An Overview of the NUMACchine
Multiprocessor Project”

T. Abdelrahman S. Brown T. Mowry K. Sevcik M. Stumm
Z. Vranesic S. Zhou A. Elkateeb M. Gusat P. Pereira B. Gamsa
R. Grindley O. Krieger G. Lemieux K. Loveless N. Manjikian
G. Ravindran S. Srbljic 7. Zilic

Departments of Electrical & Computer Engineering and Computer Science
The University of Toronto
Toronto, Ontario M5S 1A4

May 9, 1994

Abstract

The NUMAchine multiprocessor project is a large research effort at the Uni-
versity of Toronto aimed to investigate and develop novel software techniques to
support efficient parallel computing. An integral part of the project is to design
and build the NUMAchine multiprocessor— a large-scale, cache-coherent, non
uniform memory access (NUMA), shared memory multiprocessor. The NUMA-
chine has a number of hardware innovations designed to facilitate our software
techniques. This integrated hardware—software approach is the major theme of
the project.

In this talk we will present an overview of the NUMAchine project, and will
describe the NUMAchine multiprocessor architecture. In particular, we will de-
scribe the unique features of the architecture: network caches, cache-coherence
protocol, support for block transfers, monitoring capabilities, and the FPGA-
based flexible hardware control. Our software techniques will be address funda-
mental issues in software support for multiprocessors in the areas of operating
systems, compilers, and run-time support. We will describe our research and
progress in each area.

1 Introduction

The NUMAchine project at the University of Toronto is a research effort aimed at de-
veloping a shared-memory multiprocessor architecture and software support for easy
and efficient use of this architecture. A key objective is to define an architecture that
is: modular, cost-effective, and scalable to a size of 1024 processors. A prototype
64-processor machine will be built and system software developed to allow program-
mers to transport their applications onto this multiprocessor with ease, and exploit
the full potential of the hardware. The project builds on our recent experience in
developing the Hector multiprocessor system [1]. It is funded by a Strategic Grant
from the Natural Sciences and Engineering Research Council of Canada.

*This research has been supported by NSERC Strategic Research Grants STR0149404 and
STR0149815.

Figure 1: The NUMAchine Hierarchy.

2 Architecture

The NUMAchine architecture uses a hierarchical ring structure, which was demon-
strated to be attractive in the Hector project. The architecture features include:
cache coherence scheme based on limited broadcasts, network caches, block trans-
fer support, monitoring capability, and flexible control that allows more than one
protocol to be used.

2.1 Hierarchical Structure

At the lowest level of hierarchy, processor modules are connected into small clusters,
called stations. A simple bus is used for interconnection within a station, which is the
most effective choice when only a small number of functional units is involved. The
stations are interconnected through a hierarchy of bit-parallel rings, as illustrated in
Figure 1. The ring structure provides some important advantages. Point-to-point
connections are used between successive nodes, resulting in simple interfaces because
the ring connects to a given node by means of only one input and one output port.
Such connections avoid loading and signal reflections from multiple connectors which
plague bus-based schemes and limit the number of processors that can be supported.
Signals can be transmitted reliably at very high clock rates on rings.

The hierarchical structure permits a number of localized transfers to take place
concurrently on several rings, thus providing high total bandwidth. The highest
transfer rates are achieved if most transfers are between stations on the same ring
(i.e. with high locality). The longest transfers are those that traverse all levels in
the hierarchy, but even these transfer times are in general shorter than they would
be if all nodes were connected to a single long ring. A particularly useful feature of
the ring-hierarchy is that there exists a unique path between any two nodes in the
system. This feature can be exploited effectively in providing hardware support for
cache coherence.

The memory is distributed across the stations in the system. However, the user
sees a single coherent view of the memory, because all processors can access all mem-
ory locations in the same way. The time needed to access a given memory location
depends upon the physical place of this memory in the hierarchy with respect to the
accessing processor. Since the access times vary, the entire architecture falls into the
class of NUMA (Non-Uniform Memory Access) multiprocessors.

The NUM A chine prototype will be a 64-processor system, organized into a 3-level
hierarchy. One central ring will be used to connect four local rings, each of which
will have four stations of four processors each.

2.2 Station

Each station may contain a small number of processors. For practical reasons, this
number should be limited to eight. For our NUMAchine prototype, a station will have
four 64-bit processors. Figure 2 shows the organization of a station. Fach processor
has its own cache (perhaps both primary and secondary caches). A single memory
unit is provided on the station.

A network cache is included to reduce the traffic in the communications network.
It is used to cache data from non-local memory modules (but not the data from the
local memory). Since this cache only needs to appear to be fast compared to non-local
memory modules (which involve transfers through the communications network), it
can be built using the same DRAM technology as used for the local memory.

The station interface module contains the control circuitry and buffers needed
to connect to the local ring. In order to eliminate problems with flow control, the
communications protocol gives priority to higher levels in the hierarchy. Therefore,
a packet on the local ring is always accepted by a destination station. A station can
place a packet on the local ring only when it sees an empty slot (in a slotted-ring
protocol).

An I/0O module provides interface to input/output devices. At least one disk
storage unit will be included in each station.

2.3 Cache Consistency

NUMAchine has hardware-supported cache consistency, based on the natural broad-
cast mechanism available in the hierarchical structure and the fact that there is a
unique path between any two nodes in the machine. Since any full broadcast scheme
does not scale well, our protocol limits the scope of broadcasts by means of a packet-
filtering mechanism. Simple bit-masks are used to keep track of positions in the
hierarchy of various copies of cache lines. Each bit-mask is kept at the memory mod-
ule that is the home location of the corresponding cache line. The bit-masks provide
addressing information for reaching the copies in various caches (e.g. during invali-
dation process). At each node in the network, a filter circuit examines a single bit in
the bit-mask field in the packet and decides if a copy of the broadcast packet should
be sent to the lower level in the hierarchy.

The cache consistency scheme can be implemented at low cost. It needs very
simple routing control, and it performs well. We believe that it will prove to be
superior to the well-known directory schemes.

Station Consistency

Main Mask Bits and
Memory Status Bits

Processor

Processor

Network
Cache

Central Ring

Local Ring

Interface Local Ring

Station Bus

Processor

Programmable

Hardware Monitor

Processor

L disk
disk

P> 110 [

ethernet

Figure 2: Block Diagram of a Station.

2.4 Performance Monitoring

Since our NUMA chine prototype hardware will be used as a research vehicle for both
software and architecture investigations, it is important that there exist facilities for
measuring its performance. Consequently, NUMAchine will include hardware that
provides for non-intrusive monitoring of different aspects of the system’s behavior.
The monitoring is reconfigurable, based on high-capacity programmable logic device
technology.

2.5 Practical Considerations

One of the key advantages of NUMAchine architecture is its modularity. A small
system can comprise a single-ring (or even a single-station) configuration. When
a larger machine is needed, it can be easily realized by adding a higher-level ring,
etc. Thus, small configurations are not penalized by an up-front cost, and the cost
essentially grows linearly as additional modules are included.

Scalability is an important factor. In a hierarchical system there will arise prob-
lems if a constantly large amount of traflic must pass through the highest level in the
hierarchy. Also, it is clear that any protocol that uses full broadcasts will not scale
well. We have solved the broadcast problem by means of the filtering mechanism. Our
simulations indicate that the proposed architecture will scale well at least up to 1024
processors. This is likely to be the range of most commercially sold multiprocessors
in the next decade.

All parts of NUMAchine hardware are based on standard workstation technology.
This, combined with the modular structure, allows a very cost-effective implementa-
tion.

3 Tornado Operating System

Tornado is a multiuser, NUMA-aware operating system being developed for NUMA-
chine. It is a performance-oriented, microkernel-based system, where most services
are provided by servers and application-level run-time libraries. Tornado has a highly
modular structure and is implemented in C++4, making it well suited as a test bed for
experimental operating systems research. The programming model provided to the
application programmer includes multiple light-weight processes per address space
and a file system based on mapped files.

The Tornado development effort will build on our recent experiences in imple-
menting the Hurricane operating system for the Hector multiprocessor [2]. Being
able to temporarily use some of Hurricane’s servers under Tornado will allow us to
quickly exercise Tornado code as it becomes available, and will provide users of NU-
MAchine an operating environment complete with internet access and X-Window
library support shortly after the hardware becomes operational.

Tornado will pursue a number of objectives that set it apart from other operating
system efforts. Three of these include scalability, predictable performance behavior,
and support for data-intensive applications:

e Scalability: An operating system must be as scalable as the underlying hard-
ware if the performance potential of the hardware is to be exploited in a cost-
effective way. For shared-memory multiprocessors, scalability entails both con-
currency and locality. However, existing operating systems for large-scale mul-
tiprocessors have been scaled to accommodate many processors only in an ad
hoc manner, by repeatedly identifying and then removing the most contended
bottlenecks, thus addressing only concurrency. This approach results in sys-
tems that ¢) have a large number of locks that have to be held for common
operations, easily doubling the cost of these operations, and) do not take
locality into account.

¢ Predictable performance behavior: Tornado is a multiprogrammed sys-
tem rather than a uniprogrammed or partitioned system, because a multipro-
grammed system makes more effective use of the hardware resources, and be-
cause it can provide improved response times to users. However, application
performance is less predictable in a multiprogrammed system, because concur-
rently executing applications compete for common resources. The fact that the
physical resources allocated to an application may change at any time makes it
difficult for the programmer or compiler to tune a parallel program to run well,
or for the run-time system to appropriately parameterize the algorithm.

As a simple example, a program assuming the availability of P processors will
perform poorly if less than P processors are available during execution. While
the availability of P processors can easily be achieved for example with co-
scheduling, we believe that guaranteed resource availability during program
execution is also necessary for the other physical resources such as physical
memory and I/O bandwidth if high performance is to be achieved. As another
example, if an application prefetches from disk a large data set, then increased
paging activity with an attendant degradation in performance can result if
sufficient physical memory is not available at that time. Optimizations, such as
prefetching in this example, are effective only if the resources they require are
actually available; otherwise they are detrimental.

Support for data intensive applications: Tornado will be tuned for the
class of applications with large data sets and hence high I/O demands. Few
systems support this class of applications well; we have found it easy to be able
to cripple most existing parallel systems with even simple I/O-bound programs.
Providing a high capacity /O system alone is not sufficient. A more integrated
approach is required where the file system, the memory management system,
the scheduler, and the application program cooperate in order to be able to
efficiently exploit the potential bandwidth of a parallel I/O subsystem.

A number of techniques can help achieve these objectives. We briefly describe three.

¢ Hierarchical Clustering: Hierarchical clustering is a structuring technique
that addresses scalability. In a clustered system, a set of resources of one type
(virtual or physical) that correspond to a cluster of processors are managed
together in a tightly-coupled and semi-autonomous fashion. The data structures

used for this purpose are constrained to remain local to the cluster and to be
accessed only by the processors of the local cluster. The basic idea behind
clustering is that individual easy to implement modules provide a small degree
of concurrency with simple locking structures and much locality, while multiple
modules are used to cover the entire system, providing the concurrency required.
The clusters interact in a loosely-coupled fashion to provide the applications
with the view of a single, integrated and consistent large system. The size of
the cluster is determined largely by the expected workload, the expected degree
of sharing, and the topology of the underlying hardware.

Clustering incorporates structuring principles from both tightly-coupled and
distributed systems, exploiting the advantages of both. By using the structur-
ing principles of distributed systems, the services and data are replicated and
migrated to: a) distribute the demand, b) increase concurrency, c) decrease
contention, and d) increase locality, thus making the system scalable. On the
other hand, there is tight coupling within a cluster, using the structuring princi-
ples of small-scale multiprocessor operating systems, so the system can perform
well for the common case where interactions occur primarily between objects
located in the same cluster.

The Hurricane operating system was originally implemented as a clustered sys-
tem, and to the best of our knowledge, is the first and only such system. Tornado
will also use this structure, although modified to accommodate the lessons we
have learned from our experience. For example, our existing implementation
supports only two levels of hierarchy: C/P clusters of size C' span the system.
Moreover, the cluster size is the same for each resource type. Tornado will
support additional levels of hierarchy and will allow each resource class to have
an independent cluster size. In Hurricane, we originally underestimated the
importance of restraining data accesses to a single processor whenever possible.
In Tornado, the clusters at the lowest level of the hierarchy will mostly be of
size one in order to increase processor locality and hence maximize the cache
hit rate, minimize cache invalidations, and minimize the need for locking.

We have designed and implemented a Protected Procedure Call (PPC) facility
that nicely demonstrates the advantages of using hierarchical clustering. The
PPC facility requires no access to shared data and no locking, so end-to-end
performance is comparable to the fastest uniprocessor IPC times, yet can sus-
tain this performance independent of the number of concurrent PPC operations,
even if all such operations are directed to the same server [3]. Moreover, the
PPC facility enables servers to be structured using the same approach by en-
suring that local resources are made available to the target server so that it can
equally exploit locality as much as possible.

Physical Resource-based Virtual Machine: Tornado will guarantee phys-
ical resource availability to each application, and will allow each application
to determine how these resources are to be managed. It will support a model
in which each parallel application negotiates for a set of physical resources.
Once granted, the application has exclusive use of those resources throughout
the course of the computation or until renegotiated. At this time, we envision

negotiating for a fixed set of processors, physical memory pages and a portion
of the I/O bandwidth to specific disks. (It is still an open question how best
to treat backplane traffic.) Processes of an application will be scheduled only
if its physical resources are available, and their state will be restored to what
they were when the application last ran. Moreover, Tornado will allow the re-
sources of each physical resource-based virtual machine to be managed in an
application-specific way.

These two features, guaranteed resource availability and application-specific
resource management, will make the performance behavior of applications pre-
dictable, regardless of other concurrently running applications, and hence sim-
plify the performance tuning process significantly. The application appears to
have a physical machine to itself, running in virtual time. Hence, the system will
also respond well to programs designed for uniprogrammed systems. Moreover,
the system will allow valid run-time measurements for performance evaluation
purposes (for example to obtain speedup curves) without having to reserve the
hardware for single-user access. The challenge is to support this model while
at the same time ensuring that throughput remains at an acceptable level. We
expect the potential performance benefits of being able to properly tune an
application to be significantly larger than the overhead caused by supporting
this system model.

User-level I/O support: We have designed and implemented a parallel file
system under Hurricane capable of supporting concurrent access to numerous
disks distributed across the system [4]. In principle, this file system is capable
of providing very large aggregate I/O bandwidth. In practice, however, it is
difficult to effectively exploit this bandwidth, unless the application, the virtual
memory system, the scheduler, and the file system collaborate closely. Tornado
intends to provide I/O primarily through mapped files, because of its simpler
interface, its natural support for parallel operation, and the reduced amount of
copying and address space crossings required. But to provide high-performance
I/0, it is necessary to supplement the system-level servers with application-level
support.

In previous work [5], we have been able to improve I/O performance of unipro-
cessor applications by moving much of the I/O functionality into the application
space to reduce the number of address space crossings and the amount of data
copying. We feel that application-level support is even more important in the
case of data-intensive parallel applications. Overall, we believe that a proactive
approach to I/O as opposed to a reactive one will lead to much improved perfor-
mance. For example, application-level prefetching and post-storing is necessary
to keep the disks busy and streaming. Moreover, the application must ensure
that sequential access patterns are seen by the disk as much as possible, possibly
by assigning exclusive access to the disk to one process at a time.

4 The NUMAchine Compiler

We are currently developing a compiler system for NUMAchine. The compiler is
intended to support high-performance data-parallel programming for large-scale sci-
entific applications. It specifically targets shared memory multiprocessors with non-
uniform access memory systems and coherent caches. It will optimize programs to
maximize cache utilization, enhance locality of reference in a physically-distributed
shared memory, reduce data movement and cache coherence overhead, and reduce
network contention. These goals distinguish our work from other compiler research
efforts such as Parafrase Il [6], Polaris [7], Fortran-D [8], SUIF [9], and Superb [10],
that either target uniform memory access multiprocessors, and are mainly concerned
with the detection of parallelism and the formation of parallel tasks, or that target
distributed memory multiprocessors, and are mainly concerned with communication
optimizations.

Our compiler will include a number of techniques that: (1) enhance locality of
reference; (2) reduce memory access latency; and (3) hide remaining latency. We will
utilize the prefetching and block transfer capabilities of the hardware to support our
techniques.

4.1 User-Level Locality Management

For a large class of applications, user-level specification of data mapping is essen-
tial to maintain locality and reduce false sharing. We will provide support for the
specification of data mapping through High Performance Fortran (HPF) language
extensions for data partitioning and distribution. These extensions enable our com-
piler to partition arrays and to distribute the partitions in the physically distributed
shared memory. A critical performance-related issue is the implementation of array
indexing and storage management for the resulting distributed arrays in the presence
of sharing. A possible approach is that of Fortran-D in which all program references
to arrays are translated into local references to array partitions for each processor, and
in which buffers are used to store shared data. However, this approach adds complex-
ity to the compiler and does not result in good performance. Instead, our compiler
will take advantage of NUMAchine’s shared memory architecture to efficiently imple-
ment array indexing and storage management [11]. We will implement and evaluate
the performance of a number of possible implementations in our compiler. We also
intend to support irregular and dynamic data distributions— the shared address space
of NUMAchine will facilitate more efficient implementation of these distributions in
comparison to distributed memory multiprocessors.

In addition to providing a mechanism for locality specification, our support for
HPF language extensions will facilitate porting to the NUMAchine applications that
use these extensions.

4.2 Automatic Data Layout

Data layout encompasses the placement, organization, and possible movement of
data in a physically distributed shared address space. We believe that data layout
must take into account low-level issues such as storage management and the role

of caches in order to maximize parallel execution performance. Locality is deter-
mined by the manner in which application data is partitioned and placed through
the storage management facilities of the operating system. Effective cache utilization
requires proper data organization with respect to the data access patterns. Finally,
reduction of communication and coherence overhead arising from data sharing during
parallel execution requires minimization of data movement. Automated derivation of
data layout requires adequate support for: analysis and representation of data access
patterns, evaluation and selection of data layout alternatives with consideration of
low-level issues such as cache effectiveness, and transformations of computation and
data required to enforce the chosen data layout, including interactions with the stor-
age management facilities of the operating system. We will investigate these issues
and implement automatic data layout support in our compiler.

4.3 Latency Hiding by Block Transfers

The block transfer facility in the NUMAchine hardware provides compilers with the
opportunity to hide memory access latency by overlapping communication time to ac-
cess remote data with local computations. In order to realize this overlap, a program
segment must be restructured to initiate block transfers of remote data, proceed to
perform computations that require only local data, and then upon receipt of the re-
mote data perform computations that require the remote data. There are a number of
open research issues that must be addressed before effective use of block transfers can
be possible. These include: (1) analysis and representation of data access patterns in
parallel applications to determine local and remote data accesses; (2) identification
of program segments that can benefit from block transfers (the use of block transfers
can degrade parallel program performance due to the overhead associated with block
transfers, and hence, benefits of block transfers must be ascertained before they are
used); and (3) restructuring of programs to initiate block transfers and receive block
transferred data. We will research these issues and develop appropriate support for
block transfers in our compiler.

4.4 Loop Scheduling

Loop scheduling assigns iterations of a parallel loop to processors for parallel execu-
tion. It must strike a balance between two conflicting goals: to minimize run-time
overhead of scheduling decisions, and to balance the workload across the processors.
On NUMAchine, the non-uniform nature of memory access dictates yet another goal—
to minimize data movement and cache coherence overhead. The scheduling of an iter-
ation must take into consideration the location of the data referenced by the iteration.
We have developed in the run-time system of Hurricane a dynamic loop scheduling
algorithm, called LDS [12], which relies on the user to provide locality information.
We will continue to pursue locality-based scheduling by investigating loop scheduling
techniques that assign iterations to processors at compile-time in such a way to min-
imize data movement and cache coherence overhead. We will use the techniques we
develop to describe data access patterns in parallel applications to estimate the num-
ber and cost of memory accesses in a parallel loop, and use this estimate to determine
a loop scheduling strategy that strikes a good balance among the three goals.

4.5 Organization of the Compiler System

A block diagram of the compiler system we will develop is depicted in Figure 3. It
consists of a front end which parses Fortran and C programs to produce an interme-
diate representation. Control flow analysis and data flow analysis are then applied to
the intermediate representation to perform common optimizations such as constant
propagation, copy propagation and common subexpression elimination. We have in-
tegrated the Omega test [13] into the compiler to perform exact and symbolic data
dependence analysis. We have also implemented a number of standard transforma-
tions, such as unimodular transformations, strip-mining, tiling, loop distribution and
loop fusion. The transformations are implemented in a modular fashion to facilitate
the integration of new transformations. Data layout is performed after a set of pri-
mary transformations have been applied, and may require additional transformations
to be applied. Once data layout is determined, latency hiding techniques are applied.
Loop scheduling is then applied and a parallel source program is generated by the
back end. The resulting program is then compiled using the native compilers of the
target machine to generate an executable parallel program.

References

[1] Z. Vranesic, M. Stumm, D. Lewis, and R. White, “Hector: A hierarchically
structured shared memory multiprocessor,” IFEF Computer, vol. 24, no. 1, pp.
72-79, 1991.

[2] M. Stumm, R. Unrau, and O. Krieger, “Hierarchical clustering: A structure for
scalable multiprocessor operating system design”, CSRI Technical Report CSRI-
268, 1993. (Extended version of “Clustering Micro-Kernels for Scalability,” Proc. of the
Usenix Workshop on Micro-Kernels and Other Kernel Architectures, April, 1992.

[3] B. Gamsa, O. Krieger, and M. Stumm, “Optimizing I[PC performance for shared-
memory multiprocessors,” CSRI Technical Report CSRI-294, 1994, (submitted for
publication).

[4] O. Krieger, The HFS parallel file system, PhD thesis, in progress, expected 1994.

[5] O. Krieger, M. Stumm, and R. Unrau, “The Alloc Stream Facility: A redesign of
application-level Stream 1/0,” IFEE Computer, 27(3) March, 1994, pp. 75-82.

[6] C.D. Polychronopoulos, M.B. Girkar, M.R. Haghighat, C.L. Lee, B.P. Leung and
D.A. Schouten, “The structure of Parafrase-2: and advanced parallelizing com-
piler for C and Fortran,” in Languages and Compilers for Parallel Computing,
D. Gelenter, A. Nicolau, and D. Padua, eds., pp. 423-453, The MIT Press, 1990.

[7] D.A. Pudua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weatherford
and K. Faigin, “Polaris: A new generation parallelizing compiler for MPPs,”
CSRD Report No. 1306, Center for Supercomputing Research and Development,
University of Illinois, 1993.

Input Program

Front End

\

Flow Analysis

Data Dependence
Analysis

- Optimizing
Transformations

Data Layout

\

Latency Hiding

Loop Scheduling

Code Generation

Native Code
Generation

i

Executable Parallel Program

Figure 3: A Block Diagram of the Proposed Compiler System.

[8]

[9]

[10]

[11]

[12]

[13]

S. Hiranandani, K. Kennedy and C. Tseng, “Compiling Fortran D,” Comm. of
the ACM, vol. 35, no. 8, pp. 66-80, 1992.

S. Tjiang, M. Wolf, M. Lam, and K.Pieper, “Integrating scalar optimization
and parallelization,” in Languages and Compilers for Parallel Computing, pp.
137-151, Springer- Verlag, Berlin, 1992.

H. Zima and B. Chapman, “Compiling for distributed memory multiprocessors,”
Proceedings of the IFEFE, 1993.

T. Abdelrahman and T. Wong, “Distributed Array Data Management on
NUMA Multiprocessors,” Proc. Scalable High-Performance Computing Confer-
ence, 1994.

H. Li, S. Tandri, M. Stumm and K. Sevcik, “Locality-Based Dynamic Schedul-
ing,” Int’l Conf. on Parallel Processing, 1993.

W. Pugh, “A practical algorithm for exact array dependence analysis,” Comm.
of the ACM, vol. 35, no. 8, pp. 102-114, 1992.

