each move based upon
timing [10], congestion [11], or combined [9] cost functions.
These LUT-at-a-time operations are costly in runtime. For
example, ICP is ~8 times faster than VPR for small changes, but
slower than VPR for large changes [9]. In contrast, RePlace is
~7 times faster than VPR in “fast” mode even when changes
encompass up to 2/3 of the device.

 Altera’s Quartus II and Xilinx’s ISE tools advertise full-flow
speedups of 2-3 times in incremental mode. However,
algorithmic details are proprietary.
 Standard cell incremental placement algorithms are often
used as legalization steps to resolve cell overlap resulting from
global placement or changes like inserting buffers or decoupling
capacitors. Approaches [3] and [6] are meant for very small
netlist changes as they compute optimal locations and shift
patterns for each cell individually. Floorplan shifting is used in
[5], but it presumes significant available whitespace between
floorplan regions. Diffusion [14], ripple moves [15], and
network flow [16] algorithms are all effective approaches, but
the algorithms are more complex and likely slower than
RePlace. For example, [15] takes ~1hr on problems with only
12,000 cells compared to a runtime of ~1min for RePlace on
50,000 BLEs. Also, [16] is ~6 times faster than full ASIC
placement but only ~1% of cells are moved, compared to
RePlace being ~7 times faster than full FPGA placement when
moving up to 2/3 of 50,000 BLEs. Diffusion [14] is fast, but it
computes costs in the inner loop and may sacrifice quality
compared to replacing from scratch or performing a final global
anneal as done in RePlace.
 The key difference between RePlace and other incremental
placers is scalability to widespread changes. Most incremental
placers evaluate cost functions for every individual move while
inserting modified logic and shifting to make space, and this
makes them non-scalable. RePlace only considers cost at the end
while annealing. This oblivious nature allows it to quickly re-
place 2/3 of a 50,000 LUT circuit with the same speedup as a
small change to the circuit (i.e, RePlace is ~7 times faster than
fast VPR placement, regardless of the size of the region of
change). RePlace works because: (i) floorplan constraints
localize changes and prevent global movement of entire
“modules”; (ii) FPGA architectures with fixed-length wires are
often tolerant to mild placement shifts (although there is a step
function in delay when you cross the reach of a routing wire,
within the reach of a routing wire delay is very flat and
wirelength is unchanged); and (iii) carefully-tuned annealing
recovers most of the lost quality from the cost-oblivious shifting
steps.
 The focus of RePlace is to use CPU-efficient shifting and
moves that require no complex movement cost computation. In
terms of algorithmic time complexity analysis of RePlace, we
note that runtime scales with the number of cells like VPR

(a) initial placement with
cut-out region (white, top

right) targeted for
replacement

(b) expansion to super-grid,
inserting new CLBs (red)

(c) whitespace compaction
to restore legal placement

(d) final result after
low-temperature

anneal

(e) full placement
from scratch with

locked I/O locations

1 http://www.ece.ubc.ca/~lemieux/downloads

(which was shown to be roughly O(N4/3)) and independent of the
number of moved cells. However, we believe that final
algorithm runtime (which includes constant factors) is far more
important than theoretical scalability.
 The previous approaches described here tend to focus on
solving the problem of overlaps: they start with an initial best
but illegal placement, then iteratively resolve the illegal
locations using different schemes until a valid placement is
produced. In comparison, RePlace approaches the problem
differently by disallowing CLB overlaps. Instead, CPU-efficient
shifting is used to shift partial rows or columns of CLBs out of
the way to immediately create more whitespace for insertion.
The shifting creates an expanded placement grid that is then
compacted and annealed. Differences in reporting styles and
lack of standardized benchmarks make further comparison
between incremental methods difficult. By releasing our
benchmarks and source code for the VPR tool flow, we hope to
encourage further improvements to incremental placement
efforts.
 The RePlace algorithm was previously named iPlace in [1].

3. ALGORITHM

 The RePlace algorithm was designed with the fastest
possible runtime in mind. The purpose is to speed up the
iterative place-and-route process used after back annotation of
physical information to improve overall quality of results in
flows such as Un/DoPack [12]. The algorithm initially preserves
spatial locality in the original placement by keeping previously-
placed unmodified CLBs close to their same relative order when
possible. The placer also employs simplicity by avoiding the use
of heavy computation or cost function evaluations in the first
three steps. This simplicity is the key to fast runtime. A
carefully-tuned, low-temperature anneal in the final step
recovers all lost quality from the first 3 steps. Despite this
simplicity and the use of annealing, the quality of results and
total runtime is remarkably good. The four steps to RePlace are
as follows:

1. Initial Placement, Floorplanning, and Re-clustering
2. Super-grid Expansion Placement
3. Compaction (Re-legalization)
4. Refinement by Low-Temperature Annealing

 The first step re-clusters new LUTs into modified CLBs and
pre-places the other unmodified CLBs. The second step pre-
places modified CLBs, sometimes shifting partial rows/columns
of preplaced CLBs by one position to create whitespace (empty
CLBs) where needed; this preserves relative ordering. The third
step re-legalizes by shifting remaining whitespace to zones
where placement has expanded outside of the legal array bounds
of the FPGA. For fast runtime, all shifts are deliberately done
without checking potential impact to cost functions. While these
steps can be made more resource-aware to potentially result in
higher-quality results, they are deliberately left “dumb and
simple” here to demonstrate that the final annealing step can
recover all lost quality.
 The RePlace algorithm is implemented in the VPR
framework [2]. Three inputs are required for the incremental

placement process: i) an initial placement from the “before”
circuit state; ii) a floorplan or rectangular region identifying
approximately where to place the changed elements – this can be
provided or automatically computed from the bounding box; and
iii) the modified or “after” circuit state. RePlace identifies which
CLBs are modified and which are unmodified by comparing the
first and third input data. It can automatically compute floorplan
constraints from bounding boxes in the “before” state. For
multiple changed regions, the input data for steps (i) and (iii)
must subdivide the CLBs into per-region changes.

3.1. Initial Placement, Floorplanning and Re-clustering

The first step of RePlace provides initial placement for all
unmodified CLBs by examining the placement solution of the
“before” circuit state. This step is pictorially shown in Figure
1(a). The colored CLBs represent unmodified CLBs; these are
initially placed in their previous placement locations to maintain
spatial locality. The CLBs are colored according to their original
location within a coarse 3x3 grid in the FPGA array. In this
example, one change region has been selected as a circular
region in the top-right. Here, the old CLBs have been removed,
leaving behind whitespace within that region to be filled in later
by modified CLBs.
 The bounding box of any holes left behind by the removed
CLBs is identified by RePlace as a single rectangular floorplan
region. To support multiple change regions, the “before” and
“after” circuits must be subdivided into per-region changes as
part of the input specification; RePlace cannot determine these
automatically. However, RePlace will compute a corresponding
bounding box for each change region. While the methods used
to subdivide these change regions are beyond the scope of this
paper, they can be identified through bounding boxes calculated
using the design hierarchy or a design floorplan, for example.
For the multiple region benchmarks in this paper, each change
region is identified and subdivided ahead of time by the
Un/DoPack flow.
 Last, modified CLBs are produced by an incremental re-
clustering step with a modified version of iRAC [8]. An
incremental design change can result in the deletion of old LUTs
and the creation of new LUTs. Any “before” CLB containing
deleted LUTs is fully broken down (unclustered) into its
constituent LUTs and added to the list of new LUTs. Other
CLBs (i.e., without deleted LUTs) are left intact and considered
unmodified CLBs; these CLBs are used as a partial starting
solution for iRAC. iRAC greedily extends this partial solution
into a complete, timing-driven clustering solution by re-
clustering all new and unclustered LUTs into modified CLBs.
This re-clustering step is performed separately for each region of
change.

3.2. Super-grid Expansion Placement

The second step of RePlace is placement of modified CLBs.
This step randomly places each modified CLB in the free
whitespace of its corresponding floorplan region. If some CLBs
exist that do not belong to any floorplan region, they are
randomly placed in the remaining space. Pseudocode for this
step is shown in Figure 2, and Figure 1(b) shows a real example.

Fig. 1. Super-grid expansion pseudocode.

a1 R2a

b1 R2c

R2b

R2d

R1a R1b

R1c R1d

c3

d3

b1 R2c

R1a

R2b

R2d

R1e

R1c R1d

c3

d3

R2aa1

R1b

Fig. 1. Multi-region floorplan handling.

If the floorplan region runs out of whitespace when a modified
CLB is being inserted, an expansion of that floorplan region is
triggered. Expansion is done in a round-robin/spiral fashion, one
complete side/direction at a time. When a side is expanded, the
floorplan rectangle increases in size by 1 CLB unit in that
direction. To make space, partial rows or columns of previously-
placed CLBs along that same side are shifted over 1 unit starting
from the centerline of the region; shifting in this manner
preserves relative placement of the CLBs along the column or
row. When shifting, any other affected floorplan rectangles are
also extended by 1 unit in the same direction as the shift. For
example, the floorplan region R1 in Figure 3 must be expanded
to create room for CLB R1e. The two columns on the top side
are shifted up, starting at the centerline of the floorplan region,
creating 2 spaces and increasing the floorplan to a 2 × 3 region.
The nearby floorplan region R2 is affected by the upward shift
of R1a and R1c, so it is also extended upwards to become a 2 ×
3 region. Afterwards, regions R1 and R2 overlap, which is
permitted. As a side effect of extending region R1, region R2
now has some extra whitespace. In general, the amount of
shifting required is quite modest. For example, to expand a 5 × 5
CLB region by 20%, only one shift on one side is required to
make it 5 × 6. The limited shifting helps maintain locality.
 This shifting process may place CLBs outside the device
boundaries into zones we call the super-grid. The super-grid
expands as needed to hold the relative order of CLBs. This
allows the placement algorithm to avoid calculations that would
be required to re-shuffle whitespace more carefully. Note that
I/O locations at the super-grid periphery just shift outwards but
are not reordered or increased in number. The super-grid

represents an illegal placement, so the next step involves re-
legalization in the form of compaction.
Note regarding hard macro blocks and carry chains
Real-world FPGA placement constraints such as carry chains,
large blocks of memory, or stripes of memories/multipliers
interfere with shifting. For small obstacles, one can imagine
shifting through them (to the other side). For larger obstacles,
they can be considered illegal areas, like the super-grid, which
allow CLBs to be shifted outside and resolved later by
compaction. This approach is further discussed in [1] but
omitted here due to space limitations. Lack of support for carry
chains and similar obstacles in VPR means these constraints are
not implemented or tested in the RePlace code.

3.3. Compaction (Re-legalization)

The third step of RePlace is to re-legalize CLBs placed outside
the valid placement area defined by the FPGA array size. One
method to re-legalize all CLBs is to use annealing, but we found
this approach too slow. Instead, we created a simple and fast
solution called compaction. The pseudocode for compaction is
shown in Figure 4. Figure 1(c) shows a real example.
 Compaction divides the entire super-grid into 9 zones like a
“#” symbol with the legal placement zone at the centre. This is
visually depicted in Figure 5 where the center green

Fig. 2. Compaction pseudocode.

S0

S1 S3

S4S8

S2

S6 S5S7

Fig. 3. Compaction areas.

zone S0 is the legal placement area. The red zones S1-S8 are
illegal locations to be fixed. The peripheral blue areas depict the
I/O locations. Compaction legalizes each of the four corners
and four sides, one zone at a time in random order2, by shifting
all available whitespace in the center zone to a legal location
nearby the illegal CLBs and then moving them into these legal
whitespace locations. The precise destination is random.
 For example, the top-center zone S2 is legalized by first
shifting all whitespace vertically to the top rows as if all legal
CLBs “fall” to the bottom of S0 due to gravity. Then, the
average horizontal location of the illegal CLBs in the S2 zone is

initial _ placement ()
shift = 0

for each change region r with floorplan f {
 for each modified CLB c of region r {

 if no remaining free space within f {
 shift%4 == 0 ? shift right by 1
 shift%4 == 1 ? shift up by 1
 shift%4 == 2 ? shift left by 1
 shift%4 == 3 ? shift down by 1
 shift++
 }
 randomly place c within free space of f
 }
}
randomly_place_any_remaining_clbs()

for each illegal zone s {
 if s is corner
 shift all free space to corner
 randomly move illegal CLBs to free space
 else if s is side
 shift all free space to side s
 find average location of illegal CLBs
 shift all free space to average location
 randomly move illegal CLBs into free space
 end if
}

used as a dividing line. All whitespace in S0 is shifted towards
this line as follows: all legal CLBs on the left of this line “fall”
to the far left and all right CLBs “fall” to the far right. This
places all whitespace just below the majority of illegal CLBs,
allowing them to be randomly moved to S0.

3.4. Refinement by Low-Temperature Annealing

The last step of RePlace is to improve quality with a carefully-
tuned, low-temperature anneal. After compaction, we found that
the average bounding box and critical path delays were not
ideal. In many cases, the bounding box cost was 20% higher
than placement from scratch. To avoid significant placement
alterations, we re-tuned various parameters within the simulated
annealing algorithm of VPR. To limit hill climbing, the initial
temperature was lowered so that fewer “bad” swaps would be
accepted. To maintain spatial locality, the initial range window
was lowered to focus the swaps within a more localized area. To
reduce and control runtime, the number of swaps per
temperature parameter, inner_num, and the temperature
reduction factor, alpha, were also tuned. A series of experiments
were conducted to determine the following parameter values:

• Initial temp. of 44% acceptance rate from prev. placement
• Initial window range (rlim) of 12.5% of the FPGA width

Temperature reduction factor alpha of 0.7
• Number of swaps per temp. range, inner_num of 1 to 3

Full details of this tuning are described in [1]. This produces a
good, high-quality result that is comparable to a full placement.
Runtime is controllable via the inner_num parameter.

4. EXPERIMENTAL METHODOLOGY

This section describes the experimental framework and the
circuits used to benchmark the incremental placement algorithm.

4.1. Single-Region Benchmarks (SR)

The first SR benchmark set is designed to test the performance
of the incremental placer with a single region of localized,
modified logic. These are simple test cases that any incremental
placer should handle.
 The SR benchmark characteristics are given in Table 1 for
five MCNC circuits. Similar results for the other 15 traditional
circuits are reported in [1]. Columns in the table give the number
of BLEs (#LE) and number of CLBs after clustering (#CLB) for
the original and modified versions. Also given is the number of
synthetically generated BLEs representing a design change in
each modified circuit (#syn LE).
 These circuits were generated as follows. An MCNC circuit
is used as a starting point for the “before” circuit state. It is then
modified using the Perturber tool [13] to produce five “after”
circuit states. One random rectangular floorplan region,
consisting of 2.5%, 5%, and 10% of the total CLBs, is selected
for each circuit. Each region is replaced with synthetically
modified logic, either identical- or double-sized, to generate 5

“after” states (the 10% change region is not doubled). The
identical-size cases are simple tests, while the double-size cases
test expansion. The circuit depth of the synthetically generated
sub-circuit is unchanged to provide a stable comparison between
the baseline and modified circuits. This was done to simulate
incremental changes such as a small error correction.

4.2. Multi-Region Benchmarks (MR)

The second MR benchmark set is designed to test performance
of the incremental placer with multiple regions of localized,
modified logic. This represents cases where significant changes
to multiple parts of a circuit are made to more fully stress the
incremental recompilation.
 The MR benchmark characteristics are given in Table 2. For
each benchmark, the total CLB count (#CLB), number of
modified CLBs (CLB) and the number of changed regions are
shown.
 This set of benchmarks is generated using the Un/DoPack
flow [12]. Each circuit is over 50,000 4-input LUTs in size,
initially clustered into CLBs of 16 LUTs per CLB. This flow
iteratively runs place-and-route many times to reduce
interconnect congestion. Each region that exceeds a target
channel width is re-clustered to use more CLBs (by inserting
empty LUTs to spread out the region), and then re-placed and
re-routed. If congestion persists, the flow iterates again. Rapid
incremental placement is required for this flow to execute
quickly. The “before” MR circuits are 3 large, synthetically
generated circuits from [12]. Five “after” versions of each
circuit with multiple regions of change are created by targeting a
10%, 20%, 30%, 40% or 50% reduction in routing channel
width in the first pass of Un/DoPack. The first congested region
is created by choosing the most-congested CLB and selecting all
CLBs within radius 5 that have not been previously selected. A
floorplan for this region is formed by the bounding box of
selected CLBs. The region is marked for re-clustering from 16
down to 13 LUTs per CLB, representing 23% more CLBs.
Additional congestion regions are created by iterating over the
remaining CLBs until all CLBs with a channel width above the
target width have been selected. Each CLB belongs to just one
local congestion region, but the floorplanned regions can
overlap.

4.3. Experimental Process

The incremental placement CAD flow is implemented as part of
VPR with the following parameters and settings:

• Initial clustering uses iRAC, initial placement uses VPR 4.30
• 4-input LUTs, cluster size N=10/16 for SR/MR, buffered L4

wires
• VPR flags: –verify_binary_search –pres_fac_mult 1.3
–max_ router_iterations 100, and for the final route with
20% more tracks: –pres_fac_mult 1.1

• Runtimes include placement only; initialization time is
excluded

• Runtime measurements use an Intel P4, 3GHz, 512MB RAM
• Low-temperature annealing parameters from Section 3.4
• Annealing results are an arith. average of 5 different starting

seeds

2 In retrospect, this random zone order will slosh the whitespace across the
die many times (once for each zone). Each slosh shears the locations of
many preplaced CLBs. It may be better to visit the 8 zones in a specific
order to reduce sloshing.

Fig. 1. Routing/Runtime, CLMA(SR).

Fig. 2. Routing/Runtime, Stdev010(MR).

Fig. 3. Timing/Runtime, Stdev010(MR)

 The placement speed of RePlace was varied by setting the
inner_num annealing parameter to 3, 2.5, 2, 1.5, and 1.
Reducing this value reduces the number of swaps that are
performed at each temperature. Lower values result in faster
runtimes, but this does not significantly affect quality. RePlace
uses a default value of inner_num=1.
 The placement speed of VPR was varied by setting its
inner_num parameter to 10, 1, 0.5, 0.25 and 0.125. An
inner_num value of 10 is the “default” value for VPR. An

inner_num value of 1 is set when VPR 4.30 is invoked with the
“fast” placement option. This produces slightly lower-quality
placements but improves runtime nearly 10-fold. We created a
new “superfast” VPR placement option that sets inner_num to
0.125. Various other VPR parameters such as initial
temperature, range limit etc. were also studied to determine the
reduction of runtime versus placement quality trade-off. It was
found that reducing inner_num provides the most graceful
degradation of placement quality versus runtime improvement.

5. EXPERIMENTAL RESULTS

Figures 6 and 7 show routability versus runtime trade-offs for
CLMA from the SR set and Stdev010 from the MR set,
respectively. Figure 8 shows critical path versus runtime trade-
off curves for Stdev010 from MR. The vertical axis is routing
quality, either the minimum channel width needed to route or
critical path. The horizontal axis is runtime on a log10 scale. The
left-most (fastest) data markers for RePlace in Figures 7 and 8
are the results when RePlace skips the fast anneal. VPR results
are drawn using open-box markers and RePlace results are
drawn using solid-box markers. RePlace significantly
outperforms default VPR by nearly two orders of magnitude in
runtime, yet achieves comparable quality. VPR quality degrades
10–20% across the performance range, but RePlace degrades
only about 5% (except when annealing is skipped). Results were
similar for the other benchmarks (not shown).
 An ultra-rapid incremental placement based entirely on
shifting CLBs and skipping the anneal is not recommended due
to significant quality loss. However, these results show that the
quality is not lost forever; it can be restored with a rapid anneal.
We include one more data point in Figures 7 and 8 for RePlace
inner_num=0.5 showing that an even faster anneal still recovers
all lost quality. We also tried adding a 2nd annealing step
between expansion and compaction, but this only increased
runtime and did not improve quality at all. It isn’t clear if this is
because most of the quality is lost due to compaction, or if a
single anneal is sufficient to recover all lost quality. Either way,
since the quality is recoverable by one anneal that is sufficiently
fast, it is likely unnecessary to spend additional runtime in the
expansion or compaction phase to make “carefully evaluated”
shifting decisions. This is encouraging because it shows that
extremely robust incremental placement can be done with very
simple heuristics.
 Tables 3 and 4 give more precise results for VPR and
RePlace. Speedup columns are normalized runtimes. Due to
measurement precision, runtimes <200ms are reported as 0s and
excluded from speedups. Columns CW, CP, BB, WL are
channel width, critical path delay, placement bounding box, and
routed wirelength. Columns ending in Q or Quality are
normalized to RePlace, so values > 1.0 indicate RePlace is
better. RePlace is within 4% of VPR full placement quality, but
with ~60-fold speedup. It is within 2% of VPR’s “fast”
placement quality with ~7-fold speedup. VPR in “superfast”
mode degrades quality 11-14% on average and does not achieve
the same speed as RePlace; this shows that rapid annealing alone
is not sufficient for incremental placement.
 It is worth noting that the quality of multi-region incremental
placement does not degrade even when a substantial portion of

the circuit is modified. In particular, the MR-50 set of circuits
have 1/3 to 2/3 of the CLBs modified in a 50,000 LUT circuit,
but RePlace is still able to produce quality results with similar
60-fold/7-fold speedups. This ability to tolerate widespread but
localized changes is what makes RePlace an ideal “fast
placement” tool for Un/DoPack.
 Speedups and high quality are obtained with RePlace
because of its ability to preserve the original placement
information. In particular, the floorplanning and shifting ensures
that modified CLBs are initially placed nearby the original
CLBs they are replacing, without disturbing relative placement
locality across the device. If the initial placement of modified
CLBs was completely unconstrained, the annealing step would
need many more swaps to achieve the same effect via the global
migration of many more CLBs. Instead, the fast anneal at the
end with a narrow range limit can focus its moves on quality
improvement via localized CLB movement rather than global
CLB movement.

6. CONCLUSIONS

RePlace is a fast incremental placement algorithm. The ideas
contributing to its speed include the use of floorplanning, a
placement super-grid, CPU-efficient CLB shifting which
performs no detailed cost calculations, and rapid annealing to
restore lost quality. It was shown that simply shifting alone, or
just speeding up annealing alone, are insufficient by themselves
to achieve the same quality and runtime benefits. Adding better
cost-aware shifting steps could be imposed, but it is not clear
they are needed from a quality or runtime perspective. While
such changes may further improve the results, the minor
improvements they offer to intermediate results may also simply
be lost when annealing. Instead, it is important to note that the
“dumb and simple” algorithm presented here is sufficiently
robust without this added complexity.
 RePlace achieves speedups roughly 70-fold compared to
default VPR for single region changes encompassing up to 10%
of small designs with no lost quality. Compared against VPR’s
“fast” mode, RePlace is still about 8 times faster. Compared to a
new “superfast” mode created for VPR, RePlace is almost 2
times faster and much better in quality. Even on large designs of
50,000 LUTs where up to two-thirds of a circuit is modified,
RePlace maintains similar speedups and performs only 2-4%
worse in quality. This shows that RePlace is capable of scaling
to situations where significant circuit modifications are made.
 Incremental placement algorithms that can quickly
incorporate logic design changes is even more important for
FPGAs than ASICs. Future work for the RePlace algorithm
includes extension to handle macro blocks and carry chains.
Additional benchmarking can be done with real world examples,
including small logic changes and large scale changes such as
updating a large subcomponent or updating a small
subcomponent replicated many times throughout the design. A
detailed comparison of quality and runtime results against other
incremental placement algorithms should also be done; we are
facilitating this by releasing our code and benchmarks online.

7. REFERENCES

[1] D. Leong, “Incremental Placement for Field-Programmable
Gate Arrays,” M.A.Sc. Thesis, Dept of ECE, University of
British Columbia, Nov., 2006.

[2] V. Betz, J. Rose, S. Marquardt Architecture and CAD for
Deep-Submicron FPGAs, Kluwer, Feb., 1999.

[3] C. Choy, T. Cheung, K. Wong, “Incremental Layout
Placement Modification Algorithms,” Trans. CAD, pp. 437-
445, Apr 1996.

[4] J. Cong, M. Sarrafzadeh, “Incremental Physical Design,”
International Symposium on Physical Design, pp. 84-92,
2000.

[5] J. Li, J. Yu, H. Miyashita, “An Incremental Placement
Algorithm for Building Block Layout Design Based on the O-
Tree Representation,” IEICE Trans. Fundamentals, vol. E88-
A, no. 12, pp 3398-3404, 2005.

[6] Z. Li, W. Wu, X. Hong, J. Gu, “Incremental Placement
Algorithm for Standard Cell Layout,” IEEE ISCAS, vol.2 pp.
883-886, 2002.

[7] A. Marquardt, V. Betz, J. Rose, “Using Cluster-Based Logic
Blocks and Timing-Driven Packing to Improve FPGA Speed
and Density,” FPGA, pp. 37-46, 1999.

[8] A. Singh and M. Marek-Sadowska, “Efficient Circuit
Clustering for Area and Power Reduction in FPGAs,” FPGA,
2002.

[9] D. Singh, S. Brown, “Incremental Placement for Layout
Driven Optimizations on FPGAs,” ICCAD, pp. 752-759,
2002.

[10] P. Suaris, L. Liu et al, “Incremental Physical Resynthesis for
Timing Optimization,” FPGA, pp. 99-108, 2004.

[11] N. Togawa, K. Hagi, M. Yanagisawa, “An Incremental
Placement and Global Routing Algorithm for Field
Programmable Gate Arrays,” ASP-DAC, 1998.

[12] M. Tom, D. Leong, G. Lemieux, “Un/DoPack: Re-Clustering
of Large System-on-Chip Designs with Interconnect Variation
for Low-Cost FPGAs”, ICCAD, 2006.

[13] D. Grant, G. Lemieux, “Perturb+Mutate: Semi-Synthetic
Circuit Generation Incremental Placement and Routing”,
ACM TRETS, Sept. 2008.

[14] H. Ren, D. Pan, C. Alpert, P. Villarrubia, “Diffusion-based
Placement Migration,” DAC, pp. 515-520, 2005.

[15] M. Hrkic, J. Lillis, G. Beraudo, “An Approach to Placement-
Coupled Logic Replication,” DAC, pp. 711-716, 2004.

[16] S. Dutt, H. Ren, F. Yuan, V. Suthar, “A Network-flow
Approach to Timing-driven Incremental Placement for
ASICs,” ICCAD, 2006.

Table 1. Single-region benchmark characteristics (10 BLEs per CLB).
 Original Synthetic 2.5 Synthetic 5 Synthetic 10 Synthetic 2.5d Synthetic 5d
 #LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB
CLMA 8383 839 8384 251 840 8383 490 839 8385 992 840 9032 980 904 9613 1966 962
EX1010 4598 460 4598 150 460 4599 251 461 4598 490 460 4752 304 476 4850 502 486
MISEX3 1397 140 1397 30 140 1397 147 140 1397 247 140 1460 93 147 1489 182 150
PDC 4575 458 4576 151 459 4575 490 458 4575 630 458 4829 504 484 4961 736 497
SPLA 3690 369 3691 91 370 3691 251 370 3692 492 370 3787 187 379 3907 417 391

Table 2. Multi-region benchmark characteristics (16 BLEs per CLB).

org.

#CLB

Multi Region - 50 Multi Region - 40 MR - 30 MR - 20 MR - 10

New

#CLB ΔCLB Num.
Regions

New
#CLB ΔCLB Num.

Regions
New

#CLB ΔCLB Num.
Regions

New
#CLB ΔCLB Num.

Regions
New

#CLB ΔCLB Num.
Regions

CLONE 3151 3618 2233 135 3310 762 46 3265 560 29 3206 275 12 3288 681 34
STDEV0 3148 3603 2218 114 3595 2208 114 3606 2224 116 3272 617 30 3370 1087 50
STDEV010 3152 3463 1490 85 3278 588 37 3254 490 29 3193 202 9 3237 425 20

Table 3. RePlace post-routing results (SR benchmarks).

Single-Region

Circuit

RePlace inner_num=1 VPR (default) norm. to RePlace VPR (fast) norm. to RePlace VPR (superfast) norm. to RePlace
RT
(s) CW CP

(ns) Bbox WL
×104 Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ

clma p25 3 51.8 27.0 528.8 6.76 72.00 0.97 0.95 0.98 0.97 8.27 1.02 0.94 1.01 1.00 1.73 1.10 0.96 1.11 1.10
clma p5 3 51.2 26.5 529.5 6.78 70.80 0.96 0.97 0.99 0.98 7.93 1.00 0.97 1.01 1.00 1.80 1.13 0.98 1.13 1.12
clma p10 3 52.2 26.9 536.9 6.88 73.53 0.98 0.96 0.98 0.98 8.13 1.01 0.93 1.01 0.99 1.73 1.10 0.96 1.11 1.10
clma p25d 3 50.6 30.9 572.7 7.23 80.27 1.00 0.89 0.98 0.97 8.87 1.02 0.89 1.00 0.99 1.87 1.11 0.90 1.09 1.09
clma p5d 4 54.2 32.0 644.4 8.26 69.95 1.00 0.99 0.98 0.97 8.15 0.99 0.96 0.99 0.98 2.00 1.08 0.95 1.08 1.08
ex1010 p25 1 47 17.8 277.8 3.66 77.60 0.99 0.91 0.99 0.99 9.20 1.04 0.95 1.01 1.01 2.20 1.06 0.95 1.05 1.04
ex1010 p5 1 46.6 16.9 276.3 3.63 75.00 0.99 0.95 0.99 1.00 8.60 1.03 0.95 1.00 1.01 2.00 1.12 1.01 1.08 1.09
ex1010 p10 1 46.4 16.8 277.3 3.64 77.00 1.03 0.97 0.99 0.99 8.80 1.03 0.98 1.00 1.00 2.00 1.06 0.97 1.05 1.05
ex1010 p25d 1.2 46.2 18.0 299.5 3.95 69.00 1.00 1.04 0.98 0.97 8.17 1.03 1.05 1.00 0.99 2.00 1.09 0.96 1.07 1.06
ex1010 p5d 1 47 17.1 279.1 3.68 76.20 1.01 0.99 0.99 0.99 8.80 1.01 0.95 1.01 1.00 2.20 1.08 0.95 1.06 1.06
misex3 p25 0 37.4 11.4 71.1 0.94 - 1.01 1.17 0.99 0.98 - 1.02 1.02 1.00 1.00 - 1.04 1.18 1.04 1.05
misex3 p5 0 37.6 13.7 71.3 0.94 - 0.99 0.83 0.99 0.99 - 1.01 0.91 1.00 1.00 - 1.05 0.95 1.04 1.06
misex3 p10 0 37.6 11.7 71.2 0.94 - 0.99 1.09 0.99 0.99 - 1.00 0.98 1.00 1.00 - 1.06 1.09 1.04 1.05
misex3 p25d 0 38.6 13.3 72.1 0.96 - 0.97 0.85 0.99 0.98 - 0.98 1.03 0.99 1.00 - 1.03 1.02 1.03 1.03
misex3 p5d 0 37.6 13.7 81.0 1.08 - 0.99 1.44 0.98 0.99 - 0.99 0.97 0.99 1.00 - 1.05 1.00 1.04 1.05
pdc p25 1 61.4 19.8 348.6 4.67 80.60 1.00 1.08 0.99 0.97 9.80 0.99 0.96 1.00 1.00 2.20 1.07 1.06 1.06 1.06
pdc p5 1.2 62 18.9 348.4 4.64 64.00 0.98 1.27 0.99 0.98 7.00 0.97 1.35 1.00 0.99 1.83 1.07 1.35 1.07 1.07
pdc p10 1.2 60.6 21.0 347.2 4.65 68.67 1.01 0.96 0.99 0.97 7.00 1.03 0.95 1.01 1.00 2.00 1.09 1.00 1.08 1.06
pdc p25d 1 61.2 25.2 367.6 4.93 84.40 0.98 0.78 0.98 0.98 10.20 0.99 0.76 0.99 0.98 2.60 1.05 0.81 1.05 1.05
pdc p5d 1.4 61.6 23.0 402.8 5.34 68.14 1.01 0.97 0.99 0.98 7.86 1.03 1.06 1.01 1.00 1.86 1.08 0.96 1.07 1.07
spla p25 0.6 51.6 17.3 230.6 3.11 75.67 0.98 0.96 0.99 0.99 8.67 1.00 1.23 1.01 1.01 2.33 1.08 1.11 1.09 1.09
spla p5 0.8 51.8 19.2 230.8 3.13 55.50 0.99 0.90 1.00 0.98 6.75 0.99 0.91 1.01 1.00 1.50 1.07 0.96 1.10 1.09
spla p10 1 51 17.7 230.4 3.13 44.80 1.01 0.97 1.00 0.98 5.00 1.02 1.07 1.01 1.00 1.20 1.09 0.97 1.08 1.08
spla p25d 0.6 49.8 19.6 250.5 3.37 84.00 1.03 0.92 1.00 1.00 9.67 1.04 0.92 1.01 1.01 3.00 1.09 1.02 1.09 1.08
spla p5d 1.2 53.8 20.8 289.1 3.84 51.17 0.98 0.96 0.98 0.97 6.00 1.01 1.04 1.00 0.99 1.50 1.09 0.99 1.07 1.06
Geo. Mean NA 49.2 19.1 252.6 3.33 70.08 0.99 0.98 0.99 0.98 8.04 1.01 0.98 1.00 1.00 1.94 1.08 1.00 1.07 1.07

Table 4. RePlace post-routing results (MR benchmarks).

Multi-Region

Circuit

RePlace inner_num=1 VPR (default) norm. to RePlace VPR (fast) norm. to RePlace VPR (superfast) norm. to RePlace
RT
(s) CW CP

(ns)
Bbox
×103

WL
×105 Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ

clone - 50 72.2 111.0 72.4 4.32 5.30 62.8 0.92 0.99 0.92 0.92 6.7 0.96 0.98 0.96 0.96 1.2 1.11 1.03 1.11 1.09
clone - 40 57.2 110.0 72.5 3.90 4.87 70.0 0.97 1.02 0.96 0.96 7.9 1.00 0.98 0.99 0.99 1.5 1.11 1.04 1.11 1.10
clone - 30 64.8 114.2 72.1 3.87 4.85 68.3 0.96 1.00 0.96 0.96 7.5 1.00 0.99 0.99 0.98 1.4 1.15 1.03 1.14 1.12
clone - 20 57.6 117.4 71.2 3.79 4.77 61.5 0.98 0.98 0.96 0.96 6.6 1.00 1.00 0.99 0.99 1.5 1.10 1.03 1.14 1.11
clone - 10 58.0 112.8 71.9 3.90 4.88 75.9 0.98 0.98 0.95 0.95 8.2 1.01 0.99 0.99 0.98 1.3 1.12 1.00 1.11 1.09
stdev0 - 50 60.8 92.6 74.4 4.27 5.22 67.3 0.92 0.95 0.94 0.95 7.6 1.00 0.98 0.99 0.98 1.5 1.14 0.98 1.10 1.08
stdev0 - 40 63.0 90.6 72.4 4.20 5.15 66.8 0.97 0.98 0.97 0.97 6.9 1.03 1.00 1.01 1.00 1.4 1.21 1.03 1.14 1.11
stdev0 - 30 76.2 92.0 74.2 4.26 5.21 55.1 0.96 0.97 0.96 0.96 5.6 0.98 0.97 0.98 0.98 1.1 1.23 1.01 1.13 1.11
stdev0 - 20 71.0 95.6 74.1 3.91 4.85 56.0 0.96 0.95 0.95 0.96 6.5 1.00 0.95 0.99 0.99 1.1 1.19 0.97 1.13 1.11
stdev0 - 10 59.8 93.6 73.0 4.00 4.96 66.3 0.96 0.96 0.95 0.95 7.1 1.00 0.96 0.99 0.99 1.4 1.17 1.00 1.12 1.10
stdev010 - 50 89.0 140.2 75.8 4.23 5.26 47.1 0.97 0.96 0.96 0.96 4.9 1.00 0.99 1.00 0.99 0.9 1.13 0.98 1.15 1.13
stdev010 - 40 66.0 140.0 74.3 4.04 5.08 59.7 0.98 0.97 0.96 0.96 6.3 0.99 0.98 0.98 0.98 1.3 1.14 1.00 1.14 1.12
stdev010 - 30 63.8 142.0 75.0 4.03 5.07 68.6 0.98 0.98 0.96 0.97 8.0 1.02 1.00 0.99 0.99 1.7 1.10 0.99 1.11 1.10
stdev010 - 20 56.4 150.6 74.0 3.93 4.98 66.5 0.99 0.98 0.97 0.96 7.1 1.00 0.98 0.99 0.99 1.4 1.11 0.99 1.12 1.11
stdev010 - 10 70.4 144.4 74.3 4.01 5.05 58.5 0.97 0.97 0.95 0.96 5.8 1.00 0.99 0.99 0.98 1.2 1.10 0.99 1.11 1.10
Geo. Mean 65.2 114.6 73.4 4.04 5.03 63.0 0.96 0.98 0.96 0.96 6.8 1.00 0.98 0.99 0.99 1.3 1.14 1.00 1.12 1.11

