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ABSTRACT 

Recompiling a large circuit after making a few logic changes is 
a time-consuming process. We present an incremental 
placement algorithm for FPGAs that is focused on extremely 
fast runtime for changes which can be localized. It is capable of 
handling multiple changes across large regions of an FPGA. 
This is especially useful when used with a floorplan where a 
modified subcircuit is instantiated several times in the design 
hierarchy or where several subcircuits are modified. The 
algorithm is simpler and faster than past approaches because its 
insertion and legalization steps are based on CPU-efficient 
shifting steps which do not continuously evaluate the impact of 
each move on costs. Instead, any lost quality is recovered by a 
fast, low-temperature anneal at the end. When 35,000 out of 
50,000 LUTs are modified, the incremental placement 
(including fast anneal) is 7 times faster than VPR’s “fast 
placement” from scratch with only 2% quality degradation. The 
key concepts utilized in the incremental placement algorithm 
include uses of floor-planning constraints, CPU-efficient CLB 
shifting, super placement grid and a tuned annealing refinement 
process. 

1. INTRODUCTION 

As FPGA capacity increases, the runtime required to compile 
and fit a design also increases. For today’s largest FPGAs, a full 
recompile often requires several hours to execute the entire 
FPGA CAD flow. This is time-consuming and in many cases is 
unnecessary when changes can be localized, even if they are 
made in modules that are replicated across the design or if 
several updates are done in parallel to different modules. When 
only localized changes of a circuit are made, incremental 
algorithms can speed up the compilation by operating on only 
the changed portion of the design. Ideally, any incremental 
recompilation should be as high-quality as compilation from 
scratch, even after several generations of incremental updates. 
 This paper presents an incremental placement algorithm, 
named RePlace, designed to be part of an incremental FPGA 
CAD flow. RePlace consists of four key ides: floor-planned 

placement of modified CLBs, CPU efficient CLB shifting, 
“thinking outside of the box” super placement grid, and a 
finely tuned fast annealing process. The algorithm works with 
the VPR place-and-route toolset [2]. RePlace is intended to be 
used when significant but localized design changes are made. As 
a result, we do not intend RePlace to be used in conjunction with 
an incremental router because of significant design alterations. 
Instead, we expect RePlace to be used after a floorplanning tool. 
RePlace accepts as input a list of FPGA CLB instances to place. 
It optionally accepts a list of floorplan rectangles, which can be 
overlapping, as well as a list of CLBs for each floorplan 
rectangle. If a specified floorplan rectangle is too small, then 
RePlace dynamically resizes it during placement to make room 
for the CLBs that belong inside during the incremental 
placement process. The floorplanning information can be 
assigned a priori by designers, e.g. as part of a very large chip 
floorplan, or it can be computed on the fly from heuristics using 
back-annotation from a previous placement. 
 The RePlace algorithm starts with an initial high-quality 
placement of the “before” circuit state produced by VPR. Then, 
RePlace finds a new placement for the “after” circuit state. The 
algorithm is kept very simple to maximize the runtime 
improvement; while it can likely be “enhanced” in several ways, 
we present the most basic algorithm and demonstrate excellent 
quality results. The algorithm is based on shifting and annealing 
at the CLB level. New or modified CLBs are placed in the 
floorplanned regions; the floorplan constraint forces changes to 
remain localized. If no space remains in the region, CPU-
efficient shifting expands the floorplanned rectangle, moving 
other CLBs beyond the legal array bounds into zones termed the 
super-grid. This is followed by compaction, which shifts 
remaining whitespace within the legal zone to make space for 
these moved CLBs so they can be returned to the legal zone. 
RePlace ends with a fast, low-temperature anneal to improve the 
final result quality. 
 There are no standardized benchmarks available to evaluate 
or compare incremental algorithms for FPGAs. To facilitate this, 
we developed two sets of benchmarks available for download 
along with our source code.1 Each individual benchmark circuit 
has a “before” and “after” state to mimic an incremental change. 
The first benchmark set, called Single Region or SR, represents 
design changes made to one localized portion of an MCNC 
circuit.  The incremental changes in these circuits are created 
using the Perturber tool [13] which makes synthetic changes to a 
small, localized region.  

† This research has been enabled by the use of WestGrid computing 
resources, which are funded in part by the Canada Foundation for 
Innovation, Alberta Innovation and Science, BC Advanced Education, and 
the participating research institutions. WestGrid equipment is provided by 
IBM, Hewlett Packard and SGI. This work was also funded by Altera and 
NSERC. 



Fig. 1.  Incremental placement process. CLBs marked with an “X” are connected by the same net. 

This benchmark set has the same depth profile information in 
the before and after circuits – in this way, we isolate the ability 
of the CAD tool to recreate a good placement with a very similar 
but perturbed circuit and avoid including the possibly unknown 
effects of altering circuit depth. While a depth change is more 
“realistic”, keeping it constant helps better assess “stability” of 
the tools. 
 The second benchmark set, called Multi-Region or MR, 
represents widespread design changes to several localized 
regions of very large synthetic circuits. The incremental changes 
in these circuits are created using the Un/DoPack CAD flow 
[12]. Un/DoPack repeatedly performs a complete place-and-
route to reduce interconnect congestion, each time spreading the 
clustering solution of several (10s to 100s) localized regions to 
eliminate congestion. The benchmark circuits are taken from a 
single iteration of this CAD flow using different levels of effort 
for congestion reduction. 
 The rest of the paper is organized as follows. Section 2 gives 
background and related work in the area of incremental 
placement for FPGA and ASIC CAD. Section 3 describes the 
RePlace algorithm. Section 4 describes the benchmark 
generation process and the experimental methodology. Section 5 
compares RePlace to VPR. Finally, Section 6 presents 
conclusions and future work.. 

2. RELATED WORK 

Cong and Sarrafzadeh [4] give a high level overview of the 
problems associated with incremental CAD, including 
placement. They note two separate needs for incremental 
placement: to optimize an existing good placement for a new 
metric, such as power, or for handling the addition and 
removal of logic or nets. RePlace is designed for the latter 
situation. Incremental placement algorithms also fall into 
both FPGA and standard cell problem domains, as described 
below. 
 FPGA-based algorithms focus on small-scale changes: they 
operate on individual LUTs, and evaluate each move based upon 
timing [10], congestion [11], or combined [9] cost functions. 
These LUT-at-a-time operations are costly in runtime. For 
example, ICP is ~8 times faster than VPR for small changes, but 
slower than VPR for large changes [9]. In contrast, RePlace is 
~7 times faster than VPR in “fast” mode even when changes 
encompass up to 2/3 of the device. 

 Altera’s Quartus II and Xilinx’s ISE tools advertise full-flow 
speedups of 2-3 times in incremental mode. However, 
algorithmic details are proprietary. 
 Standard cell incremental placement algorithms are often 
used as legalization steps to resolve cell overlap resulting from 
global placement or changes like inserting buffers or decoupling 
capacitors. Approaches [3] and [6] are meant for very small 
netlist changes as they compute optimal locations and shift 
patterns for each cell individually. Floorplan shifting is used in 
[5], but it presumes significant available whitespace between 
floorplan regions. Diffusion [14], ripple moves [15], and 
network flow [16] algorithms are all effective approaches, but 
the algorithms are more complex and likely slower than 
RePlace. For example, [15] takes ~1hr on problems with only 
12,000 cells compared to a runtime of ~1min for RePlace on 
50,000 BLEs. Also, [16] is ~6 times faster than full ASIC 
placement but only ~1% of cells are moved, compared to 
RePlace being ~7 times faster than full FPGA placement when 
moving up to 2/3 of 50,000 BLEs. Diffusion [14] is fast, but it 
computes costs in the inner loop and may sacrifice quality 
compared to replacing from scratch or performing a final global 
anneal as done in RePlace. 
 The key difference between RePlace and other incremental 
placers is scalability to widespread changes. Most incremental 
placers evaluate cost functions for every individual move while 
inserting modified logic and shifting to make space, and this 
makes them non-scalable. RePlace only considers cost at the end 
while annealing. This oblivious nature allows it to quickly re-
place 2/3 of a 50,000 LUT circuit with the same speedup as a 
small change to the circuit (i.e, RePlace is  ~7 times faster than 
fast VPR placement, regardless of the size of the region of 
change). RePlace works because: (i) floorplan constraints 
localize changes and prevent global movement of entire 
“modules”; (ii) FPGA architectures with fixed-length wires are 
often tolerant to mild placement shifts (although there is a step 
function in delay when you cross the reach of a routing wire, 
within the reach of a routing wire delay is very flat and 
wirelength is unchanged); and (iii) carefully-tuned annealing 
recovers most of the lost quality from the cost-oblivious shifting 
steps. 
 The focus of RePlace is to use CPU-efficient shifting and 
moves that require no complex movement cost computation. In 
terms of algorithmic time complexity analysis of RePlace, we 
note that runtime scales with the number of cells like VPR 
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(which was shown to be roughly O(N4/3)) and independent of the 
number of moved cells. However, we believe that final 
algorithm runtime (which includes constant factors) is far more 
important than theoretical scalability. 
 The previous approaches described here tend to focus on 
solving the problem of overlaps: they start with an initial best 
but illegal placement, then iteratively resolve the illegal 
locations using different schemes until a valid placement is 
produced. In comparison, RePlace approaches the problem 
differently by disallowing CLB overlaps. Instead, CPU-efficient 
shifting is used to shift partial rows or columns of CLBs out of 
the way to immediately create more whitespace for insertion. 
The shifting creates an expanded placement grid that is then 
compacted and annealed. Differences in reporting styles and 
lack of standardized benchmarks make further comparison 
between incremental methods difficult. By releasing our 
benchmarks and source code for the VPR tool flow, we hope to 
encourage further improvements to incremental placement 
efforts. 
 The RePlace algorithm was previously named iPlace in [1]. 

3. ALGORITHM 

 The RePlace algorithm was designed with the fastest 
possible runtime in mind. The purpose is to speed up the 
iterative place-and-route process used after back annotation of 
physical information to improve overall quality of results in 
flows such as Un/DoPack [12]. The algorithm initially preserves 
spatial locality in the original placement by keeping previously-
placed unmodified CLBs close to their same relative order when 
possible. The placer also employs simplicity by avoiding the use 
of heavy computation or cost function evaluations in the first 
three steps. This simplicity is the key to fast runtime. A 
carefully-tuned, low-temperature anneal in the final step 
recovers all lost quality from the first 3 steps. Despite this 
simplicity and the use of annealing, the quality of results and 
total runtime is remarkably good. The four steps to RePlace are 
as follows: 
 

1. Initial Placement, Floorplanning, and Re-clustering 
2. Super-grid Expansion Placement 
3. Compaction (Re-legalization) 
4. Refinement by Low-Temperature Annealing 

 
 The first step re-clusters new LUTs into modified CLBs and 
pre-places the other unmodified CLBs. The second step pre-
places modified CLBs, sometimes shifting partial rows/columns 
of preplaced CLBs by one position to create whitespace (empty 
CLBs) where needed; this preserves relative ordering. The third 
step re-legalizes by shifting remaining whitespace to zones 
where placement has expanded outside of the legal array bounds 
of the FPGA. For fast runtime, all shifts are deliberately done 
without checking potential impact to cost functions. While these 
steps can be made more resource-aware to potentially result in 
higher-quality results, they are deliberately left “dumb and 
simple” here to demonstrate that the final annealing step can 
recover all lost quality. 
 The RePlace algorithm is implemented in the VPR 
framework [2]. Three inputs are required for the incremental 

placement process: i) an initial placement from the “before” 
circuit state; ii) a floorplan or rectangular region identifying 
approximately where to place the changed elements – this can be 
provided or automatically computed from the bounding box; and 
iii) the modified or “after” circuit state. RePlace identifies which 
CLBs are modified and which are unmodified by comparing the 
first and third input data. It can automatically compute floorplan 
constraints from bounding boxes in the “before” state. For 
multiple changed regions, the input data for steps (i) and (iii) 
must subdivide the CLBs into per-region changes. 

3.1. Initial Placement, Floorplanning and Re-clustering 

The first step of RePlace provides initial placement for all 
unmodified CLBs by examining the placement solution of the 
“before” circuit state. This step is pictorially shown in Figure 
1(a). The colored CLBs represent unmodified CLBs; these are 
initially placed in their previous placement locations to maintain 
spatial locality. The CLBs are colored according to their original 
location within a coarse 3x3 grid in the FPGA array. In this 
example, one change region has been selected as a circular 
region in the top-right. Here, the old CLBs have been removed, 
leaving behind whitespace within that region to be filled in later 
by modified CLBs. 
 The bounding box of any holes left behind by the removed 
CLBs is identified by RePlace as a single rectangular floorplan 
region. To support multiple change regions, the “before” and 
“after” circuits must be subdivided into per-region changes as 
part of the input specification; RePlace cannot determine these 
automatically. However, RePlace will compute a corresponding 
bounding box for each change region. While the methods used 
to subdivide these change regions are beyond the scope of this 
paper, they can be identified through bounding boxes calculated 
using the design hierarchy or a design floorplan, for example. 
For the multiple region benchmarks in this paper, each change 
region is identified and subdivided ahead of time by the 
Un/DoPack flow. 
 Last, modified CLBs are produced by an incremental re-
clustering step with a modified version of iRAC [8]. An 
incremental design change can result in the deletion of old LUTs 
and the creation of new LUTs. Any “before” CLB containing 
deleted LUTs is fully broken down (unclustered) into its 
constituent LUTs and added to the list of new LUTs. Other 
CLBs (i.e., without deleted LUTs) are left intact and considered 
unmodified CLBs; these CLBs are used as a partial starting 
solution for iRAC. iRAC greedily extends this partial solution 
into a complete, timing-driven clustering solution by re-
clustering all new and unclustered LUTs into modified CLBs. 
This re-clustering step is performed separately for each region of 
change. 
 

3.2. Super-grid Expansion Placement 

The second step of RePlace is placement of modified CLBs. 
This step randomly places each modified CLB in the free 
whitespace of its corresponding floorplan region. If some CLBs 
exist that do not belong to any floorplan region, they are 
randomly placed in the remaining space. Pseudocode for this 
step is shown in Figure 2, and Figure 1(b) shows a real example. 



 

 
Fig. 1.  Super-grid expansion pseudocode. 
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Fig. 1.  Multi-region floorplan handling. 

If the floorplan region runs out of whitespace when a modified 
CLB is being inserted, an expansion of that floorplan region is 
triggered. Expansion is done in a round-robin/spiral fashion, one 
complete side/direction at a time. When a side is expanded, the 
floorplan rectangle increases in size by 1 CLB unit in that 
direction. To make space, partial rows or columns of previously-
placed CLBs along that same side are shifted over 1 unit starting 
from the centerline of the region; shifting in this manner 
preserves relative placement of the CLBs along the column or 
row. When shifting, any other affected floorplan rectangles are 
also extended by 1 unit in the same direction as the shift. For 
example, the floorplan region R1 in Figure 3 must be expanded 
to create room for CLB R1e. The two columns on the top side 
are shifted up, starting at the centerline of the floorplan region, 
creating 2 spaces and increasing the floorplan to a 2 × 3 region. 
The nearby floorplan region R2 is affected by the upward shift 
of R1a and R1c, so it is also extended upwards to become a 2 × 
3 region. Afterwards, regions R1 and R2 overlap, which is 
permitted. As a side effect of extending region R1, region R2 
now has some extra whitespace. In general, the amount of 
shifting required is quite modest. For example, to expand a 5 × 5 
CLB region by 20%, only one shift on one side is required to 
make it 5 × 6. The limited shifting helps maintain locality. 
 This shifting process may place CLBs outside the device 
boundaries into zones we call the super-grid. The super-grid 
expands as needed to hold the relative order of CLBs. This 
allows the placement algorithm to avoid calculations that would 
be required to re-shuffle whitespace more carefully. Note that 
I/O locations at the super-grid periphery just shift outwards but 
are not reordered or increased in number. The super-grid 

represents an illegal placement, so the next step involves re-
legalization in the form of compaction. 
Note regarding hard macro blocks and carry chains 
Real-world FPGA placement constraints such as carry chains, 
large blocks of memory, or stripes of memories/multipliers 
interfere with shifting. For small obstacles, one can imagine 
shifting through them (to the other side). For larger obstacles, 
they can be considered illegal areas, like the super-grid, which 
allow CLBs to be shifted outside and resolved later by 
compaction. This approach is further discussed in [1] but 
omitted here due to space limitations. Lack of support for carry 
chains and similar obstacles in VPR means these constraints are 
not implemented or tested in the RePlace code. 

3.3. Compaction (Re-legalization) 

The third step of RePlace is to re-legalize CLBs placed outside 
the valid placement area defined by the FPGA array size. One 
method to re-legalize all CLBs is to use annealing, but we found 
this approach too slow. Instead, we created a simple and fast 
solution called compaction. The pseudocode for compaction is 
shown in Figure 4. Figure 1(c) shows a real example. 
 Compaction divides the entire super-grid into 9 zones like a 
“#” symbol with the legal placement zone at the centre. This is 
visually depicted in Figure 5 where the center green  

 
Fig. 2.  Compaction pseudocode. 
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Fig. 3.  Compaction areas. 

zone S0 is the legal placement area. The red zones S1-S8 are 
illegal locations to be fixed. The peripheral blue areas depict the 
I/O locations.  Compaction legalizes each of the four corners 
and four sides, one zone at a time in random order2, by shifting 
all available whitespace in the center zone to a legal location 
nearby the illegal CLBs and then moving them into these legal 
whitespace locations. The precise destination is random. 
 For example, the top-center zone S2 is legalized by first 
shifting all whitespace vertically to the top rows as if all legal 
CLBs “fall” to the bottom of S0 due to gravity. Then, the 
average horizontal location of the illegal CLBs in the S2 zone is 

initial _ placement () 
shift  =  0 

for each change region r with floorplan f { 
   for each modified CLB c of region r { 

      if no remaining free space within f {  
         shift%4 ==  0  ?  shift right by 1  
         shift%4 ==  1  ?  shift up by 1  
         shift%4 ==  2  ?  shift left by 1  
         shift%4 ==  3  ?  shift down by 1  
         shift++ 
      } 
      randomly place c within free space of f 
   } 
} 
randomly_place_any_remaining_clbs() 

for each illegal zone s { 
   if s is corner 
      shift all free space to corner 
      randomly move illegal CLBs to free space 
   else if s is side 
      shift all free space to side s 
      find average location of illegal CLBs 
      shift all free space to average location 
      randomly move illegal CLBs into free space 
   end if 
}  



used as a dividing line. All whitespace in S0 is shifted towards 
this line as follows: all legal CLBs on the left of this line “fall” 
to the far left and all right CLBs “fall” to the far right. This 
places all whitespace just below the majority of illegal CLBs, 
allowing them to be randomly moved to S0. 

3.4. Refinement by Low-Temperature Annealing 

The last step of RePlace is to improve quality with a carefully-
tuned, low-temperature anneal. After compaction, we found that 
the average bounding box and critical path delays were not 
ideal. In many cases, the bounding box cost was 20% higher 
than placement from scratch. To avoid significant placement 
alterations, we re-tuned various parameters within the simulated 
annealing algorithm of VPR. To limit hill climbing, the initial 
temperature was lowered so that fewer “bad” swaps would be 
accepted. To maintain spatial locality, the initial range window 
was lowered to focus the swaps within a more localized area. To 
reduce and control runtime, the number of swaps per 
temperature parameter, inner_num, and the temperature 
reduction factor, alpha, were also tuned. A series of experiments 
were conducted to determine the following parameter values: 
 
• Initial temp. of 44% acceptance rate from prev. placement 
• Initial window range (rlim) of 12.5% of the FPGA width 

Temperature reduction factor alpha of 0.7 
• Number of swaps per temp. range, inner_num of 1 to 3 

 
Full details of this tuning are described in [1]. This produces a 
good, high-quality result that is comparable to a full placement. 
Runtime is controllable via the inner_num parameter. 

4. EXPERIMENTAL METHODOLOGY 

This section describes the experimental framework and the 
circuits used to benchmark the incremental placement algorithm. 

4.1. Single-Region Benchmarks (SR) 

The first SR benchmark set is designed to test the performance 
of the incremental placer with a single region of localized, 
modified logic. These are simple test cases that any incremental 
placer should handle. 
 The SR benchmark characteristics are given in Table 1 for 
five MCNC circuits. Similar results for the other 15 traditional 
circuits are reported in [1]. Columns in the table give the number 
of BLEs (#LE) and number of CLBs after clustering (#CLB) for 
the original and modified versions. Also given is the number of 
synthetically generated BLEs representing a design change in 
each modified circuit (#syn LE). 
 These circuits were generated as follows. An MCNC circuit 
is used as a starting point for the “before” circuit state.  It is then 
modified using the Perturber tool [13] to produce five “after” 
circuit states. One random rectangular floorplan region, 
consisting of 2.5%, 5%, and 10% of the total CLBs, is selected 
for each circuit. Each region is replaced with synthetically 
modified logic, either identical- or double-sized, to generate 5 

“after” states (the 10% change region is not doubled). The 
identical-size cases are simple tests, while the double-size cases 
test expansion. The circuit depth of the synthetically generated 
sub-circuit is unchanged to provide a stable comparison between 
the baseline and modified circuits. This was done to simulate 
incremental changes such as a small error correction. 

4.2. Multi-Region Benchmarks (MR) 

The second MR benchmark set is designed to test performance 
of the incremental placer with multiple regions of localized, 
modified logic. This represents cases where significant changes 
to multiple parts of a circuit are made to more fully stress the 
incremental recompilation. 
 The MR benchmark characteristics are given in Table 2. For 
each benchmark, the total CLB count (#CLB), number of 
modified CLBs (CLB) and the number of changed regions are 
shown. 
 This set of benchmarks is generated using the Un/DoPack 
flow [12].  Each circuit is over 50,000 4-input LUTs in size, 
initially clustered into CLBs of 16 LUTs per CLB. This flow 
iteratively runs place-and-route many times to reduce 
interconnect congestion. Each region that exceeds a target 
channel width is re-clustered to use more CLBs (by inserting 
empty LUTs to spread out the region), and then re-placed and 
re-routed. If congestion persists, the flow iterates again. Rapid 
incremental placement is required for this flow to execute 
quickly. The “before” MR circuits are 3 large, synthetically 
generated circuits from [12].  Five “after” versions of each 
circuit with multiple regions of change are created by targeting a 
10%, 20%, 30%, 40% or 50% reduction in routing channel 
width in the first pass of Un/DoPack. The first congested region 
is created by choosing the most-congested CLB and selecting all 
CLBs within radius 5 that have not been previously selected. A 
floorplan for this region is formed by the bounding box of 
selected CLBs. The region is marked for re-clustering from 16 
down to 13 LUTs per CLB, representing 23% more CLBs. 
Additional congestion regions are created by iterating over the 
remaining CLBs until all CLBs with a channel width above the 
target width have been selected. Each CLB belongs to just one 
local congestion region, but the floorplanned regions can 
overlap. 

4.3. Experimental Process 

The incremental placement CAD flow is implemented as part of 
VPR with the following parameters and settings: 
 

• Initial clustering uses iRAC, initial placement uses VPR 4.30 
• 4-input LUTs, cluster size N=10/16 for SR/MR, buffered L4 

wires  
• VPR flags: –verify_binary_search –pres_fac_mult 1.3 
–max_ router_iterations 100, and for the final route with 
20% more tracks: –pres_fac_mult 1.1 

• Runtimes include placement only; initialization time is 
excluded 

• Runtime measurements use an Intel P4, 3GHz, 512MB RAM 
• Low-temperature annealing parameters from Section 3.4 
• Annealing results are an arith. average of 5 different starting 

seeds 

2 In retrospect, this random zone order will slosh the whitespace across the 
die many times (once for each zone). Each slosh shears the locations of 
many preplaced CLBs. It may be better to visit the 8 zones in a specific 
order to reduce sloshing. 



 
Fig. 1.  Routing/Runtime, CLMA(SR). 

 
Fig. 2.  Routing/Runtime, Stdev010(MR). 

 
Fig. 3.  Timing/Runtime, Stdev010(MR) 

 The placement speed of RePlace was varied by setting the 
inner_num annealing parameter to 3, 2.5, 2, 1.5, and 1. 
Reducing this value reduces the number of swaps that are 
performed at each temperature. Lower values result in faster 
runtimes, but this does not significantly affect quality. RePlace 
uses a default value of inner_num=1. 
 The placement speed of VPR was varied by setting its 
inner_num parameter to 10, 1, 0.5, 0.25 and 0.125. An 
inner_num value of 10 is the “default” value for VPR. An 

inner_num value of 1 is set when VPR 4.30 is invoked with the 
“fast” placement option. This produces slightly lower-quality 
placements but improves runtime nearly 10-fold. We created a 
new “superfast” VPR placement option that sets inner_num to 
0.125. Various other VPR parameters such as initial 
temperature, range limit etc. were also studied to determine the 
reduction of runtime versus placement quality trade-off. It was 
found that reducing inner_num provides the most graceful 
degradation of placement quality versus runtime improvement. 

5. EXPERIMENTAL RESULTS 

Figures 6 and 7 show routability versus runtime trade-offs for 
CLMA from the SR set and Stdev010 from the MR set, 
respectively. Figure 8 shows critical path versus runtime trade-
off curves for Stdev010 from MR. The vertical axis is routing 
quality, either the minimum channel width needed to route or 
critical path. The horizontal axis is runtime on a log10 scale. The 
left-most (fastest) data markers for RePlace in Figures 7 and 8 
are the results when RePlace skips the fast anneal. VPR results 
are drawn using open-box markers and RePlace results are 
drawn using solid-box markers. RePlace significantly 
outperforms default VPR by nearly two orders of magnitude in 
runtime, yet achieves comparable quality. VPR quality degrades 
10–20% across the performance range, but RePlace degrades 
only about 5% (except when annealing is skipped). Results were 
similar for the other benchmarks (not shown). 
 An ultra-rapid incremental placement based entirely on 
shifting CLBs and skipping the anneal is not recommended due 
to significant quality loss. However, these results show that the 
quality is not lost forever; it can be restored with a rapid anneal. 
We include one more data point in Figures 7 and 8 for RePlace 
inner_num=0.5 showing that an even faster anneal still recovers 
all lost quality. We also tried adding a 2nd annealing step 
between expansion and compaction, but this only increased 
runtime and did not improve quality at all. It isn’t clear if this is 
because most of the quality is lost due to compaction, or if a 
single anneal is sufficient to recover all lost quality. Either way, 
since the quality is recoverable by one anneal that is sufficiently 
fast, it is likely unnecessary to spend additional runtime in the 
expansion or compaction phase to make “carefully evaluated” 
shifting decisions. This is encouraging because it shows that 
extremely robust incremental placement can be done with very 
simple heuristics. 
 Tables 3 and 4 give more precise results for VPR and 
RePlace. Speedup columns are normalized runtimes. Due to 
measurement precision, runtimes <200ms are reported as 0s and 
excluded from speedups. Columns CW, CP, BB, WL are 
channel width, critical path delay, placement bounding box, and 
routed wirelength. Columns ending in Q or Quality are 
normalized to RePlace, so values > 1.0 indicate RePlace is 
better. RePlace is within 4% of VPR full placement quality, but 
with ~60-fold speedup.  It is within 2% of VPR’s “fast” 
placement quality with ~7-fold speedup. VPR in “superfast” 
mode degrades quality 11-14% on average and does not achieve 
the same speed as RePlace; this shows that rapid annealing alone 
is not sufficient for incremental placement. 
 It is worth noting that the quality of multi-region incremental 
placement does not degrade even when a substantial portion of 



the circuit is modified. In particular, the MR-50 set of circuits 
have 1/3 to 2/3 of the CLBs modified in a 50,000 LUT circuit, 
but RePlace is still able to produce quality results with similar 
60-fold/7-fold speedups. This ability to tolerate widespread but 
localized changes is what makes RePlace an ideal “fast 
placement” tool for Un/DoPack. 
 Speedups and high quality are obtained with RePlace 
because of its ability to preserve the original placement 
information. In particular, the floorplanning and shifting ensures 
that modified CLBs are initially placed nearby the original 
CLBs they are replacing, without disturbing relative placement 
locality across the device. If the initial placement of modified 
CLBs was completely unconstrained, the annealing step would 
need many more swaps to achieve the same effect via the global 
migration of many more CLBs. Instead, the fast anneal at the 
end with a narrow range limit can focus its moves on quality 
improvement via localized CLB movement rather than global 
CLB movement. 

6. CONCLUSIONS 

RePlace is a fast incremental placement algorithm. The ideas 
contributing to its speed include the use of floorplanning, a 
placement super-grid, CPU-efficient CLB shifting which 
performs no detailed cost calculations, and rapid annealing to 
restore lost quality. It was shown that simply shifting alone, or 
just speeding up annealing alone, are insufficient by themselves 
to achieve the same quality and runtime benefits. Adding better 
cost-aware shifting steps could be imposed, but it is not clear 
they are needed from a quality or runtime perspective. While 
such changes may further improve the results, the minor 
improvements they offer to intermediate results may also simply 
be lost when annealing. Instead, it is important to note that the 
“dumb and simple” algorithm presented here is sufficiently 
robust without this added complexity. 
 RePlace achieves speedups roughly 70-fold compared to 
default VPR for single region changes encompassing up to 10% 
of small designs with no lost quality. Compared against VPR’s 
“fast” mode, RePlace is still about 8 times faster. Compared to a 
new “superfast” mode created for VPR, RePlace is almost 2 
times faster and much better in quality. Even on large designs of 
50,000 LUTs where up to two-thirds of a circuit is modified, 
RePlace maintains similar speedups and performs only 2-4% 
worse in quality. This shows that RePlace is capable of scaling 
to situations where significant circuit modifications are made. 
 Incremental placement algorithms that can quickly 
incorporate logic design changes is even more important for 
FPGAs than ASICs. Future work for the RePlace algorithm 
includes extension to handle macro blocks and carry chains. 
Additional benchmarking can be done with real world examples, 
including small logic changes and large scale changes such as 
updating a large subcomponent or updating a small 
subcomponent replicated many times throughout the design. A 
detailed comparison of quality and runtime results against other 
incremental placement algorithms should also be done; we are 
facilitating this by releasing our code and benchmarks online. 
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Table 1.  Single-region benchmark characteristics (10 BLEs per CLB). 
 Original Synthetic 2.5 Synthetic 5 Synthetic 10 Synthetic 2.5d Synthetic 5d 
  #LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB #LE #syn LE #CLB 
CLMA 8383 839 8384 251 840 8383 490 839 8385 992 840 9032 980 904 9613 1966 962 
EX1010 4598 460 4598 150 460 4599 251 461 4598 490 460 4752 304 476 4850 502 486 
MISEX3 1397 140 1397 30 140 1397 147 140 1397 247 140 1460 93 147 1489 182 150 
PDC 4575 458 4576 151 459 4575 490 458 4575 630 458 4829 504 484 4961 736 497 
SPLA 3690 369 3691 91 370 3691 251 370 3692 492 370 3787 187 379 3907 417 391 

 
Table 2.  Multi-region benchmark characteristics (16 BLEs per CLB). 

 
org. 

#CLB 

Multi Region - 50 Multi Region - 40 MR - 30 MR - 20 MR - 10 

 
New 

#CLB ΔCLB Num. 
Regions 

New 
#CLB ΔCLB Num. 

Regions 
New 

#CLB ΔCLB Num. 
Regions 

New 
#CLB ΔCLB Num. 

Regions 
New 

#CLB ΔCLB Num. 
Regions 

CLONE 3151 3618 2233 135 3310 762 46 3265 560 29 3206 275 12 3288 681 34 
STDEV0 3148 3603 2218 114 3595 2208 114 3606 2224 116 3272 617 30 3370 1087 50 
STDEV010 3152 3463 1490 85 3278 588 37 3254 490 29 3193 202 9 3237 425 20 

 
Table 3.  RePlace post-routing results (SR benchmarks). 

 
Single-Region 

Circuit 

RePlace inner_num=1 VPR (default) norm. to RePlace VPR (fast) norm. to RePlace VPR (superfast) norm. to RePlace 
RT 
(s) CW CP 

(ns) Bbox WL 
×104 Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ 

clma p25 3 51.8 27.0 528.8  6.76 72.00  0.97  0.95  0.98  0.97  8.27  1.02  0.94  1.01  1.00  1.73  1.10  0.96  1.11  1.10  
clma p5 3 51.2 26.5 529.5  6.78 70.80  0.96  0.97  0.99  0.98  7.93  1.00  0.97  1.01  1.00  1.80  1.13  0.98  1.13  1.12  
clma p10 3 52.2 26.9 536.9  6.88 73.53  0.98  0.96  0.98  0.98  8.13  1.01  0.93  1.01  0.99  1.73  1.10  0.96  1.11  1.10  
clma p25d 3 50.6 30.9 572.7  7.23 80.27  1.00  0.89  0.98  0.97  8.87  1.02  0.89  1.00  0.99  1.87  1.11  0.90  1.09  1.09  
clma p5d 4 54.2 32.0 644.4  8.26 69.95  1.00  0.99  0.98  0.97  8.15  0.99  0.96  0.99  0.98  2.00  1.08  0.95  1.08  1.08  
ex1010 p25 1 47 17.8 277.8  3.66 77.60  0.99  0.91  0.99  0.99  9.20  1.04  0.95  1.01  1.01  2.20  1.06  0.95  1.05  1.04  
ex1010 p5 1 46.6 16.9 276.3  3.63 75.00  0.99  0.95  0.99  1.00  8.60  1.03  0.95  1.00  1.01  2.00  1.12  1.01  1.08  1.09  
ex1010 p10 1 46.4 16.8 277.3  3.64 77.00  1.03  0.97  0.99  0.99  8.80  1.03  0.98  1.00  1.00  2.00  1.06  0.97  1.05  1.05  
ex1010 p25d 1.2 46.2 18.0 299.5  3.95 69.00  1.00  1.04  0.98  0.97  8.17  1.03  1.05  1.00  0.99  2.00  1.09  0.96  1.07  1.06  
ex1010 p5d 1 47 17.1 279.1  3.68 76.20  1.01  0.99  0.99  0.99  8.80  1.01  0.95  1.01  1.00  2.20  1.08  0.95  1.06  1.06  
misex3 p25 0 37.4 11.4 71.1  0.94 - 1.01  1.17  0.99  0.98  - 1.02  1.02  1.00  1.00  - 1.04  1.18  1.04  1.05  
misex3 p5 0 37.6 13.7 71.3  0.94 - 0.99  0.83  0.99  0.99  - 1.01  0.91  1.00  1.00  - 1.05  0.95  1.04  1.06  
misex3 p10 0 37.6 11.7 71.2  0.94 - 0.99  1.09  0.99  0.99  - 1.00  0.98  1.00  1.00  - 1.06  1.09  1.04  1.05  
misex3 p25d 0 38.6 13.3 72.1  0.96 - 0.97  0.85  0.99  0.98  - 0.98  1.03  0.99  1.00  - 1.03  1.02  1.03  1.03  
misex3 p5d 0 37.6 13.7 81.0  1.08 - 0.99  1.44  0.98  0.99  - 0.99  0.97  0.99  1.00  - 1.05  1.00  1.04  1.05  
pdc p25 1 61.4 19.8 348.6  4.67 80.60  1.00  1.08  0.99  0.97  9.80  0.99  0.96  1.00  1.00  2.20  1.07  1.06  1.06  1.06  
pdc p5 1.2 62 18.9 348.4  4.64 64.00  0.98  1.27  0.99  0.98  7.00  0.97  1.35  1.00  0.99  1.83  1.07  1.35  1.07  1.07  
pdc p10 1.2 60.6 21.0 347.2  4.65 68.67  1.01  0.96  0.99  0.97  7.00  1.03  0.95  1.01  1.00  2.00  1.09  1.00  1.08  1.06  
pdc p25d 1 61.2 25.2 367.6  4.93 84.40  0.98  0.78  0.98  0.98  10.20  0.99  0.76  0.99  0.98  2.60  1.05  0.81  1.05  1.05  
pdc p5d 1.4 61.6 23.0 402.8  5.34 68.14  1.01  0.97  0.99  0.98  7.86  1.03  1.06  1.01  1.00  1.86  1.08  0.96  1.07  1.07  
spla p25 0.6 51.6 17.3 230.6  3.11 75.67  0.98  0.96  0.99  0.99  8.67  1.00  1.23  1.01  1.01  2.33  1.08  1.11  1.09  1.09  
spla p5 0.8 51.8 19.2 230.8  3.13 55.50  0.99  0.90  1.00  0.98  6.75  0.99  0.91  1.01  1.00  1.50  1.07  0.96  1.10  1.09  
spla p10 1 51 17.7 230.4  3.13 44.80  1.01  0.97  1.00  0.98  5.00  1.02  1.07  1.01  1.00  1.20  1.09  0.97  1.08  1.08  
spla p25d 0.6 49.8 19.6 250.5  3.37 84.00  1.03  0.92  1.00  1.00  9.67  1.04  0.92  1.01  1.01  3.00  1.09  1.02  1.09  1.08  
spla p5d 1.2 53.8 20.8 289.1  3.84 51.17  0.98  0.96  0.98  0.97  6.00  1.01  1.04  1.00  0.99  1.50  1.09  0.99  1.07  1.06  
Geo. Mean NA 49.2 19.1 252.6 3.33 70.08  0.99  0.98  0.99  0.98  8.04  1.01  0.98  1.00  1.00  1.94  1.08  1.00  1.07  1.07  

 
Table 4.  RePlace post-routing results (MR benchmarks). 

 
Multi-Region 

Circuit 

RePlace inner_num=1 VPR (default) norm. to RePlace VPR (fast) norm. to RePlace VPR (superfast) norm. to RePlace 
RT 
(s) CW CP 

(ns) 
Bbox 
×103 

WL 
×105 Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ Speedup CWQ CPQ BBQ WLQ 

clone - 50 72.2 111.0 72.4 4.32 5.30 62.8 0.92 0.99 0.92 0.92 6.7 0.96 0.98 0.96 0.96 1.2 1.11 1.03 1.11 1.09 
clone - 40 57.2 110.0 72.5 3.90 4.87 70.0 0.97 1.02 0.96 0.96 7.9 1.00 0.98 0.99 0.99 1.5 1.11 1.04 1.11 1.10 
clone - 30 64.8 114.2 72.1 3.87 4.85 68.3 0.96 1.00 0.96 0.96 7.5 1.00 0.99 0.99 0.98 1.4 1.15 1.03 1.14 1.12 
clone - 20 57.6 117.4 71.2 3.79 4.77 61.5 0.98 0.98 0.96 0.96 6.6 1.00 1.00 0.99 0.99 1.5 1.10 1.03 1.14 1.11 
clone - 10 58.0 112.8 71.9 3.90 4.88 75.9 0.98 0.98 0.95 0.95 8.2 1.01 0.99 0.99 0.98 1.3 1.12 1.00 1.11 1.09 
stdev0 - 50 60.8 92.6 74.4 4.27 5.22 67.3 0.92 0.95 0.94 0.95 7.6 1.00 0.98 0.99 0.98 1.5 1.14 0.98 1.10 1.08 
stdev0 - 40 63.0 90.6 72.4 4.20 5.15 66.8 0.97 0.98 0.97 0.97 6.9 1.03 1.00 1.01 1.00 1.4 1.21 1.03 1.14 1.11 
stdev0 - 30 76.2 92.0 74.2 4.26 5.21 55.1 0.96 0.97 0.96 0.96 5.6 0.98 0.97 0.98 0.98 1.1 1.23 1.01 1.13 1.11 
stdev0 - 20 71.0 95.6 74.1 3.91 4.85 56.0 0.96 0.95 0.95 0.96 6.5 1.00 0.95 0.99 0.99 1.1 1.19 0.97 1.13 1.11 
stdev0 - 10 59.8 93.6 73.0 4.00 4.96 66.3 0.96 0.96 0.95 0.95 7.1 1.00 0.96 0.99 0.99 1.4 1.17 1.00 1.12 1.10 
stdev010 - 50 89.0 140.2 75.8 4.23 5.26 47.1 0.97 0.96 0.96 0.96 4.9 1.00 0.99 1.00 0.99 0.9 1.13 0.98 1.15 1.13 
stdev010 - 40 66.0 140.0 74.3 4.04 5.08 59.7 0.98 0.97 0.96 0.96 6.3 0.99 0.98 0.98 0.98 1.3 1.14 1.00 1.14 1.12 
stdev010 - 30 63.8 142.0 75.0 4.03 5.07 68.6 0.98 0.98 0.96 0.97 8.0 1.02 1.00 0.99 0.99 1.7 1.10 0.99 1.11 1.10 
stdev010 - 20 56.4 150.6 74.0 3.93 4.98 66.5 0.99 0.98 0.97 0.96 7.1 1.00 0.98 0.99 0.99 1.4 1.11 0.99 1.12 1.11 
stdev010 - 10 70.4 144.4 74.3 4.01 5.05 58.5 0.97 0.97 0.95 0.96 5.8 1.00 0.99 0.99 0.98 1.2 1.10 0.99 1.11 1.10 
Geo. Mean 65.2 114.6 73.4 4.04 5.03 63.0 0.96 0.98 0.96 0.96 6.8 1.00 0.98 0.99 0.99 1.3 1.14 1.00 1.12 1.11 

 
 


